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FOURIER SERIES APPROXIMATION OF LINEAR FRACTIONAL

STABLE MOTION

HERMINE BIERMÉ AND HANS-PETER SCHEFFLER

Abstract. An approximation of the linear fractional stable motion by a Fourier
sum is presented. In the continuous sample path case precise error bounds are
derived. This approximation method is used to develop a simulation method of the
sample path of linear fractional stable motions.

1. Introduction

Irregular phenomena appear in various fields of scientific research: traffic volume

in modern communication and computer networks and mathematical finance for ex-

ample. See e.g. [9, 18, 11] for network traffic and the collection of papers in [5],

part B. Important features often discovered are heavy tails, statistical self-similarity

and long range dependence. See [4] and [5] for a recent overview. Mathematical

models both easy to use and relevant for these applications are fractional stable mo-

tions, most prominently the fractional Brownian motion. See [14] for a comprehensive

introduction to these processes.

It is a common feature of fractional stable motions that they are self-similar. More-

over they can exhibit long range dependence as well as continuous sample path even

in the heavy tailed (α-stable) case. See e.g. [4] and the references therein.

Fix any 0 < α ≤ 2 and let Zα(dz) be an independently scattered symmetric α-

stable (SαS) random measure on R with Lebesgue control measure ds in the sense

of [14]. For a, b ∈ R not both equal to zero, 0 < H < 1 and t ∈ R define

(1.1) X(t) = Xa,b(t) =

∫

R

ga,b(t, z)Zα(dz)

where

ga,b(t, z) = a
(
(t− z)

H−1/α
+ − (−z)

H−1/α
+

)
+ b
(
(t− z)

H−1/α
− − (−z)

H−1/α
−

)
.
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The process {X(t)}t∈R is called a linear fractional stable motion (LFSM). Note that

the integral is well defined since the integrand is in Lα(R, dz), see e.g. [14]. Also note

that if a = b 6= 0, then (1.1) reduces to

(1.2) X(t) = a

∫ ∞

−∞

(
|t− z|H−1/α − |z|H−1/α

)
Zα(dz)

the so-called well balanced linear fractional stable motion.

It follows from basic properties of the random integral definition that {X(t)}t∈R is

self-similar with Hurst-index H, that is

{X(ct)}t∈R

f.d.
= {cHX(t)}t∈R

and has stationary increments, so that for any h > 0

{X(t+ h)−X(h)}t∈R

f.d.
= {X(t)}t∈R.

Here
f.d.
= denotes equality in distribution of all finite dimensional marginals.

It follows from Kolmogoroff’s Theorem (see [7], Theorem 3.23), using the fact that

{X(t)}t∈R has stationary increments and is self-similar with Hurst-coefficient H, that

if H > 1/α there exists a modification of {X(t)}t∈R with locally Hölder-continuous

sample path of order 0 < β < H − 1/α see [17] and [10] for an improvement. We

will always choose this version. Note that H > 1/α necessarily implies 1 < α ≤ 2.

Moreover, the case H > 1/α is also considered the so-called long range dependent

case of LFSM, see e.g. [14], Remark on p. 345. We will restrict the major part of

this paper to this most important case.

The purpose of this paper is to present a Fourier series approximation of the LSFM

{X(t)}t∈R which can be used to efficiently simulate its sample paths. Since there is

only a satisfying theory of Fourier series for functions in Lp with p > 1 we will restrict

ourself to the case 1 < α ≤ 2. To our knowledge, in the heavy tailed case 0 < α < 2,

there exist three other methods to simulate the sample path of LFSM. The first

method, presented in [15], is an effective implementation of the approximation method

presented in [14] using the fast-Fourier-transform algorithm. This simulation method

generates the so-called fractional stable noise Yn = X(n)−X(n− 1), n = 1, 2, . . . , a

stationary sequence, by a Riemann sum approximation of the integral representation.

Hence to generate a LFSM sample path of size N one has to compute the cumulative

sumsX(n) =
n∑

j=1

Yj, for n = 1, . . . , N , with an error (in terms of the scale parameter of
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a SαS random variable) growing linearly in n. See Corollary 2.1 in [15]. The second

method, presented in [19] is based on a limit theorem for sums of moving averages.

It generates an approximation of the LFSM by the normalization of the cumulative

sums of a linear process. The error in terms of the scale parameter of a SαS random

variable is uniform on any compact set. However this method always approximates

the LFSM {X(t)}t∈R by a stepwise constant function, see Proposition 1 in [19], even

in the continuous sample path case H > 1/α. The last method is presented in [2] in

a much more general context. It is based on the approximation of the LFSM by the

sum of a shot noise series and a fractional Brownian motion, a Gaussian process (see

section 6.3). A fast and exact synthesis method for 1-dimensional fractional Brownian

motion is known [12], such that this part can be efficiently simulated. However the

error due to this approximation is only given in terms of Berry-Essen bounds and

can not be compared with the rates of convergence of the shot noise series obtained

almost surely and in Lr norm.

In contrast to [19], our method will produce directly an approximation of a sample

path of LFSM by a continuous function which can be efficiently evaluated at any

time point. In particular, we obtain a sample path of a LFSM discretized on a

regular grid without additional cost. Moreover, we provide detailed error bounds, in

terms of the scale parameter of a SαS random variable, of the approximation, which

do not depend on the time point over a compact set, contrary to [15]. Therefore,

our approximation can also be used to approximate integral functionals of LFSM.

Furthermore our method can be generalized to simulate more general processes than

LFSM, obtained through a moving-average integral representation.

This paper is organized as follows. In section 2 we present the general idea behind

our method as well as a general convergence result for one fixed time point for any

0 < H < 1 and 1 < α ≤ 2. In section 3 we consider the continuous sample path

case H > 1/α. Detailed error estimates in terms of the scale parameter of a SαS

random variable (or the standard deviation if α = 2) as well as the convergence of all

finite dimensional marginal distributions are obtained in this most important case.

We conclude this paper with a description of the simulation algorithm in section 4.

The proofs of Proposition 3.1 and Theorem 3.2 are postponed to the Appendix.
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2. The approximation method

In this section we will describe the general idea of our approximation method for

LFSM in the case 0 < H < 1 and 1 < α ≤ 2 using Fourier-series. Our method is

based on the following basic fact of stable integrals. See [14], Chapter 3 for details.

Property (C): For fn, f ∈ Lα(R, dz) we have

(2.1)

∫

R

fn(z)Zα(dz)→

∫

R

f(z)Zα(dz) as n→∞

in probability, if and only if

(2.2)

∫

R

∣∣fn(z)− f(z)
∣∣α dz → 0 as n→∞.

Note that since α > 1 we know that ‖f‖α =
(∫

R
|f(z)|α dz

)1/α
is a norm on Lα(R, dz)

and hence (2.2) is just ‖fn − f‖α → 0 as n→∞.

In the following we will only consider the case a = 1 and b = 0 in (1.1). The general

case as well as the well-balanced case (1.2) can be dealt with similarly. For any t ∈ R

fixed, note that since 0 < H < 1 the function z 7→ (t− z)
H−1/α
+ − (−z)

H−1/α
+ belongs

to Lα(R, dz). Then dominated convergence together with Property (C) implies

(2.3) YA(t) =

∫ A

−A

(
(t− z)

H−1/α
+ − (−z)

H−1/α
+

)
Zα(dz)→ X(t) as A→∞

in probability.

Now fix some (large) A > 0 and define

ek(z) = exp

(
iπ

k

A
z

)
, k ∈ Z.

Then {ek(z) : k ∈ Z} is an orthonormal basis in L2([−A,A], (2A)−1dz). For a fixed

t ∈ R let

ρt(z) = (t− z)
H−1/α
+ − (−z)

H−1/α
+ and ϕ(z) = (−z)

H−1/α
+

for |z| ≤ A and extend both ρt(z) and ϕ(z) periodically to R with period 2A, that is

ρt(z + 2A) = ρt(z) and ϕ(z + 2A) = ϕ(z). Note that YA(t) =
∫ A

−A
ρt(z)Zα(dz). Since

H > 0 we have ϕ, ρt ∈ Lα([−A,A], ds) ⊂ L1([−A,A], ds) since α > 1. Hence we can

define the Fourier-coefficients of ρt for k ∈ Z as

ρ̂t(k) =
1

2A

∫ A

−A

ρt(z)ek(z) dz =
(
e−iπ

k
A
t − 1

)
ϕ̂(k),
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where ϕ̂(k) = 1
2A

∫ A

−A
ϕ(z)ek(z) dz. Since 1 < α ≤ 2, using the fact that the Fourier-

series of an Lα([−A,A], (2A)−1dz)-function f converges to f in Lα([−A,A], (2A)−1dz)

(see e.g. [8], Theorem on p. 50), we have

(2.4)
M∑

k=−M

ρ̂t(k)ek(z)→ ρt(z) as M →∞

in Lα([−A,A], (2A)−1dz). Therefore, using Property (C) again, we conclude

(2.5) YA,M(t) =

∫ A

−A

( M∑

k=−M

ρ̂t(k)ek(z)
)
Zα(dz)→ YA(t) as M →∞

in probability. Note that

YA,M(t) =
M∑

k=−M

ρ̂t(k)

∫ A

−A

ek(z)Zα(dz).

We now approximate
∫ A

−A
ek(z)Zα(dz) by an analogue of a Riemann sum. For

integers L ≥ 1 let zj = zj(A,L) = j(A/L) for j = −L, . . . , L and let ∆zj = [zj, zj+1[.

Observe that since ek(z) is uniformly continuous on [−A,A] we have

L−1∑

j=−L

ek(zj)1∆zj(z)→ ek(z) as L→∞

uniformly on [−A,A] and hence in Lα([−A,A], (2A)−1dz). Therefore, in view of

Property (C) we get

(2.6) ẐA,L(k) =
L−1∑

j=−L

ek(zj)Zα(∆zj)→

∫ A

−A

ek(z)Zα(dz) as L→∞

in probability. Note that Zα(∆zj), j = −L, . . . , L−1 are i.i.d. SαS random variables

with scale (A/L)1/α, since by normalization we assume that the scale of Zα([0, 1])

equals one.

We now define

(2.7) YA,M,L(t)=
M∑

k=−M

ρ̂t(k)ẐA,L(k) =
M∑

k=−M

(
e−iπ

k
A
t − 1

)
ϕ̂(k)ẐA,L(k)

to be our approximation of the LFSM X(t) for any t ∈ R fixed. In view of (2.3)–(2.6)

we haven proven:
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Theorem 2.1. If 1 < α ≤ 2 we have, for any fixed t ∈ R that

lim
L→∞

YA,M,L(t) = YA,M(t)

lim
M→∞

YA,M(t) = YA(t)

and

lim
A→∞

YA(t) = X(t)

in probability.

Observe that

ẐA,L(k) =
L−1∑

j=−L

e2iπ
jk
2LZα(∆zj)

can be viewed as the discrete Fourier-transform of the sequence (Zα(∆zj) : j =

−L, . . . , L − 1). Hence we choose L > M a power of 2 in our approximation

method in order to apply the Fast-Fourier-Transform algorithm to compute ẐA,L(k)

for −M ≤ k ≤M from a generated sequence Zα(∆zj) of i.i.d. SαS random variables.

However, the derivation of Theorem 2.1 does not allow directly to have M,L → ∞

simultaneously. In the next section we will show that if H > 1/α our method also

works if L = M + 1 or L = 2M → ∞, see Corollary 3.5 and Remark 3.6 below.

Moreover, we improve Theorem 2.1 by providing error bounds and show convergence

of all finite-dimensional marginal distributions.

3. Error estimates

In this section we derive error estimates of our approximations {YA,M,L(t)}t∈R to

{YA(t)}t∈R and of the latter to the LFSM {X(t)}t∈R in terms of the scale parameter

‖ξ‖α of a SαS random variable ξ, where the notation ‖ · ‖α is used according to

the situation for a function or a SαS random variable. Recall from [14] that a SαS

random variable ξ has the characteristic function E(eixξ) = exp(−Cα
α |x|

α), where Cα

denotes the scale parameter of ξ. We also use the notation Cα = ‖ξ‖α which is very

illuminating when dealing with stable integrals because the scale parameter of the

stable integral ξ =
∫

R
g(z)Zα(dz) is ‖ξ‖α = Cα

(∫
R
|g(z)|α dz

)1/α
= Cα‖g‖α, where Cα

is the scale parameter of Zα([0, 1]). We will assume without loss of generality that

Cα = 1.
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In the following we only consider the continuous and long range dependence case

H > 1/α. Note that by (2.3) we can write

(3.1) YA(t) =

∫ A

−A

ρt(z)Zα(dz)

where ρt is a 2A-periodic function which is now bounded and continuous. In fact

ρt(z) = ϕ(t − z) − ϕ(−z) where ϕ(z) = a(z)
H−1/α
+ + b(z)

H−1/α
− for z ∈ [−A,A[. As

before we will only consider the case a = 1 and b = 0 as well as the well balanced

case a = b = 1 which will allow better estimates because of the symmetry of ϕ(z) =

|z|H−1/α in this particular case.

We first analyze the effect of truncation on the integral defining X(t) as in (2.3)

above. We fix any 0 < T < A and consider the processes only on the finite interval

|t| ≤ T . The rate of convergence is obtained using the mean value theorem and the

decreasing order of the kernel function ϕ.

Proposition 3.1. Assume 1 < α ≤ 2 and 1/α < H < 1. Then, for all T > 0 and

A > 0 we have for all |t| ≤ T ,
∥∥X(t)− YA(t)

∥∥
α
≤ C1(H,α)T (A− T )−(1−H),

where C1(H,α) = 2(H − 1/α)
(
α(1−H)

)−1/α
.

Proof. See the Appendix. ¤

We now present the main result of this section. The following theorem provides

error bounds in terms of the scale parameter of our Fourier series approximation

YA,M,L(t) of YA(t). Note that by (2.6) and (2.7) we can write

(3.2) YA,M,L(t) =
L−1∑

j=−L

(
M∑

k=−M

ρ̂t(k)ek(zj)

)∫ zj+1

zj

Zα(dy).

Recall from [8] that, for 2A periodic functions the Dirichlet kernel is given by

DA,M (x) =
M∑

k=−M

eiπ
k
A
x =

sin ((2M + 1)πx/2A)

sin (πx/2A)

and that for integrable 2A-periodic functions f we have

M∑

k=−M

f̂(k)ek(x) = DA,M ∗ f(x)
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where for integrable 2A-periodic functions f, g the convolution f ∗ g is defined as

f ∗ g(x) =
1

2A

∫ A

−A

f(x− z)g(z)dz

and

f̂(k) =
1

2A

∫ A

−A

f(z)ek(z)dz.

Therefore we get
M∑

k=−M

ρ̂t(k)ek(x) = DA,M ∗ ρt(x).

Hence we can rewrite (3.2) as

(3.3) YA,M,L(t) =
L−1∑

j=−L

(
DA,M ∗ ρt

)
(zj)

∫ zj+1

zj

Zα(dy).

Theorem 3.2. Assume 1 < α ≤ 2 and 1/α < H < 1. Then, for all T,A > 0,

M ≥ e4 and L > M , for any |t| ≤ T
∥∥YA(t)− YA,M,L(t)

∥∥
α
≤ εϕ(A,M,L),

where, if ϕ(z) = (−z)
H−1/α
+ (or if ϕ(z) = (−z)

H−1/α
− )

(3.4) εϕ(A,M,L) = AH
(
C3(H,α)M−1/2 + C4(H,α)L−1/α log(M)

)
,

with C3(H,α) = 23/2+1/α(2 +H − 1/α) and, if ϕ(z) = |z|H−1/α

(3.5) εϕ(A,M,L) = AH
(
C3(H,α)M−1/2−(H−1/α) + C4(H,α)L−1/α log(M)

)
,

with C3(H,α) = 23/2+1/α(1 + 2H − 2/α)−1/2(1 +H − 1/α).

In both cases we have C4(H,α) = 23
(
21+H−1/α(α+ 1)−1/α + 1

)
.

Sketch of the proof. Since ρt ∈ Lα([−A,A], (2A)−1dx) with α > 1, we know from the

theorem on page 50 of [8] that ρt(·) =
+∞∑

k=−∞

ρ̂t(k)ek(·), where the series converges in

Lα. Furthermore,

ρt =
∑

|k|≤M

ρ̂t(k)ek +
∑

|k|>M

ρ̂t(k)ek = DA,M ∗ ρt +
∑

|k|>M

ρ̂t(k)ek.

Since α > 1, we can use Minkowski’s inequality to get
∥∥YA(t)− YA,M,L(t)

∥∥
α
≤ V (A,M) + U(A,M,L),
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with, on the one hand

V (A,M) =
(∫ A

−A

∣∣∣
∑

|k|>M

ρ̂t(k)ek(y)
∣∣∣
α

dy
)1/α

,

which we bound by C3(H,α)AHM−1/2, using the rate of convergence of
∑
|k|>M |ρ̂t(k)|

2, Hölder’s inequality and Plancherel-identity. On the other hand

U(A,M,L) =
(∫ A

−A

∣∣∣
L−1∑

j=−L

1[zj ,zj+1[(y)
[
DA,M ∗ ρt(y)−DA,M ∗ ρt(zj)

]∣∣∣
α

dy
)1/α

,

is bounded by C4(H,α)AHL−1/α log(M), using the mean value theorem, Hölder reg-

ularity of order H − 1
α
of the function ρt and the fact that 1

2A

∫ A

−A
|DA,M(x)| dx ≤

2 log(M). ¤

Combining Proposition 3.1 and Theorem 3.2 we get

Corollary 3.3. Assume 1 < α ≤ 2 and 1/α < H < 1. Then, for all T,A > 0,

M ≥ e4 and L > M , for any |t| ≤ T
∥∥X(t)− YA,M,L(t)

∥∥
α
≤ C1(H,α)T (A− T )H−1 + εϕ(A,M,L),

where εϕ is given by (3.4) or (3.5) according to ϕ and C1(H,α) = 2(H −

1/α) (α(1−H))−1/α.

Observe that by Theorem 3.2 it follows that we can choose L = M+1 in (2.7) and

still get convergence.

Remark 3.4. Let us point out that the error bound estimate does not depend on the

time point t. Therefore, one advantage of this method is that integral functionals

of the LFSM can be approximated efficiently just as well as values of the process at

time points. Actually one can consider the integral
∫ T

−T
g(t)X(t)dt for a large class of

functions g defined on a compact set [−T, T ]. Replacing X(t) by its approximation

YA,M,L(t) given by (2.7) this integral can be approximated by
∫ T

−T

g(t)YA,M,L(t)dt =
M∑

k=−M

(∫ T

−T

(
e−iπ

k
A
t − 1

)
g(t)dt

)
ϕ̂(k)ẐA,L(k).

Therefore, computing the last deterministic integrals in advance, one can quickly

generate approximate realizations of
∫ T

−T
g(t)X(t)dt. Moreover, since X(t)−YA,M,L(t)

is a SαS random variable with α > 1, there is a constant cα(1) such that we have
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E |X(t)− YA,M,L(t)| ≤ cα(1)| ‖X(t)− YA,M,L(t)‖α, according to Property 1.2.17 p.18

of [14]. Then

E

∣∣∣∣
∫ T

−T

g(t) (X(t)− YA,M,L(t)) dt

∣∣∣∣ ≤ cα(1)

∫ T

−T

|g(t)| · ‖X(t)− YA,M,L(t)‖α dt,

which gives the rate of convergence of the approximations of
∫ T

−T
g(t)X(t)dt by Corol-

lary 3.3.

We obtain the convergence of all finite-dimensional marginal distributions from

Corollary 3.3.

Corollary 3.5. Assume 1 < α ≤ 2 and 1/α < H < 1. Then, for all T > 0,

as A,M,L → +∞, such that εϕ(A,M,L) → 0 where εϕ is given by (3.4) or (3.5)

according to ϕ, the approximations {YA,M,L(t)}t∈[−T,T ] converge in finite-dimensional

marginal distributions to the LFSM {X(t)}t∈[−T,T ].

Proof. Fix any t1, . . . , tn ∈ [−T, T ] and λ1, . . . , λn ∈ R. Then by Corollary 3.3 and

the triangle inequality we obtain
∥∥∥

n∑

j=1

λjX(tj)−
n∑

j=1

λjYA,M,L(tj)
∥∥∥
α
≤

n∑

j=1

|λj|
∥∥X(tj)− YA,M,L(tj)

∥∥
α
→ 0

as A,M,L → ∞ and the corresponding condition is fulfilled. Since for a sequence

ξn of SαS random variable ‖ξn‖α → 0 implies ξn → 0 in probability and the above

relation holds for all λ1, . . . , λn ∈ R, the convergence of all finite-dimensional marginal

distributions follows. ¤

Remark 3.6. If we let L = M + 1 and A = A(M) = M ρ for some 0 < ρ < 1/2, since

εϕ (M
ρ,M,M + 1) −→

M→+∞
0, we get from Corollary 3.5 that {YMρ,M,M+1(t)}t∈R ⇒

{X(t)}t∈R as M →∞ for all finite-dimensional marginal distributions.

Remark 3.7. In the situation of Corollary 3.5 it is a challenging open problem to

achieve tightness and hence convergence in distribution on some suitable function

space.

4. The simulation algorithm

In this section we present an effective simulation algorithm of the sample path of

the LFSM {X(t)}t∈R defined by (1.1) based on our Fourier approximation given by
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(2.7). We will only consider the so called well balanced case given by (1.2). Then

(4.1) YA,M,L(t) =
M∑

k=−M

(
e−iπ

k
A
t − 1

)
ϕ̂(k)ẐA,L(k).

Recall from (2.6) that for k = −M, . . . ,M in this case we have

(4.2) ẐA,L(k) =
L−1∑

j=−L

e2iπkj/2LZα(∆zj)

where Zα(∆zj), j = −L, . . . , L − 1 are i.i.d. SαS random variables with scale

(A/L)1/α. This sequence can easily and exactly be simulated using the algorithm

from Chambers et al., see [1]. Note that (4.2) is the discrete Fourier transform of the

vector (Zα(∆zj) : j = −L, . . . , L−1) and can be effectively computed using a variant

of the fast Fourier transform algorithm (FFT). Moreover, since ϕ(z) = |z|H−1/α we

know from Lemma 5.1(b), especially (5.4) that

(4.3) ϕ̂(k) = AH−1/αk−1−H+1/α
∫ k

0

vH−1/α cos(πv) dv.

The integral in (4.3) can be effectively computed by decomposing
∫ k

0

vH−1/α cos(πv) dv =
k∑

j=1

∫ j

j−1

vH−1/α cos(πv) dv

and approximating each summand by Simpson’s rule, see e.g. [6], Theorem 2.3. Our

simulation study presented below shows that the approximation error resulting from

applying Simpson’s rule has little effect on the accuracy of our simulation method.

Let us denote

(4.4) WA,M,L(t) =
M∑

k=−M

e−iπ
k
A
tϕ̂(k)ẐA,L(k)

the discrete Fourier transform of the vector
(
ϕ̂(k)ẐA,L(k)

)
−M≤k≤M

such that by (4.1)

YA,M,L(t) = WA,M,L(t)−WA,M,L(0).

Let us point out that the fast Fourier transform algorithm allows to compute WA,M,L

and YA,M,L at any point tl =
2A
2M+1

l for −M ≤ l ≤M with O (M log2M) operations.

Let us assume that we want to generate an approximate sample path of the LFSM

{X(t)}t∈R with Hurst index H over an interval [a, b], given by N +1 equidistant time

points. Since the LFSM has stationary increments we may consider [0, b− a] instead
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of [a, b]. Let δN = b−a
N

be the step size of the time points over [0, b − a]. Using the

self-similarity of order H of {X(t)}t∈R we have

{X (0) , . . . , X (NδN)}
d
=

(
δN

2M + 1

2A

)H

{X (t0) , . . . , X (tN)} .

Therefore we only have to generate WA,M,L at any point (tl)0≤l≤N−1 for some M ≥ N

which can be done with only O (M log2M) operations.

We now formulate our simulation algorithm (A MATLAB code can be obtained

from the authors upon request). Given a number N of points, a truncation point

A > 0 and some large integers M,L ≥ N (usually one should pick M = 2p ≥ N and

L = 2q with p > q in view of the FFT algorithm) we compute:

Step 1: Compute ϕ̂(k), k = −M, . . . ,M by (4.3)

Step 2: Generate 2L SαS random variables Z−L, . . . , ZL−1

and set Z̄j = (A/L)1/αZj

Step 3: Compute the FFT of (Z̄−L, . . . , Z̄L−1) to obtain (Ẑ(−M), . . . , Ẑ(M))

Step 4: Set Ŵk = ϕ̂(k) · Ẑ(k) for k = −M, . . . ,M

Step 5: Compute the FFT of
(
Ŵ−M , . . . , ŴM

)
to get (WA,M,L(t−M), . . . ,WA,M,L(tM))

Step 6: Compute YA,M,L(tl) = WA,M,L(tl)−WA,M,L(0) for 0 ≤ l ≤ N .

Note that for any particular sample path, Step 1 of the algorithm have only to

be executed once in an initializing step. After the initialization the complexity

to compute one approximation sample path is O(M log2(M)) when choosing M a

power of 2. Let us point out that it is about the same cost than in [15] and [19] to

get approximations not of the LFSM itself but of the linear fractional stable noise.

Therefore, to obtain approximations of the LFSM, the authors have one more step

than us which is to compute cumulative sums of the noise.

Sample paths realizations of LFSM for different H and α are given in Figure 1. The

computational time (on a dual core PowerMac G5) for L = 218 and N = M = 216 is

46 seconds for the initialization steps 1 and 0.7 second for each sample path. Let us

point out that, even if error bounds of the approximations have only been proved in

the cases α ∈ (1, 2) and H > 1/α, one can use the code for any values of α ∈ (0, 2)
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Figure 1. Approximations of LFSM sample path for various H, α. We used
A = 101 and L = 218 and N =M = 216.

and H ∈ (0, 1). In fact, in view of Theorem 2.1 we still get an approximation.

Actually, note that H > 1/α in Figure 1 only for α = 1.4 and H = 0.8 or α ∈ {1.7, 2}

and H ∈ {0.6, 0.8}. Finally let us mention that when α = 2 the LFSM is just the

well known fractional Brownian motion for which a lot of numerical methods have

been proposed these last years. Moreover, in this particular case, there exists a

fast and exact synthesis method [12], based on the Choleski decomposition of the

covariance function and on the stationarity of the increments that allows to apply

the embedding circulant matrix method [3]. Then our approximation is not really

relevant for this case.
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To illustrate the quality of the approximation given by this method we estimate

the Hurst parameter H of the LFSM using two type of estimators studied in [16],

namely the wavelet ĤWT and the FIRT ĤFIRT estimators based on discrete wavelet

transforms of the approximation for the first one, and on discrete differences for the

second one. The results obtained for a fixed parameter H = 0.7 with respect to the

stability index α are given in Figure 2. It can be compared to those of Figure 4 in

[16]. Let us point out that both estimators underestimate the real theoretical value

of H. However, for H ≥ 1/α the bias of the two estimators is relatively low (about

0.02) and the standard deviation is very small (less than 10−3) while in [16] the bias

is about 0.01 with standard deviation greater than 0.03.

Figure 2. Bias and standard deviations of the FIRT estimators ĤFIRT−H (solid

line) and the wavelet estimators ĤWT (dashed line) studied in [16] as functions of α
when H = 0.7. The broken vertical line located at α = 1/H indicates on the right
the long range dependence cases. The bias and standard deviations were computed
by using samples of n = 256 independent replications of the estimators, obtained
from 256 independently simulated paths of the LFSM process for N = M = 216

points, L = 218 and A = 101.



LINEAR FRACTIONAL STABLE MOTION 15

1 2 3 4 5 6 7 8 9
−0.08

−0.06

−0.04

−0.02

0

0.02
L=

217

10*H

A=11

1 2 3 4 5 6 7 8 9

−0.08

−0.06

−0.04

−0.02

0

0.02

10*H

A=101

1 2 3 4 5 6 7 8 9
−0.08

−0.06

−0.04

−0.02

0

0.02

10*H

A=1001

1 2 3 4 5 6 7 8 9

−0.08
−0.06

−0.04
−0.02

0
0.02

L=
218

10*H
1 2 3 4 5 6 7 8 9

−0.08

−0.06

−0.04

−0.02

0

0.02

10*H
1 2 3 4 5 6 7 8 9

−0.08
−0.06
−0.04
−0.02

0
0.02

10*H

1 2 3 4 5 6 7 8 9

−0.08

−0.06

−0.04

−0.02

0

0.02

L=
219

10*H
1 2 3 4 5 6 7 8 9

−0.08

−0.06

−0.04

−0.02

0

0.02

10*H
1 2 3 4 5 6 7 8 9

−0.08
−0.06
−0.04
−0.02

0
0.02

10*H

Figure 3. This figure contains Boxplots for the bias ĤWT−H for the wavelet es-

timators ĤWT studied in [16]. As in Figure 3 in [15] these Boxplots were computed
by using samples of n = 256 independent replications of the estimators, obtained
from 256 independently simulated paths of the LFSM process for an index of stabil-
ity α = 1.5 for M = 216 points. The values of H are H = 0.1, 0.2, . . . , 0.9 (note that
0.6 < 1/α < 0.7 such that H = 0.7, 0.8 and 0.9 correspond to long-range depen-
dence). The values of the discretization parameters A and L, used in the simulation
algorithm are indicated in the margins of the figure.

Figures 3 and 4 contain Boxplots for the bias E

(
ĤWT

)
−H and E

(
ĤFIRT

)
−H

for a fixed index of stability α = 1.5. In this simulation study a sample of 256

independent copies of our LFSM approximation of size N = M = 216 points were

generated using three different values of the truncation parameter A = 11, 101 and

1001, three different values of the step parameter L = 217, 218 and 219 for the following

values of the Hurst parameter H = 0.1, 0.2, . . . , 0.9.
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As already noticed in Figure 2 for H = 0.7, both estimators underestimate the real

theoretical value of H for any H = 0.1, . . . , 0.9. Let us also point out that the FIRT

estimator (Figure 4) exhibits a larger variability than the wavelet one (Figure 3).
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Figure 4. This figure contains Boxplots for the bias ĤFIRT −H for the FIRT

estimators ĤFIRT studied in [16]. As in Figure 4 in [15] these Boxplots were com-
puted by using samples of n = 256 independent replications of the estimators,
obtained from 256 independently simulated paths of the LFSM process for an index
of stability α = 1.5 for M = 216 points.

Concerning the parameters A and L let us observe that these parameters do not

seem to have a significant influence on the estimated results. It is not surprising that

L has less influence than M according to the upper bound given by (3.5) obtained in

Corollary 3.3. Actually, since α = 1.5 for all H 6= 0.9 we have 1/2 − (H − 1/α) <

1/2. In order to compare our approximation to the ones of [15], we used the same
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index of stability α = 1.5 and the same number n = 256 of samples as in Figure 3

(wavelet estimator) and Figure 4 (FIRT estimator) of [15]. Let us point out that their

discretization parameters have a greater influence on the wavelet estimator than in our

case, which makes the optimal choice for these parameters more difficult. Moreover,

as already observed in Figure 2, our standard deviations are really smaller than in

[15] and we also obtain better results for the FIRT estimator. For another indication

on the quality of our approximation, let us also refer to the bottom panel of Figure

2 in [20] (also obtained for α = 1.5) and observe that our results are more accurate.

5. Appendix

Proof of Proposition 3.1. Let

EA(t) = X(t)− YA(t) =

∫ −A

−∞

(
(t− z)

H−1/α
+ − (−z)

H−1/α
+

)
Zα(dz).

Then

‖EA(t)‖
α
α =

∫ ∞

A

∣∣(t+ z)H−1/α − zH−1/α
∣∣α dz.

Assume first that 0 ≤ t ≤ T . Then, since 1/α < H < 1, by the mean value theorem

(t+ z)H−1/α − zH−1/α ≤ (H − 1/α)zH−1−1/αt and hence

‖EA(t)‖
α
α ≤ (H − 1/α)αtα

∫ ∞

A

zαH−1−α dz ≤
(H − 1/α)αT α

α(1−H)
Aα(H−1).

On the other hand, if −T ≤ t < 0 we have |(t + z)H−1/α − zH−1/α| = zH−1/α − (t +

z)H−1/α ≤ (H − 1/α)(−t)(t+ z)H−1/α−1 and we get

‖EA(t)‖
α
α ≤ (H − 1/α)α(−t)α

∫ ∞

A

(t+ z)αH−1−α dz ≤
(H − 1/α)αT α

α(1−H)
(A− T )α(H−1)

and the assertion follows. By a similar computation one gets the same bounds for

a = 0 and b = 1. Since the symmetric case ϕ(z) = |z|H−1/α is the sum of these two

cases we obtain the constant C1(H,α) to hold in either case. ¤

In order to prove Theorem 3.2 we need some estimates on the Fourier-transforms of

the 2A-periodic functions ρt and ϕ to control the rate of convergence of their Fourier

series.

Lemma 5.1. Assume 1 < α ≤ 2 and H > 1/α.
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(a) If ϕ(z) = (−z)
H−1/α
+ (or if ϕ(z) = (−z)

H−1/α
− ) then there exists a constant

C2(H,α) such that for all k ∈ Z \ {0} and any t ∈ R we have

|ϕ̂(k)| ≤ C2(H,α)AH−1/α|k|−1

|ρ̂t(k)| ≤ 2C2(H,α)AH−1/α|k|−1,

where C2(H,α) = 2 +H − 1/α.

(b) If ϕ(z) = |z|H−1/α then there exists a constant C2(H,α) such that for all

k ∈ Z \ {0} and any t ∈ R we have

|ϕ̂(k)| ≤ C2(H,α)AH−1/α|k|−1−H+1/α

|ρ̂t(k)| ≤ 2C2(H,α)AH−1/α|k|−1−H+1/α,

where C2(H,α) = 1 + (H − 1/α).

Proof. Since ρ̂t(k) =
(
e−iπ

k
A
t − 1

)
ϕ̂(k) we only consider ϕ̂(k). Moreover, since

ϕ̂(−k) = ϕ̂(k) it suffices to assume k ≥ 1. We first consider ϕ(z) = (−z)
H−1/α
+ .

Then

ϕ̂(k) =
1

2A

∫ A

0

zH−1/αeiπ
k
A
z dz

=
1

2
AH−1/αk−1−H+1/α

[∫ k

0

vH−1/α cos(πv) dv + i

∫ k

0

vH−1/α sin(πv) dv
](5.1)

To analyze the first integral on the right hand side of (5.1) we decompose
∫ k

0

vH−1/α cos(πv) dv =

∫ 1

0

vH−1/α cos(πv) dv +

∫ k

1

vH−1/α cos(πv) dv

= C1 +

∫ k

1

vH−1/α cos(πv) dv

Integrate by parts twice to obtain
∫ k

1

vH−1/α cos(πv) dv = −
H − 1/α

π

∫ k

1

vH−1/α−1 sin(πv) dv

=
H − 1/α

π2
(
(−1)kkH−1/α−1 − 1

)

+
(H − 1/α)(1−H + 1/α)

π2

∫ k

1

vH−1/α−2 cos(πv) dv.

Since

(H − 1/α)(1−H + 1/α)

π2

∣∣∣
∫ k

1

vH−1/α−2 cos(πv) dv
∣∣∣ ≤ H − 1/α

π2
(
1− kH−1/α−1

)
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we obtain
∣∣∣
∫ k

0

vH−1/α cos(πv) dv
∣∣∣ ≤ |C1|+

∣∣∣
∫ k

1

vH−1/α cos(πv) dv
∣∣∣

≤ 1 + 2
H − 1/α

π2
.

(5.2)

Similarly we have
∫ k

0

vH−1/α sin(πv) dv =

∫ 1

0

vH−1/α sin(πv) dv +

∫ k

1

vH−1/α sin(πv) dv.

Again, using integration by parts we conclude

∫ k

1

vH−1/α sin(πv) dv

=
(−1)k+1kH−1/α − 1

π
+

(H − 1/α)(1−H + 1/α)

π2

∫ k

1

vH−1/α−2 sin(πv) dv

and hence
∣∣∣
∫ k

0

vH−1/α sin(πv) dv
∣∣∣ ≤ 1 +

∣∣∣
∫ k

1

vH−1/α sin(πv) dv
∣∣∣

≤ 1 +
1 + kH−1/α

π
+

H − 1/α

π2
.

(5.3)

Now (5.1) together with (5.2) and (5.3) imply part (a) of the Lemma.

For the proof of part (b) note that if ϕ(z) = |z|H−1/α then

(5.4) ϕ̂(k) = AH−1/αk−1−H+1/α
∫ k

0

vH−1/α cos(πv) dv

and hence the assertion follows from (5.2). ¤

Proof of Theorem 3.2. Let 1 < α ≤ 2 and 1/α < H < 1. Then,

∥∥YA(t)− YA,M,L(t)
∥∥
α

=
∥∥∥
∫ A

−A

[
ρt(y)−

L−1∑

j=−L

1[zj ,zj+1[(y)
(
DA,M ∗ ρt

)
(zj)

]
Zα(dy)

∥∥∥
α

=
(∫ A

−A

∣∣∣ρt(y)−
L−1∑

j=−L

1[zj ,zj+1[(y)
(
DA,M ∗ ρt

)
(zj)

∣∣∣
α

dy
)1/α

.

Since α > 1, we can write

ρt =
∑

|k|≤M

ρ̂t(k)ek +
∑

|k|>M

ρ̂t(k)ek = DA,M ∗ ρt +
∑

|k|>M

ρ̂t(k)ek,
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where the series converges in Lα. Therefore, by Minkowski’s inequality we obtain

∥∥YA(t)− YA,M,L(t)
∥∥
α
≤
(∫ A

−A

∣∣∣
∑

|k|>M

ρ̂t(k)ek(y)
∣∣∣
α

dy
)1/α

+
(∫ A

−A

∣∣∣DA,M ∗ ρt(y)−
L−1∑

j=−L

1[zj ,zj+1[(y)
(
DA,M ∗ ρt

)
(zj)

∣∣∣
α

dy
)1/α

= V (A,M) +
(∫ A

−A

∣∣∣
L−1∑

j=−L

1[zj ,zj+1[(y)
[
DA,M ∗ ρt(y)−DA,M ∗ ρt(zj)

]∣∣∣
α

dy
)1/α

= V (A,M) + U(A,M,L).

We first bound V (A,M). Observe that by Hölder’s inequality with p = 2/α and

q−1 = 1− α/2, for f ∈ L2 ([−A,A], dy) ⊂ Lα ([−A,A], dy),

(∫ A

−A

|f(y)|α dy
)1/α

≤ (2A)(1/α)−(1/2)
(∫ A

−A

|f(y)|2 dy
)1/2

.

Hence, combined with the Plancherel-identity we get

V (A,M) =
(∫ A

−A

∣∣∣
∑

|k|>M

ρ̂t(k)ek(y)
∣∣∣
α

dy
)1/α

≤ (2A)(1/α)−(1/2)
(∫ A

−A

∣∣∣
∑

|k|>M

ρ̂t(k)ek(y)
∣∣∣
2

dy
)1/2

= (2A)1/α
( 1

2A

∫ A

−A

∣∣∣
∑

|k|>M

ρ̂t(k)ek(y)
∣∣∣
2

dy
)1/2

= (2A)1/α
( ∑

|k|>M

|ρ̂t(k)|
2
)1/2

In the case ϕ(z) = (−z)
H−1/α
+ , using Lemma 5.1(a),

V (A,M) ≤ 21+1/αC2(H,α)AH
( ∑

|k|>M

|k|−2
)1/2

≤ 23/2+1/αC2(H,α)
(∫ ∞

M

x−2 dx
)1/2

= C3(H,α)AHM−1/2
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where C3(H,α) = 23/2+1/α(2 +H − 1/α). Similarly, if ϕ(z) = |z|H−1/α we get using

Lemma 5.1(b) that

V (A,M) ≤ C3(H,α)AHM−1/2−(H−1/α)

where now C3(H,α) = 23/2+1/α(1 + 2H − 2/α)−1/2(1 +H − 1/α).

Moreover, by Minkowski’s inequality

U(A,M,L) ≤
L−1∑

j=−L

(∫ zj+1

zj

∣∣DA,M ∗ ρt(y)−DA,M ∗ ρt(zj)
∣∣α dy

)1/α
.

Observe further that

DA,M ∗ ρt(y)−DA,M ∗ ρt(zj) =
1

2A

∫ A

−A

DA,M(z)
[
ρt(y − z)− ρt(zj − z)

]
dz.

Hence, by Minkowski’s integral inequality (see e.g. [13], p.177) we obtain

(∫ zj+1

zj

∣∣∣ 1
2A

∫ A

−A

DA,M(z)
[
ρt(y − z)− ρt(zj − z)

]
dz
∣∣∣
α

dy
)1/α

≤
1

2A

∫ A

−A

|DA,M(z)|
(∫ zj+1

zj

∣∣ρt(y − z)− ρt(zj − z)
∣∣α dy

)1/α
dz.

Therefore we have to estimate

(5.5) U(A,M,L) ≤
1

2A

∫ A

−A

|DA,M (z)|
L−1∑

j=−L

(∫ zj+1

zj

∣∣ρt(y− z)−ρt(zj− z)
∣∣α dy

)1/α
dz.

Note that ρt(y−z)−ρt(zj−z) = ϕ(t−(y−z))−ϕ(t−(zj−z))−(ϕ(y − z)− ϕ(zj − z)).

Let us denote I (ϕ,L, z) =
L−1∑
j=−L

(∫ zj+1

zj
|ϕ(y − z)− ϕ(zj − z)|α dy

)1/α
and remark

that

L−1∑

j=−L

(∫ zj+1

zj

|ρt(y − z)− ρt(zj − z)|α dy

)1/α
≤ I (ϕ̌, L, z + t) + I (ϕ,L, z) ,

where ϕ̌(y) = ϕ(−y).

Note that if ϕ(z) = (−z)
H−1/α
+ (or ϕ(z) = (−z)

H−1/α
− ) some of the summands in

I (ϕ̌, L, z + t) and I (ϕ,L, z) are zero. Moreover, since the estimates in these two

cases as well as the symmetric case ϕ(z) = |z|H−1/α are quite similar, we will only

consider the symmetric case and leave the details of the other cases to the reader.

Since ϕ is 2A periodic, I (ϕ,L, ·) is also 2A periodic and we just have to analyze

J(L, z) = I(ϕ,L, z) for −A ≤ z < A. Let us denote j0 = j0(z) = [(L/A)z] where
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[v] denotes the largest integer less or equal to v. Then −L ≤ j0 ≤ L − 1 and we

decompose further J(L, z) (setting
∑b

j=a = 0 if b < a) as

J(L, z)

=

j0−1∑

j=−L

(∫ zj+1

zj

|ϕ(y − z)− ϕ(zj − z)|α dy
)1/α

+

(∫ zj0+1

zj0

|ϕ(y − z)− ϕ(zj0 − z)|α dy

)1/α
+

(∫ zj0+2

zj0+1

|ϕ(y − z)− ϕ(zj0+1 − z)|α dy

)1/α

+
L−1∑

j=j0+2

(∫ zj+1

zj

|ϕ(y − z)− ϕ(zj − z)|α dy

)1/α

= I1(z) + I2(z) + I3(z) + I4(z).

Observe that if j ≤ j0 − 1 we have zj < zj+1 ≤ zj0 ≤ z and hence for zj ≤ y ≤ zj+1

we have zj − z ≤ y − z ≤ zj+1 − z ≤ 0. Since H < 1 we have H − 1 − 1/α < 0 and

by the mean value theorem we get in the present case that

|ϕ(y−z)−ϕ(zj−z)| = (z−zj)
H−1/α−(z−y)H−1/α ≤ (H−1/α)(z−zj+1)

H−1−1/α(y−zj).

This implies

I1(z) =

j0−1∑

j=−L

(∫ zj+1

zj

∣∣ϕ(zj − z)− ϕ(y − z)
∣∣α dy

)1/α

≤ (H − 1/α)

j0−1∑

j=−L

(z − zj+1)
H−1−1/α

(∫ zj+1

zj

(y − zj)
α dy

)1/α

≤ (H − 1/α)(α + 1)−1/α
(A
L

)1+1/α j0−1∑

j=−L

(z − zj)
H−1−1/α

≤ 2(H − 1/α)(α + 1)−1/α
(A
L

)1+1/α ∫ (L/A)z

−L

(
z − x(A/L)

)H−1−1/α
dx

= 2(α + 1)−1/α
(A
L

)1+1/αL
A
(z + A)H−1/α ≤ 2 · 2H−1/α(α + 1)−1/αAHL−1/α.

Since H − 1/α ∈ (0, 1) the function ϕ is Hölder of order H − 1/α on [−A,A) with

|ϕ(x)− ϕ(y)| ≤ |x− y|H−1/α for all −A ≤ x, y < A. Since z ∈ [zj0 , zj0+1)

I2(z) =

(∫ zj0+1

zj0

|ϕ(y − z)− ϕ(zj0 − z)|α dy

)1/α
≤ (A/L)H .
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Similarly I3(z) ≤ (A/L)H . Moreover, sinceH > 1/α we get I2(z)+I3(z) ≤ 2AHL−1/α.

For I4(z), observe that if j ≥ j0 + 1 we have zj ≥ zj0+1 > z so for zj ≤ y ≤ zj+1 we

have using the mean value theorem again

|ϕ(y−z)−ϕ(zj−z)| = (y−z)H−1/α−(zj−z)H−1/α ≤ (H−1/α)(zj−z)H−1−1/α(y−zj).

This implies

I4(z) =
L−1∑

j=j0+2

(∫ zj+1

zj

∣∣ϕ(zj − z)− ϕ(y − z)
∣∣α dy

)1/α

≤ (H − 1/α)
L−1∑

j=j0+2

(zj − z)H−1−1/α
(∫ zj+1

zj

(y − zj)
α dy

)1/α

≤ (H − 1/α)(α + 1)−1/α
(A
L

)1+1/α L−1∑

j=j0+2

(zj − z)H−1−1/α

≤ 2(H − 1/α)(α + 1)−1/α
(A
L

)1+1/α ∫ L−1

(L/A)z

(
(A/L)x− z)

)H−1−1/α
dx

= 2(α + 1)−1/α
(A
L

)1+1/αL
A
(A− z)H−1/α ≤ 2 · 2H−1/α(α + 1)−1/αAHL−1/α.

Therefore we have for −A ≤ z ≤ A that

J(L, z) ≤ 2
(
21+H−1/α(α + 1)−1/α + 1

)
AHL−1/α = C5(H,α)AHL−1/α.

Finally, in view of (5.5) we get

U(A,M,L) ≤ 2C5(H,α)AHL−1/α
1

2A

∫ A

−A

|DA,M(z)| dz.

Note further that we have

1

2A

∫ A

−A

|DA,M(x)| dx =
1

π

∫ 2M+1

2
π

− 2M+1

2
π

| sin(x)|

|(2M + 1) sin(x/(2M + 1)|
dx

=
1

π

∫ 2M+1

2
π

− 2M+1

2
π

| sin(x)|

|x|

∣∣∣∣
x/(2M + 1)

sin(x/(2M + 1)

∣∣∣∣ dx

≤
1

2

∫ 2M+1

2
π

− 2M+1

2
π

| sin(x)|

|x|
dx,
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using the fact that | sin(x)| ≥ 2
π
|x| for |x| ≤ π

2
. Moreover,

1

2

∫ 2M+1

2
π

− 2M+1

2
π

| sin(x)|

|x|
dx ≤

1

2

∫ (M+1)π

−(M+1)π

| sin(x)|

|x|
dx =

M∑

k=0

∫ π

0

sin(x)

x+ kπ
dx

≤ π +
2

π
(1 + log(M)) .

Hence, 1
2A

∫ A

−A
|DA,M (x)| dx ≤ 2 log(M), for M ≥ e4, and

U(A,M,L) ≤ 4C5(H,α)AHL−1/α log(M) = C4(H,α)AHL−1/α log(M),

which concludes the proof. ¤
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