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Geometry of the superior colliculus mapping and efficient
oculomotor computation

Abstract Numerous brain regions encode variables using
spatial distribution of activity in neuronal maps. Their spe-
cific geometry is usually explained by sensory considera-
tions only. We provide here, for the first time, a theory in-
volving the motor function of the superior colliculus to ex-
plain the geometry of its maps. We use six hypotheses in
accordance with neurobiology to show that linear and log-
arithmic mappings are the only ones compatible with the
generation of saccadic motor command. This mathematical
proof gives a global coherence to the neurobiological studies
on which it is based. Moreover, a new solution to the prob-
lem of saccades involving both colliculi is proposed. Com-
parative simulations show that it is more precise than the
classical one.
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1 Introduction

Successful goal-oriented movements rely on the ability to
transform sensory inputs signaling the position of the target
into appropriate motor commands. This transformation re-
quires representation changes from the sensory input space
to the motor output space. Even in the case of visually guided
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Institut de Mathématiques de Jussieu, UMR 7586, Paris, France.

J.-J. Slotine
Nonlinear Systems Laboratory, Massachusetts Institute ofTechnology,
Cambridge, Massachusetts, USA.

ocular saccades, a relatively simple sensorimotor transfor-
mation, the details of this computation are still debated.

The generation of ocular saccades greatly involves the
superior colliculus (SC) (the tectum in non-mammalian ver-
tebrates). The SC is a layered structure located in the mid-
brain, which receives multisensory input and accordingly
generates changes in gaze orientation. It drives, in particu-
lar, the reticular formation nuclei which contain the ocular
saccade motoneurons (the saccade burst generators, SBG).
In the SC, the sensory inputs and the corresponding output
commands are represented on retinotopic neuronal maps.
Each colliculus encodes the information corresponding to
the contralateral visual hemifield. A specific logarithmic de-
formation on the amplitude axis of this mapping was found
in cats (McIlwain 1976, 1983) as well as in monkeys (Robin-
son 1972; Ottes et al. 1986) (see Fig. 1), whereas the map-
ping seems to simply be linear in the other studied species
(rats (Siminoff et al. 1966), goldfish (Herrero et al. 1998),
for instance). These mappings are usually explained by a
reasoning based on sensory considerations: if the projec-
tions from the retina to the SC are one-to-one and if the
density of cells in the collicular maps is constant, then the
absence or existence of a fovea induces linear or logarithmic
mappings. We propose here an alternative approach linking
these mappings with the saccadic sensorimotor transforma-
tion process.

This sensorimotor process involves the activation of a
large population of cells in the motor map. This activation
is centered around the position corresponding to the coordi-
nates of the target of the saccade in the visual field (see up-
per part of Fig 1). The SBG are composed of four circuits,
respectively producing the rightward, leftward, upward and
downward rotations. At this level, the movements are en-
coded by bursts of activity representing the vectorial com-
ponents of the desired rotation (see lower part of Fig 1). The
transformation from the SC distributed spatial code into the
SBGs Cartesian temporal code is called thespatio-temporal
transformation(or STT). In addition to the problem of solv-
ing the STT for one colliculus, agluing problem–in the
technical sense of differential geometry Hirsch (1976)– oc-
curs when a vertical or quasi-vertical saccade is executed.In
that case, the population activity is shared on both SC and
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the combination of these two activities drives the SBG. The
exact location and shape of this distributed activity, and the
possible role of the commissural SC projections in the coor-
dination of the two SC, are unknown.

The first model of the STT, proposed by van Gisbergen
et al. (van Gisbergen et al. 1987), stated that it could be
performed by a simple weighted sum of the activity of the
SC neurons, transmitted to the SBG. This scheme has been
reproduced in many early SC models (refer to (Girard and
Berthoz 2005) for a review of SC and SBG models). It as-
sumed that the spatial shape of the activation on the SC map
is stereotyped, which could be ensured by lateral connec-
tions inside the map. This model had some limitations: it
did not simulate correctly the effects of simultaneous multi-
ple site activation (saccade on the average position), of vary-
ing levels of peak activity (saccades are accurate for various
peak levels of activity), and of inactivation of parts of the
SC (the inactivated region “repels” saccades). The saccade
averaging concern was solved in a model including lateral
inhibitions within the colliculus (van Opstal and van Gisber-
gen 1989). However, the most important limitation is that the
dynamics of appearance and disappearance of the SC activ-
ity, implying varying levels of activity, wasn’t considered,
namely,it did not take time into account.

In competing models, it was proposed that the output of
the SC is normalized by a weighted averaging of its activity.
This allowed the generation of correct saccades with varying
levels of activity, and simulated the effects of multiple target
averaging and of inactivation of collicular regions (Lee etal.
1988). However, as noted by Groh (Groh 2001), the division
computation is critical in such a model, as it has to be carried
out by a single neuron (this computation cannot be broken
up among a population) and should be precise on a large
range of values, which is physiologically unrealistic.

Recent experimental studies shed light on the dynamics
of the saccade generation process, showing that the number
of spikes produced by the whole population of SC burst neu-
rons during saccades of different amplitudes is constant (An-
derson et al. 1998; Goossens and van Opstal 2006). More-
over, it was also shown that for a given saccade, individ-
ual SC neurons always produce the same number of spikes,
even in case of various kinds of perturbations: saccades in-
terrupted by fixation zone stimulation (Munoz et al. 1996),
saccades slowed by muscimol injection in omnipause neu-
rons region (Soetedjo et al. 2000), and saccades perturbed
by eye blinks (Goossens and van Opstal 2000, 2006). This
strengthens recent STT models (Groh 2001; Goossens and
van Opstal 2006),which take time into account, and where
it is assumed that an inhibitory mechanism keeps the number
of spikes constant, avoiding the need for normalization. The
“dynamic vector summation” model, proposed by Goossens
and van Opstal (Goossens and van Opstal 2006), implements
this mechanism in a manner very similar to the Groh (Groh
2001) “summation with saturation” proposal: a population
of neurons sums up the number of spikes emitted by the SC
and inhibits the SC output when a fixed threshold is reached.
These models exhibit satisfactory behaviors in case of mul-
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Fig. 1 Spatio-temporal transformation from the superior colliculus
motor layers to the saccade generators. BN: burst neurons; BUN: build-
up neurons; EBN: excitatory burst neurons; MN: motoneurons; TN:
tonic neurons. Dashed lines on the SC map represent iso-amplitudes
and full lines, iso-directions. Gray shading on the SC map represents
the activity of the population of neurons coding for a(R = 10◦, θ =
45◦) saccade. SBG are simplified: circuitry devoted to the triggering of
saccades is omitted. Insets represent the temporal activity of the EBNs
during the execution of the saccade. The transformation from spatial to
temporal coding results from selective weighted projections from SC
neurons to the SBGs (strength is represented by line width):neurons
N1 and N2 project to the leftward SBG only, as they code for horizon-
tal saccades, and the N2 projection is stronger as it codes for a saccade
of larger amplitude; neuron N3 projects to both upward and leftward
SBGs as it codes for a(R = 5◦, θ = 67.5◦) saccade.

tiple site activation, varying levels of peak activity and inac-
tivation of parts of the SC.

Finally, the gluing problem was addressed in the van
Gisbergen et al. study (van Gisbergen et al. 1987). Their
proposal is based on a geometrical construction which only
partially uses the logarithmic mapping and systematically
generates inaccurate saccades. It is also this form of glu-
ing which was used in the Goossens and van Opstal model
(Goossens and van Opstal 2006).

In this work, we prove that, using a set of six hypotheses
based on known neurobiology of the SC and of the SBG and
fully compatible with the last two STT models (Groh 2001;
Goossens and van Opstal 2006), the neural implementation
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of the STT is tightly linked with the geometry of the collicu-
lar mapping: it is necessarily linear or complex logarithmic.
Moreover, we propose a new gluing scheme which extends
these STT models to both SC, generates accurate saccades,
and is compatible with the requirements of our proof.

2 Results

The quantitative description of the monkey’s collicular map-
ping proposed by Ottes et al. (Ottes et al. 1986) can be refor-
mulated as a complex logarithm (refer to appendix 4.1 for
more detailed considerations about quantitative description
of the collicular mapping). This transformation from retino-
topic Cartesian coordinates (α,β, resp. azimuth and eleva-
tion) into coordinates on the SC surface (X ,Y , in millime-
ters) is expressed as follows:

X

BX
+ i

Y

BY
= ln(

z +A

A
), with z = α+ iβ (1)

The values of parametersA,BX andBY for the monkey
have been experimentally estimated. Concerning the cat, the
mapping is in accordance with such a description (McIlwain
1976), but the parameters’ values haven’t been estimated.
For animals having a linear mapping, the following formu-
lation can be simply used:

X

bX
+ i

Y

bY
= z (2)

2.1 The need for a linear or complex logarithmic mapping.

Our first result is a mathematical proof (detailed in appendix 4.2)
that the complex logarithmic or linear mappings (as defined
by eqns. 1 and 2) are the only appropriate ones. Interestingly,
these classes of mappings are conformal (as the functions are
holomorphic) although it is not required by the hypotheses
on which the proof is based. These hypotheses are based on
the formalization of six known biological properties of the
STT (their precise mathematical formulation is given in Ap-
pendix):

Weighted sum.The outputs of the SC fed to the horizon-
tal and vertical saccade generators (SBG) are generated by
weighted sums of the activity of the SC motor cells.

Glued colliculi.The two colliculi are connected with each
other so that they form only one abstract mapping on the
whole planeR2.

Invariant integral.For each motor cell, the number of
spikes emitted during a whole saccade burst (without those
corresponding to the eventual preceding build-up activity)
depends only on its location with respect to the (X ,Y ) coor-
dinates of the saccade on the collicular surface.

Linearity. The total command sent from the SC to the
SBG is a linear function ofz0, the Cartesian coordinates of
the saccade to be generated.

Smooth mapping.The collicular mapping is continuously
differentiable.(X,Y ) = (0, 0) corresponds toz = 0, and
the visual horizontal and vertical axes are aligned with the
X andY axes in0.

Similarity. For any continuous population activity res-
pecting the invariant integral hypothesis, the projectionwei-
ghts from the SC to the SBG is a similarity1 with regards to
the saccade coordinates expressed in azimuth and elevation
(the retinotopic Cartesian coordinates).

This similarity hypothesis is the less intuitive of our six
hypotheses as it does not seem to have any functional justi-
fication. However, if it is assumed that the mapping on each
side is either linear or logarithmic (a constraint which canbe
due to the appearance of a fovea), we prove in appendix 4.4
that for any activity with gaussian invariant integral, theonly
system of projection weights from SC to SBG (with a mod-
erate growth), which produces a correct saccade (under the
assumption of linearity), is a similarity. We also prove in
this appendix that, given any activity, there is no deforma-
tion (with support on one SC) of the projection weights, ex-
cept similarities, generating correct saccades. In particular
this implies that the set of similarities is the only class of
projection weights from SC to SBG, which can be adapted
to every activity and which is stable under affine re-mapping
(or modulation).

This analysis provides as a corollary an expression for
the projection weights of the SC to the SBGs in the log-
arithmic case (it seems to be a folklore result although it
never appeared in the literature). Using the equation of the
logarithmic mapping, the projections from the superior col-
liculus to the brainstem can be analytically expressed. In the
special case where the coefficientsa andb of the hypothe-
sized similarity are just real numbers, we obtain:

wα = aA
(
exp( X

BX
) cos( Y

BY
) − 1

)
+ b

wβ = aA exp( X
BX

) sin( Y
BY

)
(3)

A graphical representation of this analytic formulation is
given in Fig. 5, upper part, using the monkey’s parameters.

The fact that the total activation of one neuron on the
superior colliculus during the saccade depends only on its
position with regard to the point coding the saccade on the
collicular surface is fundamental in inducing a logarithmic
mapping. However, if we assume that the mapping is loga-
rithmic and that interindividual differences in the mapping
parameters (A, BX , BY ) within one species exist, we can
derive the invariant integral hypothesis from the five others
(proof in appendix 4.5).

In the course of the mathematical proof, a parameter whi-
ch triggers the shape of the mapping appears: if it is null,
then the mapping is linear, otherwise, it is complex loga-
rithmic. The transition from linear to complex logarithmic
is smoothly obtained by a continuous variation of this pa-
rameter. This means that during evolution, a transition from

1 a similarity is a transformation that preserves ratios of distances.
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a linear to a complex logarithmic mapping could have hap-
pened without any need for changing the neural structures in
charge of computing the STT.

2.2 The motor gluing of colliculi.

We assumed in ourglued colliculi hypothesis that the two
colliculi are connected so that the combined activity of their
motor layers can be considered as a single abstract mapping
on the whole planeR2. To solve the gluing problem in the
linear mapping case, it is sufficient to put a bump of activ-
ity in each SC at the correct position, to truncate it to keep
the part within the correct visual hemifield only and then
to use the sum of the activity of both colliculi to drive the
SBG. However, in the case of complex logarithmic mapping,
a similar approach produces systematic errors (see Simula-
tion section below).

wα w
β

wα

w
β

Inp
L

Inp
R

f

HSBG VSBG

Mot Mot
L R

ν

υR

f ν

υ L

Fig. 2 Gluing method. A single target in the left hemifield but closeto
the vertical elicits activity in the input layers of both colliculi (InpR

andInpL). In the motor layers (MotR or MotL) this activity is in-
versely modulated by the area of the contralateral activitywithin the
boundary of its visual hemifield (hatched area, notedυR andυL). Note
thatν is the sum of the activity of the whole shaded areas. In the motor
layer, activity is thus much stronger in the right colliculus (coding the
left hemifield) than in the left one. For a target further awayfrom the
vertical, there would be no activity left in the left motor layer. This dis-
tributed motor activity is the abstractR

2 mapping assumed by the sec-
ond property of our first proof, which can then be weighted, summed
and sent to the horizontal and vertical SBG.

To solve this problem, we propose another approach. It
consists in progressively shifting from an activity sharedby
both colliculi to an activity contained by a single representa-
tion, using a modulation accounting for the closeness to the
vertical axis. In this scheme, an input layer (InpR or InpL)
receives activation from visual sources, independently from
the activity in the contralateral visual layer (Fig. 2, upper
part). These layers project to the motor layers (MotR and
MotL) of the ipsilateral and contralateral colliculi (Fig. 2,
lower part). The ipsilateral projections are one-to-one con-
nections: each visual neuron projects to its homologue in
the motor layer. These projections are however modulated
by the relative part of the activity of the contralateral input
layer within the boundary of its visual hemifield. This modu-
lation is a monotone increasing functionf of the subtraction
of the sum of the activity within the boundary (υR andυL)
to the sum of the activity in the whole mapν. The addition
of a control mechanism ensuring theinvariant integralprop-
erty on the two motor maps ensures that the following holds
for every saccade:





∫
t
MotL

SL
0

(SL, t) = χ(SL
0 ).

∫
t
InpL

SL
0

(SL, t)

∫
t
MotR

SR
0

(SR, t) = η(SR
0 ).

∫
t
InpR

SR
0

(SR, t)
(4)

where saccade coordinates on the left (resp. right) SC are
notedSL

0 (resp.SR
0 ). The positive functionsχ, η are the re-

sult of the integrated commissural modulation and satisfy
χ(SL

0 ) + η(SR
0 ) = 1 for all saccade. This constraint ensures

that the sum of the activity on both colliculi behaves exactly
as a single activity on an abstract map (a complete descrip-
tion of the scheme is given in Appendix).

2.3 Simulation.

To assess the accuracy of this gluing scheme, and also to
compare it with the van Gisbergen et al. proposal (van Gis-
bergen et al. 1987), we built a simple computational model
of the SC and SBG based on the Groh architecture for STT
(Groh 2001) (see Fig. 7). This model is made of rate-coding
leaky-integrator neurons. Each SC contains two90×90 neu-
ron maps, a visual input one and a motor one, respecting
the monkey mapping equation from Ottes et al. (Ottes et al.
1986). The activity generated by a target is a 2D Gaussian
(σ = 0.5mm) centered on the target coordinates expressed
in the collicular mapping. The activity of the motor map is
controlled by asummation with saturationarchitecture. The
SBGs’ implementation is minimal, they contain no feedback
loop, and are made of inhibitory and excitatory burst neurons
receiving the output of the SC motor layer, of tonic neurons
integrating the burst neurons activity and of motoneurons
summing the burst and tonic neuron outputs. The eye plant
is simulated by the standard second order differential equa-
tion model, linking eye rotation and motoneurons firing rate.
Details of the model are given in appendix 4.7.
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Fig. 3 Saccades endpoint error maps. 3D representation of the ratio
of the distance between desired and generated saccade endpoints and
the amplitude of the desired saccade, for saccades generated by the
van Gisbergen et al. gluing scheme (top) and our proposal (bottom).
Note that the van Gisbergen et al. proposal generates systematic errors
close to the vertical, the result of an incorrect gluing.α: azimuth;β:
elevation.

In the van Gisbergen et al. (van Gisbergen et al. 1987)
proposal for gluing, when a saccade is so close to the ver-
tical that the activity on the SC crosses the90◦ or −90◦

iso-direction curves, a second bump of activity is placed in
the other SC, and the two bumps are truncated to keep the
part within the preferred hemifield of each SC only. How-
ever, rather than using the mapping equation (1), they use a
ad-hocgeometrical construction to place the second bump.
This construction generates systematic errors for saccades
close to the vertical (see their Fig. 4). In our simulation, we
tested their truncation gluing scheme, but positioned the sec-
ond bump according to the mapping equations. Even with
this enhancement, relatively large systematic saccades errors
are generated: the upper part of Fig. 3 shows the error (mea-
sured as the distance between desired and effective saccade
endpoint divided by the desired saccade amplitude) for sac-
cades generated over the[0◦, 14◦] horizontal interval and the
[10◦,−10◦] vertical interval, with a1◦ increment. This er-
ror, which reaches more than27% for the (1◦, 0◦) saccade,
is around5% in the vertical region, where gluing occurs.

The implementation of our model produces errors that
are comparatively much lower (less than1.5%, lower part
of Fig. 3). These errors are caused by integration approxi-
mations when numerically solving the model’s differential
equations and by the coarse discretization of the SC, rather
than by an approximate gluing.

3 Discussion

We showed that collicular mapping has to be either linear
or logarithmic in order to control the SBG correctly, assum-
ing six basic properties of the spatio-temporal transforma-
tion. This result also shows that a continuous transition from
the linear to the logarithmic mapping can be made, affect-
ing neither the neural substrate nor the underlying compu-
tations generating saccadic movements. In an evolutionary
perspective, it suggests that the appearance of a fovea and
the corresponding modification of the mapping of the visual
areas could have happened in a progressive manner without
requiring any modification of the final stages of the saccadic
circuitry.

A hypothesis of this first result is that the two colliculi
have to be combined so as to be equivalent to a single ab-
stract mapping of the whole visual field. We thus proposed a
new gluing scheme which generates saccades of the correct
size and predicts the role and structure of the commissural
projections in charge of driving this motor gluing.

3.1 The six basic properties.

We first discuss the neurobiological relevance of the six prop-
erties on which we based our proof, for the monkey and the
cat.

The weighted sumproperty corresponds to the simplest
way to transmit the activity of a population of SC neurons
to the SBG, as no additional circuitry is needed between SC
motor cells and SBG bursters in order to, for example, se-
lect the most active neuron only. Moreover, relying on such
a population coding is more resilient to noise in neural ac-
tivity. This hypothesis has received support from both ex-
perimental (Sparks et al. 1976; Moschovakis et al. 1998)
and modeling (van Gisbergen et al. 1987; Badler and Keller
2002) studies.

The invariant integralproperty states that the shape of
the activity on the SC mapA does not have to be perfectly
invariant in space and time, as long as the activity of each
cell integrated over saccadic signal duration (ie. number of
spikes emitted during the saccadic burst) depends only on
its location with regards to the point on the SC surface cod-
ing for the saccade metrics. This hypothesis is weaker than
the invariant Gaussian used in numerous models, it avoids
putting too much constraint on the precise tuning of the ac-
tivity profiles of the SC neurons (as depicted in Fig. 4). Not
demanding temporal stereotypy allows the duration of a sac-
cade of a given metric to vary from one execution to another,
for example because of varying peak levels of activity, as
long as the integrated activity is constant.

As mentioned in introduction, a number of recent exper-
imental studies(Anderson et al. 1998; Munoz et al. 1996;
Soetedjo et al. 2000; Goossens and van Opstal 2000, 2006)
with monkeys show that the number of spikes emitted by a
given SC neuron for a given saccade is constant, despite var-
ious types of perturbation. This fully supports ourinvariant
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Fig. 4 Consequence of the invariant integral hypothesis for one SC
neuron. A, B, C and D are schematic drawings of the activity ofa
given neuron of the SC, for a given saccade metric. While A represents
a normal saccade, B, C and D represent the activity of the neuron in
perturbed saccades (like during stimulation of the fixationcells, mus-
cimol injection in the OPNs, eye blink, etc.). In all cases, the integrated
activity over the whole burst duration (the surface within the bold poly-
gon) is constant, thus these activations are compatible with the invari-
ant integral hypothesis. Note that, at a given momentt′, the generated
fraction of this activity (represented by the hatched surface) may vary.

integral hypothesis, at least for monkeys. We are not aware
of similar results in cats that could shed a complementary
light on ourinvariant integralhypothesis. Since SC neurons
have quite different morphology and physiology in felines
and primates (Grantyn and Moschovakis 2003), such studies
are necessary to test the validity of the hypothesis in cats.

Thelinearityproperty states that the desired saccade am-
plitude has to linearly depend on the SC output. The burst
neurons of the SBG, which receive this SC output and gen-
erate the phasic part of the motoneuron activity responsi-
ble for saccadic eye movement, exhibit an affine relation-
ship between the number of spike they emit during a saccade
and the amplitude of the saccade, in monkeys (Keller 1974;
King and Fuchs 1979) as well as in cats (Kaneko et al. 1981;
Yoshida et al. 1982). If the summed offsets of the affine func-
tions of the burst neurons coding for two opposite directions
are equal, then the fact that the SBG are controlled linearly
holds. It happens that the SBG also receives input from the
fastigial oculomotor region (FOR) of the deep cerebellar nu-
clei. It does not affect our proof, as we do not demand that
the SBG input exclusively comes from the SC. However, it
means that this affine relationship in the burst neurons is not
the result of the SC influence only. Thus, the SC input signal
might vary non-linearly with saccade amplitude, as the cere-
bellar input could compensate this non-linearity, so that the
summed command remains linear. However, it was shown
(Iwamoto and Yoshida 2002) that in monkeys, an inactiva-

tion of FOR results in a saccadic gain modification. This
means that the suppression of the FOR input to the SBG
generates saccadic movement whose amplitude still vary lin-
early with the amplitude of the desired saccade, proving that
the collicular input to the SBG is also a linear command,
whose gain is not1, and that has to be compensated by cere-
bellar input. Concerning cats, the effects are affecting either
the gain or the offset for, respectively, contraversive andip-
siversive movements (Goffart and Pélisson 1998). However,
this study was carried out head-free, similar head-fixed ex-
periments would be necessary to validate or invalidate our
hypothesis in cats.

Thesimilarity property states that the projection weights
from the SC to the SBG are a similarity of the saccade coor-
dinates,expressed in the visual space. This unintuitive prop-
erty was indeed derived from the evidence that in cats this
projection is affine on the horizontal axis (Moschovakis et al.
1998). However, neither the fact that the vertical projection
is affine nor the fact that the whole projection function is a
similarity, a subset of the affine functions, were proved in
cats. Moreover, no result of that type is available for mon-
keys. However, as evoked in the results section, using the
five other hypotheses and assuming that the mapping is ei-
ther linear or complex logarithmic, we were able to prove
that the weights respect the similarity hypothesis.

The appendix 4.6 of this paper contains a generalization
of our results, showing that if we relax thesimilarity hy-
pothesis by assuming affine projection only, three additional
types of mappings become acceptable and all the resulting
five mappings can be non-linearly twisted. Finding animals
whose mapping corresponds to one of these three mappings
would favor the affine hypothesis.

Note that this hypothesis is formulated so thatsimilarity
has to be true for anyA. Thus our result implies that with a
complex logarithmic mapping, for anyA function verifying
theinvariant integralproperty, the parametersa andb (defin-
ing the weights in eqn. 3) can be found so that a weighted
sum of the activity of the SC neurons will generate accurate
saccades. This means that the precise shape ofA can change
during lifetime and be different from one individual to an-
other: an adaptive mechanism tuninga andb is sufficient to
ensure correct operation of the system, there is no need for
changing the mapping of the SC maps itself.

The hypothesis, that thesimilaritymust be true for anyA
function verifying the property ofinvariant integral, is quite
strong. However, our proof holds true even with restricted
families of activations. For example, if thesimilarity has to
be true for Gaussian functions with small perturbations of
mean, we still obtain the two mappings.

Concerning thesmooth mappingproperty, stating that
the mapping functionφ is continuous comes directly from
the well known retinotopy of SC maps. Stating that its first
derivative is also continuous means that the variation of the
magnification factors on the maps are smooth, which is ver-
ified in all studied species. Finally, theX andY axes used
to describe the maps are chosen, by convention, so as to be
aligned with the horizontal and vertical directions in0.
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The fact that these neurobiological properties and the
known SC mappings can be combined together in a math-
ematical proof strengthens their coherence and reduces the
concern of their individual uncertainties. Experimentally ex-
ploring the validity of these six properties in species other
than cat and monkey, especially those having a linear map-
ping, could reveal whether our results can be generalized
among vertebrates.

3.2 SC to SBG projection weights.
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Fig. 5 Top: Plots of the weight from all the motor cells of the superior
colliculus to the brainstem horizontal burst generator (left) and to the
vertical burst generator (right) in monkeys. The values of these weights
were obtained by the exact equations described in text (eqn.(3)) and
parameters specific to the monkey (A = 3◦, BX = 1.4mm and
BY = 1.8mm anda = 1, b = 0). Bottom: Plots of the weights
obtained by Arai et al. (Arai et al. 1994) with a learning algorithm for
a map covering from0◦ to 20◦ in amplitude and from−65◦ to 65◦ in
direction.

As regards the projection from the superior colliculus to
the saccade generator, we must say that to our delight similar
profiles have been obtained by Arai et al. (Arai et al. 1994)
using a training procedure based on their model of the SC
(see Fig. 5). It shows both that these weights can be obtained
by learning and that our theoretical approach is corroborated
by a more experimental one. Nevertheless, in another paper
(Arai et al. 1999), they obtained different profiles as they
used a mixed velocity and position feedback to control SC
activity, which transgresses ourinvariant integralhypothe-
sis.

A few neurobiological studies tried to evaluate the wei-
ghts of the connections from the SC to the SBG. The density
of SC neurons projecting to the horizontal SBG in monkeys
(Grantyn et al. 2002) have variation tendencies compatible
with our results, at least for a range of saccades for which
head movement are negligible. The technology available to
estimate projection weights is however too limited yet to
provide a full account of or to reject our result.

3.3 Is there a STT?

Optican (Optican 2005) proposes that the sensorimotor trans-
formation necessary to convert visual input into motor com-
mand doesn’t need to be explicitly performed as a STT be-
tween the SC and the SBG. In his model, the SC gives only
an initial directional drive to the saccadic system, while the
cerebellum plays the major part, as it implicitly performs the
transformation.

It can be reasonably assumed that the importance of the
cerebellum has been neglected in previous modeling stud-
ies, as its role in the calibration of the system and in on-line
adjustments of saccade trajectory is fundamental. It could
indeed replace the reticular formation displacement integra-
tor postulated by many former SBG models. Nevertheless,
the available neurobiological data, that we use to build our
proof, clearly shows that all the elements needed to perform
a STT between the SCs and SBGs are present. We thus pro-
pose that a STT indeed occurs, with a gain different from
1, and that the cerebellum constantly compensates for this
difference.

3.4 Commissural projections

Commissural projections seem to exist at every level of the
SC (Olivier et al. 1998), and many of them are probably used
to solve various gluing problems, such as ensuring consis-
tency of visual information in the superficial layers, or con-
tinuity of retinotopic working memory at the level of the
quasi-visual cells. Our proposal uses a set of commissural
projections to solve the gluing problem at the motor level,
and thus makes predictions concerning these commissural
projections only. Experimentally distinguishing these vari-
ous types of commissural projection might be crucial for the
understanding of their organization and roles.

4 Appendix

4.1 Coordinates on the SC layers and mapping formulation

The question of the nature of the coordinate system that
should be used to describe the mapping on the collicular lay-
ers has to be raised. Indeed, the colliculus, and especiallyits
superficial visual layers, are convex. The maps proposed in
biological studies are obtained with various methods: pro-
jections on the Horsley-Clarke plane (Siminoff et al. 1966;
Feldon et al. 1970; Robinson 1972; Dräger and Hugel 1976),
empirical flattening of the surface by cutting (Rosa and Schmid
1994), or locally cylindrical coordinates (Knudsen 1982).
None of these methods respects the curvature of the surface.
Only Siminoff et al. (Siminoff et al. 1966) propose a cor-
rection –on two axes only rather than for the whole surface–
that takes the curvature into account.

Solving this question is beyond the scope of this paper,
we however stress that our results concern the activity of the
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intermediate motor layers of the colliculus, which seems to
be much more planar, or at least unfoldable. We will there-
fore use a Cartesian coordinate system(X,Y ) to localize
points on the surface of these intermediate or deep layers.

Two-dimensional saccades result from the conjunction
of the activity of horizontal and vertical brainstem genera-
tors. So the final motor coordinate system isa priori a Carte-
sian one. However, Robinson (Robinson 1972) has shown
that for the monkey, the sensorimotor maps of the SC are
more adequately described by a deformed polar coordinate
system.

The equations mapping retinotopic polar coordinates (R,θ)
onto the collicular surface (Cartesian coordinate (X ,Y ) in
millimeter), first introduced by (Ottes et al. 1986), are:

X = BX ln(

√
R2 + 2AR cos(θ) +A2

A
) (5)

Y = BY atan(
R sin(θ)

R cos(θ) +A
) (6)

With the following parameter settings:A = 3.0 deg,
BX = 1.4 mm andBY = 1.8 mm. Even if a precise eval-
uation of these parameters for the cat was not provided, the
cat’s mapping depicted in (McIlwain 1976) seems to be in
accordance with such a description, with aBY /BX ratio
close to2.

As noted in (Ottes et al. 1986), this mapping can how-
ever be reformulated it as the complex logarithm of a linear
function of eccentricity, as proposed by (Schwarz 1980) in
its modeling of the striate cortex mapping. Usingz, the com-
plex variable defined as:

z = α+ iβ (7)

whereα andβ represent the horizontal and vertical ampli-
tude of the saccade, eqns. 5 and 6 can be rewritten:

X

BX
+ i

Y

BY
= ln(

z +A

A
) (8)

4.2 The need for a linear or complex logarithmic mapping.

The keystone of our result lies in a mathematical formula-
tion of the six biological properties of the spatio-temporal
transformation as equations inC.

We work with a complex formulationS = X + iY of
coordinates on the abstract SC map together with a bijection
(z = φ(S)) from the colliculus map to the visual hemifield.
All along the proof, we will refer to a given desired saccade
z0 = α0 + iβ0 in visual coordinates which can be expressed
in collicular coordinates as a specificS0 = φ−1(z0). The
command sent from the superior colliculus to the saccade
generators (H: horizontal, V: vertical) in order to generate a
givenS0 saccade is described byOutS0

(t) = OutHS0
(t) +

iOutVS0
(t). We can now formulate the weighted sum prop-

erty as

OutS0
(t) =

∫

S

wSAS0
(S, t)dS (9)

wherewS ∈ C are the weights of connection from the neu-
ron located inS to the saccade generators andAS0

(S, t) ∈ R

is the activity on the abstract map at locationS and timet for
aS0 saccade. Technically,AS0

is a function such that for all
fixed t, the product ofAS0

( , t) with any exponential func-
tion is of finite integral. For example, it can be a Gaussian or
any function with compact support (which will be the case in
practice). Similarly, the invariant integral property amounts
to say that there exists a functionKA such that

∫

t

AS0
(S, t)dt = KA(S − S0) (10)

and the linearity property expresses that
∫

t

OutS0
(t)dt = Cz0 (C ∈ R) (11)

The similarity property states that for any activationA that
satisfies 10,wS is a similitude inz. This is equivalent to the
existence of two complex numbersa andb such that

wS = az + b (12)

Asking for a smooth mapping means thatφ ∈ C1, satis-
fies φ(0) = 0, and is aligned with theX andY axes in0
(DXφ(0) ∈ R+ andDY φ(0) ∈ iR+).

From equations (9), (10) and (11), it is easy to derive:

Cφ(S0) =

∫

S

wS KA(S − S0)dS (13)

We will differentiate this equation with respect toX andY .
Letψ be eitherDXφ orDY φ andK = KA. Using equation
(12) and the fact thatz = φ(S), we get

∀S0 Cψ(S0) = a

∫

S

K(S − S0)ψ(S)dS (14)

note thatC,a andK depend onA which is not the case for
ψ. We now use the possibility to choose different functions
for the activity and translate the activityA for small vectors
u. We poseκ(A) = C/a and introduce the notationfu(S) =
f(S + u) for any functionf

κ(Au)ψ(S0) =
∫

S
K(S − (u + S0))ψ(S)dS

=
∫

S K(S′ − S0)ψ(S′ + u)dS
= κ(A)ψu(S0)

LetF (u) = κ(Au)/κ(A). We have for any smallu

ψ(S + u) = ψ(S)F (u)

Applying this toS = 0 leads toF (u) = ψ(u)/ψ(0), so

ψ(S)ψ(u) = ψ(S + u)ψ(0) (15)

Let us introduce the change of coordinatesS 7→ S̃ that
makes the Jacobian of̃φ (ie. the functionφ in the new co-
ordinates) equal toI at0. By the hypothesis of smooth map-
ping, we know that

S̃ =
X

bX
+ i

Y

bY
= X̃ + iỸ (16)
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for somebX , bY ∈ R+. By the theorem 1, p 225 of (Bour-
baki 1972), we know thatψ is analytic. We then deduce from
proposition 7, p 200 of the same book thatψ is an exponen-
tial function, ie.

∃ C1, C2, λ, µ in C




DX φ̃(S̃) = C1 exp(λX̃ + µỸ )

DY φ̃(S̃) = C2 exp(λX̃ + µỸ )
(17)

Applying Schwarz’s theorem which states that the partial
derivatives commute, we infer thatµ = iλ. To integrate
those equalities and obtain the different forms ofφ̃, we have
to distinguish between two cases.

– λ 6= 0
in that case,

1

λ
(exp(λ S̃) − 1) = z λ ∈ C (18)

which can be rewritten ifλ ∈ R+

X

BX
+ i

Y

BY
= ln(

z +A

A
) (19)

– λ = 0
in that case,

S̃ = z (20)

which can be rewritten

X

bX
+ i

Y

bY
= z (21)

Remark that this case is simply the limit case of the ex-
ponential mapping whenλ→ 0.

For our proof to be complete, it remains to check that the
necessary conditions found above are also sufficient by ex-
plicitly computinga andb. To make the formulations sim-
pler, we introduceu = S − S0 andũ = S̃ − S̃0




a = C(

∑
u exp(λ ũ).KA(u))−1

b = C
λ ((

∑
u exp(λ ũ).KA(u))−1 − (

∑
u KA(u))−1)

(22)

4.3 The gluing of the two colliculi.

In order to satisfy theGlued colliculihypothesis of the above
proof, we propose a method for gluing the colliculi so that
we can then consider them as a single abstract mappingφ on
the whole plane.

We define two distinguished layersInp andMot and
connect them by direct and commissural connections, as de-
picted in Fig. 2. The SC neurons sending commissural pro-
jections are confined within the boundary of the preferred
hemifield, defined by the iso-direction curves90◦ and−90◦

(hatched areas in Fig. 2). By defining theT operator as1

within this boundary and 0 outside, we can mathematically
expressυL andυR as follows:

υL =
∑

S

T (S)InpL(S, t)

υR =
∑

S

T (S)InpR(S, t) (23)

The sum of the whole activity in one input layer,ν, is defined
as:

ν =
∑

S

InpR(S, t) =
∑

S

InpL(S, t) (24)

We can then relate the four layers by the following equa-
tions:

MotL(SL, t) = f(υR)InpL(SL, t)

MotR(SR, t) = f(υL)InpR(SR, t) (25)

whereSL
0 andSR

0 are the saccade coordinates expressed in
the left and right collicular mappings,SL andSR the coordi-
nates of the considered neuron in the left or right SC, andf
is a transfer function tuned to be highly receptive when half
of the activity bump enters the boundary of the preferred
hemifield. For that,f is a sigmoid with a high steepnessρ,
centered at one half ofν:

f(x) = 1 −
1

1 + expa(0.5ρ−x)

The invariant integral property ensures that this four layered
structure satisfies relation (4) withχ+ η = 1.

We will call abstract map the result of this gluing.

4.4 Proof of the stability of the similarity under small
deformations.

We suppose in this paragraph that the collicular mapping is
either logarithmic or linear, and that the collicular output is
linear (as required by the linearity hypothesis).

We choose the complex coordinatesS = X + iY on
the colliculus andz in the visual field, such that for anyS,
z = φ(S) = exp(S) − 1 or z = φ(S) = S. We have seen
that for any given kernelKA resulting from an invariant in-
tegral activityA, integrable with every exponential weights,
it exists a similarityσ in thez-plane,such that for anyS0:

φ(S0) =

∫

S

KA(S − S0)σ(φ(S))dS. (26)

Suppose thatKA is non identically zero; we want to
prove thatσ is the only function satisfying this equation un-
der natural growth conditions.

Recall the Fourier-Laplace transform of a function (or a
distribution)u in theS-plane is defined in a pointζ = (ξ, η)
in C

2, by the integral:

û(ζ) =

∫
u(X,Y )e−i(ξX+ηY )dS, (27)
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when this integral converges.
We put the hypothesis onKA that its Fourier-Laplace

transformK̂ is defined and complex analytic over the entire
complex plane.

Let f : R2 → C be a continuous function, satisfying the
equation (26):

φ(S0) =

∫

S

KA(S − S0)f(S)dS. (28)

Our hypothesis will be that it exists a constantc and and
an open setΩ in C2 containing a plane parallel toR2, such
that the difference∆ = f − σ ◦ φ − c has a well defined
Fourier-Laplace transform onΩ. This is verified if the gra-
dient∇.∆ is equal to zero forX sufficiently negative or|Y |
sufficiently large and is majored by an exponential function
for X positive. Remark that the preceding condition means
that the deformation∆ is supported by one of the two colli-
culi.

Let us denote byD∆ eitherDX∆ orDY∆; from equa-
tion(26), we have:

∫

S

KA(S − S0)D∆(S)dS = 0. (29)

Thus (Hörmander 1983) forξ in Ω we obtain:

K̂(ξ)D̂∆(ξ) = 0. (30)

But when the product of two analytic functions is zero, one
of the function is identically zero. AŝK is not identically
zero,D̂∆ is zero onΩ, and by the injectivity of the Fourier-
Laplace transform (Hörmander 1983),D∆ itself is zero. Thus
f is a similarity. Q.E.D.

Remarks:

1. if KA andD∆ were continuous functions (or even dis-
tributions) with compact support (which is not so restric-
tive when considering neural activity on SC maps), we
could have directly deduced the resultD∆ = 0 from
the classical ”Theorem of Supports” of Titchmarsh and
Lions (Hörmander 1983).

2. it is not true in general that equation (26) has a unique
solution, for example if the total integral ofK is zero
we can add any constant toσ; moreover if the Fourier
transform ofK becomes zero at some points inR2 it
exists non trivial polynomial function∆ verifying (29),
their Fourier transform having support reduced to iso-
lated points. This phenomenon cannot appear whenK
belongs to the class of ”Wiener functions” which by
definition have Fourier transforms without zero, in this
case∆ can be any tempered distribution in the sense of
Schwartz and we deduceD∆ = 0.

In the special case of Gaussian integral of activitiesKA,
the restrictive hypothesis on∆ can be greatly weakened: we
only have to require that it exists two real constantsα, β
such that∆ has a well defined Fourier-Laplace transform, as
an element of the spaceS′ of Schwartz tempered distribu-
tions, on the planeΠ = (iα+ ξ, iβ + η)|(ξ, η) ∈ R2 in C2.

For example∆ can be any function with polynomial growth
times an exponential. Let us prove that this condition is suf-
ficient to implyD∆ = 0:
By hypothesis it exists a positive symmetric two by two ma-
trix of determinant oneA, a pointMO in R2, a constant
C > 0 and a numberτ > 0, such that

K(S) = C(4πτ)−1e−(S−M0).A(S−M0)/4τ . (31)

The Fourier-Laplace transform ofK is the analytic function

K̂(ζ) = Ce−τζ.A−1(ζ)+iζ.M0 (32)

On the other handD∆ has a Fourier-Laplace transform, well
defined as a tempered distribution on the planeΠ, it is the
product of∆̂with the restriction toΠ of a linear form onC2.
The convolution equation satisfied byD∆ implies as before
K̂D̂∆ = 0, butK̂ restricted toΠ belongs to the test spaceS
of Schwartz functions with quick decreasing at infinity, and
has no zero at all, sôD∆ = 0. Q.E.D.

4.5 Proof of the need for an invariant integral.

We now replace the invariant integral property by the fact
that any logarithmic mapping works. We show that equation
10 can be deduced, ie.

∫

t

AS0
(S, t)dt = KA(S, S0) = KA(S − S0, 0) (33)

Using equations 9, 11 and 12 for any logarithmic mapping
leads to

∀λ CeλS0 =

∫

S

(aeλS + b)KA(S, S0)dS (34)

We differentiate with respect toλ

∀λ κ(A)eλS0 =

∫

S

eλSKA(S, S0)dS (35)

We pose∆(S, S0) = KA(S, S0)−KA(S−S0, 0) and deduce
that

∀λ

∫

S

eλ(S−S0)∆(S, S0)dS = 0 (36)

The Laplace transform is defined forA, thus it is also
defined forKA =

∫
t
Adt, as the integration is on a finite

interval, and finally for any difference of to suchK func-
tions, in particular for∆. Then, with the same argument as
in section 4.4, we have that

∆(S, S0) = 0 (37)
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4.6 A generalization of the similarity hypothesis.

If we relax the hypothesis of similarity by just asking for an
affine projection, ie.wS = az+bwherea is a2×2 invertible
matrix, we then get five types of solutions.

Indeed, denoting byJ(S) the Jacobian ofφ at pointS
leads to

J(u)J(0)−1J(S0) = J(u+ S0) (38)

As above, we perform the change of coordinatesS 7→ S̃ to
makeJ(0) = I. As in section 4.2, using theorem 1, p 225
and proposition 7, p 200 of (Bourbaki 1972) guarantees the
existence of two commuting matricesM1 andM2 such that

J̃(S̃) = exp(M1 X +M2 Y ) (39)

By distinguishing between the different kind of sub-vector
spacesR(M1,M2), we obtain five solutions, whereP is a
2×2 invertible matrix (allowing a twist in the mapping) and
W = P−1(S̃) is seen as a complex numberU + iV .

1. z = P 1
λ (exp(λW ) − 1) λ ∈ C

2. z = P

(
1
λ (exp(λU) − 1)
1
µ(exp(µV ) − 1)

)
λ, µ ∈ R

3. z = P

(
1
λ (exp(λU) − 1)

exp(λU)(V + ν
λ( 1

λ − U)) − ν
λ2

)
λ, ν ∈ R

4. z = P

(
1
λ(exp(λU) − 1)

V

)
λ ∈ R

5. z = S̃

Some examples of these mappings, with and without de-
formations are depicted in Fig. 6.

4.7 Description of the gluing simulation.

Collicular maps are modeled by90 × 90 tables of leaky-
integrator neurons including15 neurons borders. The system
has the following hierarchical structure (see also Fig. 7):

1. The retinaRet encodes the target’s position by a 2D
Gaussian with standard deviationσ = 2.5, centered around
target’s position.

2. The input layersInp receives the retinal signal with70ms
delay. When the global activity passes a given threshold,
it is transmitted to the motor layers (via a gluing mech-
anism which implements either ours or the Van Gisber-
gen’s scheme) and the SBG OPNs are inhibited via LLBs.

3. The motor layersMot send the command to the SBG,
while their activities are integrated. When the integrator
reaches a given threshold, the layers are inhibited and the
saccade stops.

4. The SBG is first inhibited by the OPNs. The activity
in Inp is transmitted to the LLBs which inhibit in turn
the OPNs. When the activity inInp is strong enough,
OPNs are turned off and the EBNs/IBNs begin to re-
ceive the motor command from theMot layers through
a weighted sum. This command is then integrated by the
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Fig. 7 Gluing simulation architecture. For simplicity, only one col-
liculus and two SBG (upward and leftward), without the crossed IBN
projections, are represented. Moreover, only two neurons are repre-
sented in each collicular map (V1, V2 and M1, M2, for visual and mo-
tor maps respectively). Shaded circles in collicular maps represent the
Gaussian activity generated by a(10◦, 10◦) target, while insets in the
saccade generators represent the temporal code in the EBNs generated
to drive the muscles. Open triangles represent excitatory synapses; tri-
angles represent inhibitory synapses; bold connections affect the whole
map. Refer to text for the abbreviations.

couple of neurons TNs/MNs (tonic neurons/motoneurons).
The activity of MNs is received by the eye plant (mod-
eled by a second order differential equation) to generate
the required eye’s displacement.

The leaky-integrator rate neuron model used as building
brick is as follows (τ : time constant inms, I: input inmV ):

τ
da

dt
= I − a andy = [a]+

where the transfer function[ ]+ satisfies[I]+ = 0 if I < 0
and[I]+ = I otherwise.
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Fig. 6 Examples of the mappings predicted by a relaxation of the similarity hypothesis. The top row contains the new mappings defined in
section 4.6 without deformation (P is the identity matrix):from left to right, mapping 2. (λ = 0.1 andµ = 0.1), mapping 3. (λ = 0.1 and
ν = 0.1), and mapping 4. (λ = 0.1). The bottom row represents mapping 1. (complex logarithmic, λ = 0.1), mapping 3. (λ = 0.1 and
ν = 0.1) and mapping 4. (λ = 0.1) with the deformation matrixP = [1, 0.5; 0.2, 1]. The dashed lines represent iso-amplitudes and full lines,
iso-directions, as in Fig. 1. The axes units are millimetersand the sameBx = 1.4mm andBy = 1.8mm parameters are used for all maps.

The input ofInp is:

IInpD (SD
0 , t) = yRetD (S0, t− t0), withD ∈ {L,R}

Long-Lead burst neurons (LLB), in charge of triggering
saccades by inhibiting the OPN when the activity in the In-
put layers reaches theǫtrig threshold, are modeled by:

ILLB = wLLB
V is

∑

S

(yInpR(S) + yInpL(S)) − ǫtrig

IOPN = −yLLB + ǫOPN

The activity in the motor layerMot is gated by the OPNs
and the Integrating-Saturating mechanism (note that satura-
tion neurons have a longer time constant):

IMotD (S) = yInpD (S) − wMot
OPNyOPN − wMot

Sat ySat

with D ∈ {R,L}.

IInt = wInt
Mot

∑

S

(yMotR(S) + yMotL(S))

ISat = yInt − ǫstop

The four SBG circuits (leftward, rightward, upward, down-
ward) are identical, all of them are gated by OPN activity,

and those operating in opposite directions are coordinated
by the IBN crossed projections. The EBN and IBN activity
is identical and defined by:

ID
BN =

∑

X,Y

(wαyMot(S)) − wBN
OPNyOPN , forD ∈ {L,R}

ID
BN =

∑

X,Y

(wβyMot(S)) − wBN
OPNyOPN , forD ∈ {U,D}

with the wα andwβ defined in equation (3) of the main
manuscript.

The tonic neurons are the only neurons modeled as per-
fect rather than leaky-integrators:

ID
TN = wTN

BN (yD
EBN − yDop

IBN ), withD ∈ {U,D,L,R}

ID
MN = wMN

BN (yD
EBN−yDop

IBN)+yTN , withD ∈ {U,D,L,R}

whereDop is the opposite direction ofD.
The eye plant model used is modeled as a second order

differential equation:

θ̈ + 0.6θ̇+ 4θ = wθ
MNyMN

The parameters are summed up in the Table 1.
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Table 1 Parameters of the model

τ 5ms τSat 100ms t0 70ms

ǫOPN 100 ǫtrig 400 ǫstop 200

wLLB
V is 0.005 wMot

OPN 40 wBN
OPN 40

wInt
Mot 0.002 wMot

Sat 8 wTN
BN 0.05

wMN
BN 1.52 wθ

MN 4.07
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