Estimation of Gaussian graphs by model selection
Résumé
We investigate in this paper the estimation of Gaussian graphs by model selection from a non-asymptotic point of view. We start from a n-sample of a Gaussian law P_C in R^p and focus on the disadvantageous case where n is smaller than p. To estimate the graph of conditional dependences of P_C , we introduce a collection of candidate graphs and then select one of them by minimizing a penalized empirical risk. Our main result assess the performance of the procedure in a non-asymptotic setting. We pay a special attention to the maximal degree D of the graphs that we can handle, which turns to be roughly n/(2 log p).
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...