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On the Hitting Set of Bundles Problem
Eric Angel, Evripidis Bampi$, Laurent Gourvés

Résumé

Le probléme de I'ensemble minimal de paquetsnimal hitting set of bundles
problemou HsB) est défini comme suit. On dispose d’'un ensendbie {e;, ea,...,¢e,}
den éléments. Chaque élément(i = 1,...,n) a un colt positif ou nut;. Un pa-
quetb est un sous ensemble 8e0n dispose aussi d'une collectiGn= {5, Sa, ..., Sn}
de m ensembles de paquets. De maniere plus précise, chaquebdmsgng; =
1,...,m) est composé dg(j) paquets distincts notés, b7, ..., bg(]). Une solution
du problémeHsB est un sous ensembf2 C £ tel que pour toutS; € S, au moins
un paguet est couverie. bz- C £&'. Le colt totalde la solution, not&”'(&’), est
>_{ile;cery Ci- L€ probléme consiste a trouver une solution de colt totalmim.
Nous donnons un algorithme déterminig¢l — (1 — +)*)-approché, oV est le
nombre maximal de paquets par ensembl&/etst le nombre maximal d’ensembles
a qui un élément appartient. Le rapport d'approximatioragstu de choses pres le
meilleur que I'on puisse proposer car on peut montreriggeene peut étre approché
avec un rapporf/6 — e lorsqueN = 2 et N — 1 — e lorsqueN > 3. L'algorithme
proposeé est aussi le premier offrant une garantie de pesfozenpour le probleme
classique d’optimisation de requétes multiples [9, 10h &pport d’approximation
pour le problemeviN k—SAT dont il est une généralisation est le méme que celui du
meilleur algorithme connu [3].

Mots-clefs : optimisation combinatoire, algorithme d’approximati@noblemeHiT-
TING SET

Résumé

The miNiMuMHITTING SET OF BUNDLES problem @sB) is defined as fol-
lows. We are given a sef = {ej,eq,...,¢e,} Of n elements. Each elemeni
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(: =1,...,n)has anon negative cost A bundleb is a subset of . We are also gi-
ven a collectiorS = {51, Ss, ..., Sy} of m sets of bundles. More precisely, each set
Sj(j =1,...,m)is composed of(j) distinct bundles;, b7, . .. ,bg(”. A solution
to HSBis a subset’ C £ such that for every; € S at least one bundle is covered,
ie. bé. C &'. Thetotal costof the solution, denoted as(&’), is Zmeieg,} ¢;. The
problem is to find a solution witminimumtotal cost.

We give a deterministiéV(1 — (1 — +)*)-approximation algorithm, wher&y
is the maximal number of bundles per set aids the maximal number of sets an
element can appear in. This is roughly speaking the besbaippation ratio that we
can obtain for theiss problem since we also prove thats cannot be approximated
within 7/6 —e whenN = 2andN —1—ewhenN > 3. Our algorithm is also the first
approximation algorithm with guaranteed performance lierdlassicaMULTIPLE-
QUERY OPTIMIZATION problem [9, 10], while it matches the best approximation
ratio for theMIN k£—SAT problem (for generat) obtained by the algorithm of [3].

Key words : combinatorial optimization, approximation algorithmiTTING SET
problem

1 Introduction

The minimumHITTING SET OF BUNDLESproblem @sB) is defined as follows. We
are given a sef = {ey,eq,...,e,} Of n elements. Each elemeat(: = 1,...,n) has
a non negative cost. A bundleb is a subset of. We are also given a collectiaf =
{51,85s,...,5,} of m sets of bundles. More precisely, each Set(j = 1,...,m) is

composed of;(j) distinct bundles;, v, . . ., bg(j). A solution toHSB is a subset’ C &
such that for every; € S at least one bundle is covered, H;.g &'. Thetotal costof the
solution, denoted aS'(&’), is > _y;,..c¢, ¢i- Notice that, the cost of an element appearing
in several bundles is counted once. The objective is to firmwien with minimum total

cost.

The special case of thesB problem, in which a bundle is only an element&is
the classicaMINIMUM HITTING SET problent. It is one of the most notorious NP-hard
problems and it is known to be equivalent to the classwalMuM SET COVER : posi-
tive and negative approximability results for tieNiIMUM HITTING SET can be directly
derived from the classicaliINIMUM SET COVER problem [1]*.

3Given a collectiors of subsets of a finite sé, and nonnegative costs for every elemenf giminimal
hitting setfor S is a subsef’ C & such that’ contains at least one element from each subs&tand the
total cost of€’ is minimal.

4Recall that in theMINIMUM SET COVER, given a universe séf, and nonnegative costs for every
element o/, a collection7 of subsets ot{/, we look for a subcollectioi’ C 7, such that the union of
the sets if7”’ is equal td4, and7” is of minimal cost.
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Our motivation to study theiss problem comes not only from its own theoretical
interest, but also from the fact that it models many otherlmioatorial optimization pro-
blems of the literature. We illustrate this fact with tineltiple-query optimization problem
(MQo for short) in database systems [10] and ¥th& k-SAT PROBLEM [3].

Applications of the HsB problem

Let us first see how theQo problem in database systems can be formulated assan
problem. In an instance of theQo problem, we are given a sét = {qi, ¢, ..., g} Of

k database queries and a $et {t1,1,,...,t,.} of r tasks. A plarp is a subset of’ and
a queryg; can be solved by(i) distinct plansP; = {p!, p2,...,p'"”}. Each plan is a set
of elementary tasks, and each taskas a cost (processing time) € Q*. Solving the
problem consists in selecting one plan per query, and thieof@ssolution is the sum of
the costs of the tasks involved in the selected plans (theo€@stask which belongs to at
least one selected plan is counted once).

Clearly, a query of th&Qo problem corresponds to a subsetSin the HSB problem, a
plan to a bundle, and a task to an elemenf oih this context,NV is the maximal number
of plans per query and/, is the maximal number of queries a task can appear in. As an
example, Figure 1 depicts the following instance wWith= {q1, g2, 3}, P = {pi,pi},
Py ={py,p3, 03}, Py = {ps, p3}, p1 = {t1, ts, ta} pt = {t1, t2}, 3 = {t2, ta}, 3 = {t5},
ps = {t1,ta,t3}, p3 = {t1,t3}, p3 = {t4},andc; = c; = 3,c3 = ¢4 = 1, ¢5 = 2. We have
N = M = 3. The solution(1 3 1)° is feasible and its total cost & Solutions(12 1) and
(212) with total cost7 are both optimal.

MQO was shown to be NP-hard in [10], and different solution mdthbave been
proposed, including heuristics, branch and bound algostfi0] and dynamic program-
ming [9]. Up to now, no approximation algorithms with guateed performance were
known formQo.

As another application, we consider thien k—SAT problem. The input consists of a
setX = {x1,...,z;} of t variables and a collectiof = {C1, ..., C.} of z disjunctive
clauses of at mogi literals (a constant 2). A literal is a variable or a negated variable
in X. A solution is a truth assignment fo with cost equal to the number of satisfied
clauses. The objective is to find a truth assignment minmgizhe number of satisfied
clauses. (See in Section 4 for the reductiomoi k—sSAT to theHsB problem.) Kohliet
al [7] showed that the problem is NP-hard and ga¥esgpproximation algorithm. Marathe
and Ravi [8] improved this ratio t®, while Bertsimaset al [3] showed that the problem
is approximable withir2(1 — 2%). Recently, Avidor and Zwick [2] improved the result for
k =2 (ratio 1.1037) andk = 3 (ratio 1.2136).

®selectp], p3, p}
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tp =3 ty =3 t1 =3
ts =1 ty=1 ty =1
ta=1 P 3
P ts =2 ty=1
l1=3 P
to =3 t, =
ty =
t;=1
q1 a2 as

FIG. 1 — Example of therQo problem (from [9]).

1.1 Our contribution

We give a deterministiev (1 — (1 — +)*)-approximation algorithm for thess pro-
blem, whereV is the maximal number of bundles per set drds the maximal number of
sets an element can appear in. Our algorithm follows a ratassical scheme in the area
of approximation algorithms : LP formulation, randomizedimding, derandomization.
However, the analysis of the performance guarantee is owiddved. The approximation
ratio is, roughly speaking, the best that we can expect ®HHB problem since we also
prove thatHsB cannot be approximated withify6 — e when N = 2 andN — 1 — e when
N > 3. Our algorithm is also the first approximation algorithmiwgjuaranteed perfor-
mance for theuQo problem [9, 10], while it matches the best approximatiorordr the
MIN k—SAT problem (for generat) obtained by the algorithm of [3].

2 Inapproximability

We exploit the the fact that theiINIMUM HITTING SET problem can be formulated as
aMIN VERTEX COVER in hypergraphs. In the later problem, we are given a hypphgra
H and the goal is to find the smallest subset of the vertex shtrvaih empty intersection
with each hyperedge df . Here, we are interested to the particular case of this probl
where each hyperedge is composed of exdctlgrtices (meaning that for the hitting set
instance, each subsgte S is such thatS| = k). We denote this case byIN-HYPER

4 Cahiers du LAMSADE



k—VERTEX COVER Whenk = 2, we get the classicaliIN VERTEX COVER problem on
graphsMIN-HYPER k—VERTEX COVERadmits ak-approximation algorithm. This result
is essentially tight whek > 3 since Dinuret al [4] recently proved that for every > 0,
MIN-HYPER k—VERTEX COVER cannot be approximated within ratio— 1 — . When
k = 2, afamous result of Hastad states tiaat VERTEX COVER cannot be approximated

within 7/6 — ¢ while a2 — 2111;1‘@"‘/‘ (1 — o(1))-approximation algorithm exists [5].

The following result can be easily obtained (the proof istbedi due to space limita-
tions).

Theorem 1 If there is ap-approximation algorithm for theiss problem, then there is an
approximation algorithm with the same ratiofor the MIN-HYPER k—VERTEX COVER
problem.

As a corollary of Theorem HsB cannot be approximated withity6 —e whenN = 2
andN — 1 — ewhenN > 3.

3 An approximation algorithm for the HSB problem

The first natural idea is to consider a simple greedy algaorithhich consists in selec-
ting the cheapest bundle for ea6h However, this strategy may work poorly, since the
fact that some elements are shared by different bundled isken into account. Indeed,
one can easily see that such an algorith/isapproximate and that this ratio is reached.

Another greedy algorithm, based on the one that was originakd for theseT co-
VER problem [11] (using the effective cost of the subsets) da¥sanhieve a better ap-
proximation ratio. Therefore, in what follows, we focus oR-based algorithms.

3.1 LP-based algorithms

Solving HSB may also consist in choosing a bundle for each sef.ofhis helps to
formulate the problem as an integer linear program (ILP).

minimize > i<i<n TiCi (1)
subject to 90 1.y > 1 j=1...m
Z{lleiebé.} i < @; V(i,7) S.t.e; appears in a bundle &f;
xj; €40,1} j=1...mandl=1...¢9(j)
z; € {0,1} i=1...n
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Each bundlé), is represented by a variahlg, (z;, = 1 means), is a subset of the
solution,z;; = 0 otherwise). Each elemeat is represented by a variablg (v; = 1
meansz; belongs to the solution, otherwise = 0). Among all bundles of a subsgt, at
least one is selected because of the first const@ﬁﬁ) xj; > 1. The second constraint
ensures that all elements of a selected bundle appear imltngs. Since the objective
function ), .., z; c; has to be minimized, an element which does not belong to any
selected bundle will not belong to the solution. Let LP belitear relaxation of the ILP :

minimize D 1cicn TiCi (2)
subject to AEITE j=1...m (3)
Z{l|eiebé.} xj; < V(i,j) s.t.e; appears in a bundle 4)
of S
xj; >0 j=1...mandl=1...¢9(j) (5)
x; >0 1=1...n (6)

In the sequelQ PT andO PT} are respectively the cost of a solution of ILP and LfP (
stands for fractional). As stated before, a solutiomsB may be viewed as am-length
vectorh whosejth coordinatel,;, indicates which bundle is chosen 6y.

We first consider a simple algorithm calledROUNDING : Solve LP and forj = 1 to
m, h; gets the valuergmaz,<;<4jy{x;;} (ties are broken arbitrarily).

Theorem 2 D-ROUNDING is N-approximate.

Proof.Let {z*} (resp.{z}), be an optimal assignment for ILRe6p.LP). One has :
Z Tic < Z X ¢
1<i<n 1<i<n

Let {Z} be the solution returned hy-ROUNDING (Z; = 1 if ¢; belongs to the solution
andz; = 0 otherwise). For any fixed, if z; = 1 thenz; > 1/N. Indeed, we take the
variable whose value is the greatest (at ladst sinceN = max;{g(j)}). Then, we have

T; < Nux; and
n n n
i=1 i=1 =1

O

A natural idea for rounding an optimal fractional solutisria interpret fractional va-
lues of 0-1 variable as probabilities. Now, we consider go@ihm, calledr-ROUNDING,
of this type : Solve LP and fof = 1 to m, select randomly a bundle &f; with a proba-
bility distribution{x; 1, ..., z; 4}

6 Cahiers du LAMSADE



Theorem 3 R-ROUNDING is N (1 — (1 — +)*)-approximate (in expectation).

Before giving a proof of Theorem 3, we need some intermedegalts. Letu; be
the probability of the event; belongs to the solution returned ByROUNDING". Notice
thatl —u; > (1 — ;)" Indeed, one has — u; = [};..counde ofs;} Z{zf\eigbg.'}%,l/ =
H{j|ei€bundle ofsj}(1 - Z{l|ei€b§} Tj1) > H{j|eiebundle ofsj}(1 — ;) > (1 —z;)M. The last
but one inequality comes from inequality (4), and the lasigumlity comes from the
definition of M which is the maximal number of sets an element can appeainoe S
1—u; > (1—2;)M, onehas; <1— (1—xz;)™. The expected cost of the solution (say
C'(&")) is then bounded as follows :

E[C(&)] = Z wic; < Z (1—(1—z)"e )

In the following, we will show that :

Y (- (=) e S N(1= (1= ") Y wie = N(1 = (1= 1) ")OPT; (8)

=1

whereN > 2 andM > 2.5

We would like to prove that, for alt; between 0 and 1, we have

1
1-(1—z) <N(1-(1- )"y
N
Unfortunately, the inequality is false whén< z; < 1/N. So, we show inequality (8)

globally.

With simple calculus, inequality (8) becomes :

n

Zx G<(M=NAL—1-1/NM) 73 (1 —2)™ =1+ Mz)e;  (9)

i=1

In the following, we prove the existence of a fractional $ioln {z} which fulfills all the
constraints of the LP, and whose total cost is an upper boonthé left part of (9) and
a lower bound for the right part of (9). The proof is based onaalifired version of the
relaxed linear program.

6The problem is easy wheN = 1 (there is only one solution) a¥/ = 1 (the greedy algorithm which
consists in selecting the cheapest bundle for ggabk optimal).
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Lemma 1 There exists an assignmefit} which fulfills all constraints of LP and the
following inequalities.

zn:%‘ ¢ < zn:fﬁz ¢ (10)
i—1 i—1

Zw ¢ < (M-N1-(1- %)M))1 Z (1 —z)™ =1+ Max;)e;  (11)

Proof. Let {«} be the values of the variables when LP is solved for a givetaine of
the HsB problem. Now, consider the following program called*lfBr the same instance
wheref (M, N,z) = (M — N(1 = (1 = 1/N)™)) "' (1 = 2)™ — 1 + Mz).

minimize Y i<icn Ti Ci (12)
subjectto S0 i, > 1 j=1...m (13)
Z{ueiebg} Zj < Ty V(i,j) s.t.e; appears in a (14)
bundle ofS;
Zj; =0 j=1...mandl=1...9(j) (15)
>0 i=1...n (16)
T < f(M,N,z;;) j=1...mandl=1...9(j) a7

LP* is different from LP because of the additional constraif)(To prove that LP
always admit a solution, we need to show that (17) is not irflanvith the constraints
(13) and (15).

The constraints (17) and (15) can be in conflict(f\/, N, x) < 0 for somez between
0 and 1. The functiory(M, N, z) is increasing betweef and1 since f'(M, N, x) =
(M—=N(1—(1—1/N)M)) " (M —=M(1—2)M-1) > 0. Indeed, we know that/ — N (1 —
(1-1/N)M) > 0sincel — (1—1/N)" < M/N. FurthermoreM — M (1 —x)"=1 >0
becauseV/ > 1 and0 < x < 1. As a consequencg (M, N,z) > 0 when0 < z < 1
becausef (M, N,0) = 0 and f(M, N, x) increases. Then, the constraints (17) and (15)
cannot be in conflict.

The constraints (17) and (13) can be in conflict if there exisset ofV values{z; |
1 <t< Nand0 <z, < 1} suchthaty™ z, > 1andY), f(M,N,z,) < 1. The
function f(M, N, z) is convex wher) < z < 1 sincef”(M,N,z) = (M — N(1 — (1 —
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1/N)M)) (M (M — 1)(1 — 2)~2) > 0. By the convexity, we have
%éf(M, N.z) = f(M, N,%éxt) > f(M,N, 1)
%éﬂ% Now) > (M= N1 = (1= ") (1= )" — 14+ M/N)
S SN = (- N - (- L) ar- v - - Ly

t=1

WE

f(M,N,I't) Z 1
t

Then, constraints (17) and (13) cannot be in conflict. aémits an assignmefit } which
fulfills inequality (10).

1

Now, we prove that the following inequality holds for eachraknte;.

Take an arbitrary element. We know from LP that forj = 1...m, we have

Ty > E T

{llescbl}

Since) ., 7i c; has to be minimized, there exists a value, gaguch that

T; = E qu

{lleicbl}
By the constraint (17), we get
Bi= > Fu< Y f(MNxg) (19)
{l]e;€bl} {I]ei€tl}
In the Appendix, we show that
> FMNzg) < F(MN, > 1) (20)
{l]e;ebl} {lleiebl}

Using constraint (4) of the LP, we know th@meiebz } zq1) < x;. Sincef is increasing
between 0 and 1, we have

FIM,N, > x40) < f(M,N, ;) (21)
{lleicbl}
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Then, inequality (18) follows from (19), (20) and (21). Higawe use (18) and the
definition of f to obtain (11). O

Proof of Theorem 3.

Using Lemma 1 we know that (9) is correct and (8) follows frd@h Because of (7)
andOPT; < OPT, the result follows.

O

3.2 Derandomization

The derandomization gf-ROUNDING is done via the method @onditional expecta-
tion (see for example [11]). We get a deterministic algorithnbechib2-ROUNDING.

Solve LP

Pr(h; =1 =z, wherej =1...mandl =1...¢(j)

For j =1tom Do
Let!* = argmin ;.  E[C(R) [ by =11,... hj1 =11, h; =]
Setl; = [I*

Here E[C(h)] is the expected cost of a solution constructed by randondgsing for
each subsei; a bundle (and therefore the elements inside it) accorditigetdistribution
probability given by the values;; for [ = 1. .. g(j). This expected cost can be computed
in polynomial time : If we note.; the probability that element belongs to the solution,
recall that one has; = 1 — [ ..coundie ofs;} 2 {rje; gty Ti» @nd we havel[C'(h)] =
Yo uic;. In the same wayE[C'(h) | by = l1,...,hj—1 = lj_1,h; = [] denotes the
conditional expectation of (k) providedthat we have chosen the bundié for the set
Sy (for1 < j" < j—1),and bundlebg for the setS;. In the same way than before, this
conditional expectation can be exactly computed in polyiabtime.

Theorem 4 D2-ROUNDING is a deterministicN (1 — (1 — +)*)-approximation algo-
rithm.

Proof.
In the following, we show that the expected cost never exsése original one.
Suppose we are given= (l; ...l;), a partial solution of the problem such thate
{L,...,9O} bed{l,...,9(2)},....;; e{1,...,9(y)}andy’ € {1,...,m — 1}.
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[ ( )|h1:l1,...,hj/:lj/]
9(3'+1)

E ‘hl—ll,...,hj/:lj,hjurl:l].PI'[hjurl:l|h1:l1,...,hj/:lj/]

=1
+
Z ‘ hl = ll, ey hj/ = lj/, hjUrl = l] Xjr41,

If I = argmin <1< E[C(h) [ hy = b, .. hyr = Ly, by = ] then
E[C(h) | hl == ll, ey hj/ == lj/, hj/Jrl == l/] S E[C(h) ‘ hl == ll, ey hj/ - lj/]

At each step, the algorithm chooses a bundle (fixes its priilyato 1) and the new
expected cost does not exceed the previous one. 8ifi¢g:)] < N(1—(1—+)") OPT

at the beginning of the algorithrd2-ROUNDING converges to a solution whose total cost
isN(1—(1—+)")-approximate. O

3.3 Integrality gap

Theorem 5 The integrality gap of the LP i8/(1 — (1 — +)).

Proof. Given N andm, we can build an instance as follows.
- S: {S(),...,Sm_l}

= S={b), ... b i=0,...,m—1
- (9 {60,... ENm_ 1}

—c¢=1Ve, €&
— Takei € {0,...,N™ — 1} and leta be the representation tz')fwith the numeral
N-base system, i.é.= > " a "a(i, j) N7 wherea(i, j) € {0, . — 1}. We set

e; € blif a(i,j) = 1.

We view solutions as vectors whogth coordinate indicates which bundle 8f is
selected. Given a solutiol, an element; is not selected if, fo = 0...N — 1, we
havea] # h;. Then, exactlf N — 1)™ elements are not selected. The total cost is always
N™— (N —1)™. Now consider LP. If the variable;, of each bundi&' is equal tol /N
then the fractional cost of the solutionA8™ 1. Indeed, an element appears in exactly
one bundle pes; and the value of its variable; in LP is alsol/N. As a consequence,
we haveO PT; = N™~!. SinceM = m in the instance, we get the following ratio

OPT NM _ (N -1)M u
OPTf_ NM-1 _N(l_(l_ﬁ) )
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4 About MIN k—SAT

Theorem 6 If there is ap-approximation algorithm foHsB then there is an approxima-
tion algorithm with the same ratip for MIN k—SAT.

Proof. Let A be ap-approximation algorithm foHsSB. Take an arbitrary instance ofiN
k—sAT and build a corresponding instanceHdB as follows. The collectio is made

of t setsSy, ..., S, one for each variable ot'. Each setS; is composed of two bundles
bf and bf. The setf containsz elementsy, ..., e,, one for each clause. Each element
e; has a cost; = 1. Finally, bf = {e; | C; contains the unnegated variablg and

bi" = {e; | C; contains the negated variablg}. The resulting instance ofsB is such
that N = 2 andM = k.

Let 7 be a truth assignment for the instancemifi k—SAT with costC(7). One
can easily derive fromr a solutionh for the corresponding instance B&B with cost
C(h) = C(7). Indeed, let,; beT if x; is assigned the value in otherwiseh; = F.

Conversely, let, be a solution for theiss instance (withV = 2 andM = k). One
can easily derive a truth assignmerfor the corresponding instance@fN k—SAT with
costC(h) = C(r). Indeed,z; gets the valu¢rueif h; = T, otherwiser; is assigned the
valuefalse

O

As a corollary of Theorem 6yIIN k—SAT admits a2(1 — %)-approximation algo-
rithm becaus®2-ROUNDING is aN (1 — (1 — 1/N)M)-approximation algorithm and the
reduction is such thaV = 2 andM = k. This result is equivalent to the one proposed in

3].

5 Concluding remarks

Among the three deterministic approximation algorithmat ttve consideredp2-
ROUNDING is clearly the best in terms of performance guarantee sMte — (1 —
1/N)M) < min{ N, M }. Because of the integrality gap, improving this ratio withLdP-
based approximation algorithm requires the use of a diftefienproved) formulation.
An interesting direction would be to use semidefinite pragrang and an appropriate
rounding technique as done in [5] for vertex cover in hypapis.
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Appendix
Proposition 1 Let N and M be two positive integers, and, 7o, ...ry a set of non
negatives real numbers such t@il r; < 1. Then, the following inequality holds :

N N

> F(MN,ri) < f(M,N,> 1),

with f(M, N,z) = (M — N(1 — (1 — £)M)) 7 (1 — )™ — 1 + Mz).
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Proof.If a andb are two non negative reals such that b < 1, we observe that

I-(1-a+1-1-0)">1-1—-a-b" (22)

Indeed, consider a probability space and two independemig) and B, occurring
from an experimenk. Let a (resp.b) be the probability ofA (resp.B). Now, suppose”
is repeated// times, and letd’ (resp.B’) be the eventA happens at least one time" (resp.
"B happens at least one time"). The probabilitysf(resp.B’) is 1 — (1 — a) (resp.
1—(1—0b)M). LetC’ be the eventA or B happens at least one time". The probability of
C'is1— (1 —a—b)M. We have

Pr[A] = PrlA'n B+ PrlA'n B,
Pr(B'] = Pr[A'nB]+ Pr[B'nA],
PriC"l = Prl[AnB]+ Pr[ANB]+ PrlB nAl.

Thus, Pr[A’'] + Pr[B’| > Pr|C"] and inequality (22) follows.
Then, we can apply inequality (22) — 1 times to get the following inequality.

N
Z =@ =r)M)y=1-(1=) r)¥
=1 =1

It is equivalent to

N
(Q=r)™ =14+ Mr;) < “‘ZW)M—HMZW (23)

=1 =1 =1

Mz

LetK = (M — N(1—(1— %)M))_l. We observe thak > 0 since

1-1/N)M™ > 1—-M/N
1-1-1/MM < M/N
Nl-(1-1/N") < M
0 < M—N(1-(1-1/N)M)

One can multiply both parts of inequality (23) by K to get tksult.
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