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Density Modulations in an Elongated BEC Released from a Disordered Potential

D. Clément, P. Bouyer, A. Aspect, and L. Sanchez-Palencia
Laboratoire Charles Fabry de l’Institut d’Optique, CNRS and Univ. Paris-Sud,

Campus Polytechnique, RD 128, F-91127 Palaiseau cedex, France
(Dated: October 10, 2007)

We observe large density modulations in time-of-flight images of elongated Bose-Einstein condensates, ini-
tially confined in a harmonic trap and in the presence of weak disorder. The development of these modulations
during the time-of-flight and their dependence with the disorder are investigated. We render an account of this
effect using numerical and analytical calculations. Our analysis shows how the observed large modulations orig-
inate from the weak initial density modulations induced by the disorder, and do not require phase fluctuations
(thermal or quantum) in the initial condensate.

PACS numbers: 03.75.Hh,03.75.Kk,64.60.Cn

Recently, Bose-Einstein condensates (BEC) have been cre-
ated in controlled disordered potentials [1, 2, 3, 4, 5, 6], open-
ing new opportunities to study transport phenomena (e.g.An-
derson Localization [7]) and quantum-state diagrams in dis-
ordered mesoscopic systems [8, 9]. There exist many tools
to probe ultracold gases. For instance,time-of-flight(TOF)
techniques, which amount to image the atoms after a free-
expansion stage, give information on the quantum state (den-
sity profile and momentum distribution) of the initial gas at
equilibrium in the trap. In the presence of weak disorder
(VR . µ), the density profile of a trapped BEC shows mod-
ulations with a relative amplitude of the order of or smaller
thanVR/µ whereVR is the amplitude of the disordered po-
tential andµ is the BEC chemical potential [10]. However,
surprisingly, TOF images of disordered, elongated BECs ex-
hibit significantly larger modulations (see Fig.1 and [1, 11]).

A possible interpretation is that disorder may enhance
phase fluctuations in the trapped BEC before the TOF [1, 12].
Indeed, the observed density modulations are similar to those
reported in single-shot images of non-disordered but elon-
gated quasi-BECs after a long-enough TOF [13]. In this
case, the observed density fluctuations are a signature of
initial random phase fluctuations in the trapped quasi-BEC
[13, 14, 15, 16]. However, for disordered BECs, neither sys-
tematic study nor unambiguous interpretation of these modu-
lations has been reported so far.

In this Letter, we investigate the dynamics of density mod-
ulations during the TOF of an elongated 3D BEC initially
placed in a 1D disordered potential as well as their depen-
dence with the amplitude of the disorder. We consider a weak-
enough disorder such that the fragmentation of the BEC can
be neglected. Our experimental results allow us to rule out the
scenario based on disorder-induced initial phase fluctuations
for the considered range of parameters. In contrast, they are
consistent with numerical and analytical results for the dy-
namical TOF process of a disordered BECwith initial weak
density modulations butwithout any phase fluctuations. We
elaborate the following scenario for the enhancement of den-
sity modulations during the TOF. In a first stage dominated by
a radial expansion, the initial weak density modulations in-
duced by the weak disorder before the TOF imprint a phase

with longitudinal modulations and transversal invariance. In a
second stage, the phase modulations are converted into large
density modulations.

The experiment is detailed in Refs. [2, 5]. In brief, we form
a cigar-shaped BEC of87Rb atoms in a Ioffe-Pritchard trap
of frequenciesωz/2π = 6.7Hz andω⊥/2π = 660Hz. The
BEC atom number is typicallyN0 ∼ 3.105, the longitu-
dinal length2×LTF ≃ 300µm and the chemical potential
µ/2π~ ≃ 4.5kHz. We create a speckle (disordered) poten-
tial along thez axis and invariant radially, whose correlation
function isC(z) = V 2

R sinc2(z/σR) [2, 5]. In the experiment,
both amplitudeVR and correlation lengthσR down to0.33µm
can be controlled [2, 5]. Here, we operate at0 < VR < µ and
σR ≃ 1.7µm. We wait 300ms for the BEC to reach equilib-
rium in the presence of disorder. We then switch off abruptly
both magnetic trap and speckle potential and we take absorp-
tion images of the expanding cloud after a variable time of
flight tTOF. Typical TOF images are shown in Fig. 1.

These images show large density modulations along the
axis z of the disorder. To measure their amplitude, we first
extract a 1D longitudinal densityn1D(z) by integrating the
column density over the second transverse directionx. We
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FIG. 1: Upper panel: TOF images of an expanding disordered BEC
for three different times of flight. The vertical axis represents the col-
umn density along they axis. Lower panel: longitudinal 1D density
profilesn1D(z) (column density integrated along thex axis) (blue)
and 1D TF parabolic profilesn0

1D(z) (red). The amplitude of the
disorder isγ = VR/µ = 0.41.
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then defineη(z) as the normalized deviations of the 1D den-
sity from the 1D parabolic Thomas-Fermi (TF) profilen0

1D(z)
which fits best the experimental data (red line in Fig. 1), so
that n1D(z) = n0

1D(z)[1 + η(z)]. Finally we calculate the
standard deviation ofη(z) over a given lengthL: ∆η =
√

1
L

∫

L dz η2(z) (here
∫

L dz η(z) = 0). The calculation of
∆η is restricted to 70% of the BEC total length (L = 1.4LTF)
to avoid the sides where thermal atoms are present and the
TF profile does not fit the data. In the experiment, two im-
perfections reduce the amplitude∆η of the measured density
modulations compared to the real ones. First, our imaging
system has a finite resolutionLres = 8.5µm, larger than the
variation scaleσR of the disorder. This effect is easily quan-
tified by measuring the Modulation Transfer Function of the
imaging system. Second, a slight mis-alignment of the probe
beam which is not exactly perpendicular to axisz also re-
duces the contrast of the fringes [13]. This effect is more
difficult to quantify as angles smaller than our uncertaintyon
the alignment of the probe (1◦) can drastically reduce the con-
trast. Nevertheless, numerical calculations reproduce our ex-
perimental results if we admit a mis-alignment of0.33◦ (see
below).

We first study the amplitude of the normalized density
modulations∆η as a function of the amplitude of the dis-
orderγ = VR/µ at a given time-of-flighttTOF = 15.3ms
(ω⊥tTOF = 62.2) with experimental results plotted in Fig. 2a.
In the absence of disorder, we observe non-vanishing density
modulations (∆η0 ≃ 0.037) larger than the noise in the back-
ground of the absorption images (∆ηn ≃ 0.015). They are
interpreted as small but non-zero phase fluctuations initially
present in our elongated BEC [16]. Their contribution to the
density modulations in the TOF images after some expansion
time (τ = ω⊥tTOF) has been calculated in Ref. [13]. Our
experimental results agree with this prediction as shown in
Fig. 2a (see also Fig. 3). In the presence of disorder, the ex-
perimental results show that for small values ofγ (typically
γ < 0.2), ∆η grows linearly withγ from the value obtained
in the absence of disorder,∆η = ∆η0 + 0.64(3)γ. For larger
values ofγ, the disordered BEC is fragmented either in the
trap or during the expansion, and∆η saturates at∆η ≃ 0.17
for the experimental parameters.

We also perform numerical integrations of the 3D Gross-
Pitaevskii equation (GPE) for the expanding disordered BEC
and extract∆η from integrated 1D density profiles as in the
experiments. The numerics do not include any phase fluc-
tuations and we find a linear dependence of∆η versusγ,
∆ηth ≃ 3.5γ for the bare numerical results, and∆η ≃ 1.23γ
if we take into account the finite resolution of the imaging
system but not the mis-alignment of the probe (see Fig. 2b).
In fact, we find that the numerics are in agreement with the
experimental data if, in addition to an offset∆η0 to mimic
the small initial phase fluctuations, we include the systematic
correction associated with a probe angle of0.33◦.

We now examine the TOF dynamics of the disordered BEC
and plot∆η versustTOF in Fig. 3. In the presence of disor-
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FIG. 2: a) Standard deviation∆η of the normalized 1D density
modulations atω⊥tTOF = 62.2 versus the amplitude of the disor-
derγ = VR/µ. The shaded area corresponds to phase fluctuations in
our initial elongated BEC, as calculated in Ref. [13] (the error bar re-
flects the uncertainty on the temperature).b) Same as a) but obtained
from numerical integrations of the 3D GPE, taking into account the
finite resolution of our optics but not the misalignment of the probe
beam.

der, the observed density modulations (red points) are clearly
enhanced compared to those in the absence of disorder (blue
points). We also observe that the density modulations first de-
velop, and then saturate. The dynamics of the development
of the density modulations (time scale and amplitude) is again
reproduced well by our numerical calculations (solid red line),
if we take into account all imperfections of our imaging sys-
tem.

After correcting for the finite resolution of our optics and
the probe angle, the density modulations in the TOF images
turn out to be larger (∆η ≃ 3.5γ) than the ones expected in the
trapped BEC before TOF (∆η = 2γ) [17]. One may wonder
whether these large density modulations in the TOF images
may reveal phase fluctuations induced in the initial BEC by
the disorder [1, 12]. Actually, several arguments lead us to
conclude that it is not so. First, our numerical calculations,
which reproduce well the experimental data, donot include
initial phase fluctuations. Second, numerical diagonalization
of the Bogolyubov equations indicate that the disorder hardly
affect the excitation spectrum of a 1D BEC with similar pa-
rameters as in the experiment [18]. Last but not least, we have
observed identical density modulations in successive experi-
ments performed with thesamerealization of the disordered
potential [11, 19]. It thus excludes initial random fluctuations,
quantum or thermal.

We now develop an analytical model for the evolution of
the BEC density profile during the TOF, which agrees with
numerical results, and shows explicitly how a weak disorder
leads to large density modulations after a long enough TOF,
without initial phase fluctuations. Although the probability of
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FIG. 3: Time volution of the measured density modulations∆η dur-
ing a TOF forγ = 0 (no disorder; blue points) andγ = 0.41 (with
disorder, red points). The solid red line is the result of numerical
calculations forγ = 0.4, taking into account the finite resolution of
our optics, an offset to mimic initial phase fluctuations, and the probe
mis-alignment of0.33◦.

fragmentation is small for weak enough disorder, it may hap-
pen that the BEC is fragmented into a small number of frag-
ments. However, for the consideredtTOF . 1/ωz, the frag-
ments will only weakly overlap as the longitudinal expansion
is small. Therefore, we neglect fragmentation in our model.

In the absence of disorder, the TOF expansion of a BEC
initially trapped in a harmonic potential in the Thomas-Fermi
regime is self-similar [20], so that

ψ(~r, t) =
[

∏

j
bj(t)

]−1/2

φ ({xj/bj(t)}, t) eiθ0(~r,t) (1)

where j = 1..3 are the spatial directions,θ0(~r, t) =
(m/2~)

∑

j(ḃj/bj)x
2
j is the dynamical phase andφ is the

(time-independent) wavefunction of the BEC in the trap. The
expansion of the (non-disordered) BEC is thus completely de-
termined by the scaling factorsbj(t) which are governed by
the equations̈bj = ω2

j /(bj
∏

k bk) with the initial conditions

bj(0) = 1 and ḃj(0) = 0. In the presence of disorder, we
use the scaling (1) and we write the (now time-dependent) re-
duced wavefunction asφ(ρ, z, t)=

√

ñ(ρ, z, t)eiθ̃(ρ,z,t) where
ρ=
√

x2+y2 is the radial coordinate. In the absence of phase
fluctuations,φ(ρ, z, t=0) is real (up to a homogeneous phase)
as it is the ground state of the trapped, disordered BEC. The
TOF dynamics is then governed by the equations

∂tñ = − ~

mb2
⊥

∇ρ

(

ñ∇ρθ̃
)

− ~

mb2z
∂z

(

ñ∂z θ̃
)

(2)

−~∂tθ̃ =
Vho + gñ− µ

b2
⊥
bz

+
~

2

2mb2z

(

|∂z θ̃|2 −
∂2

z

√
ñ√
ñ

)

+
~

2

2mb2
⊥

(

|∇ρθ̃|2 −
△ρ

√
ñ√

ñ

)

(3)

with the initial conditions̃θ = 0 and, forξ ≪ σR, ñ equal to
[µ−Vho(ρ, z)−V (z)]/g if positive and zero otherwise. Here,
Vho(ρ, z) = mω2

⊥
ρ2/2 +mω2

zz
2/2 is the harmonic trap, and

V (z) is the disordered potential. Note that during the TOF,
both harmonic and disordered potentials are switched off. The
termVho in Eq. (3) is actually reminiscent from the scaling (1)
[20].

Equations (2),(3) are equivalent to the complete time-
dependent GPE. Let us introduce now a couple of approxima-
tions. First, in elongated 3D BECs, the expansion forωzt . 1
is mainly radial so thatbz(t) ≃ 1 [20]. Second, we assume not
too large perturbation of the density in the absence of disorder
ñ0, so that̃n = ñ0 + δñ with δñ≪ ñ0. Using a local density
approximation, we can neglect all the spatial derivatives of ñ0.
We also neglect the radial derivatives ofδñ since the disorder
introduces short-range spatial inhomogeneities mainly along
the z-axis. We are thus left with the equations

∂tδñ = −(~/m)ñ0∂
2
z θ̃ (4)

−~∂tθ̃ = gδñ/b2
⊥

+ (~2/2m) [|∂z θ̃|2 − ∂2
zδñ/2ñ0]. (5)

In a first stage, the initial small inhomogeneities of the den-
sity induced by the disorder before TOF,δñ ≃ −V (z)/g [10],
hardly evolve since∂tδñ(t = 0) = 0. They are however cru-
cial as they act as an inhomogeneous potential which induces
the development of a phase modulationθ̃(z, t) at the begin-
ning of the TOF [21] and which will be at the origin of the
subsequent development of large density modulations. From
Eqs. (4),(5), we find

θ̃(z, t) ≃ arctan(ω⊥t)[V (z)/~ω⊥] (6)

and δñ ≃ −V (z)/g − (ñ0∂
2
zV (z)/mω2

⊥)F (ω⊥t) (7)

whereF (τ)=
∫ τ

0 dτ ′ arctan(τ ′)= τ arctan(τ)−ln
√

1 + τ2.
From Eq. (7), we then find

∆η(t) ≃ 2

(

VR

µ

)

[

1 − 2

3

(

µ

~ω⊥

)2(
ξ

σR

)2

F (ω⊥t)

]

. (8)

Hence,∆η first slightly decreases. It is easily understood
as a BEC initially at rest will tend to fill its holes when re-
leased from the disordered potential. The solution (6),(7)
is valid as long as the contribution of the last two terms in
Eq. (5) remain small [i.e. for ω⊥t ≪ (σR/ξ)

2 andω⊥t ≪
(σR/ξ)(~ω⊥/

√
VRµ)]. In addition, it requires that the density

modulations do not vary much (i.e. the second rhs term in
Eq. (7) is small compared to the first one). For the experimen-
tal parameters, the last condition is the most restrictive.It de-
fines a typical timet0 = (1/ω⊥)F−1

[

(σR/ξ)
2(~ω⊥/µ)2/2

]

during which the radial expansion imprints a phase modu-
lation due to the initial inhomogeneities of the BEC den-
sity created by the disorder before the TOF. In particular,
if t0 ≫ 1/ω⊥, the phase modulations freeze atθ̃(z) ≃
(π/2)[V (z)/~ω⊥].

In a second stage, the phase modulations convert into
density modulations similarly as thermal phase fluctuations
do during the TOF of an elongated quasi-BEC [13]. For
t & t1 where t1 is a typical time much longer than
1/ω⊥ (see below), the scaling parameterb⊥(t) becomes



4

0.00

0.04

0.08

0.12

0.16

0.20

0.24

 0  20  40  60  80  100

∆η

ω⊥t

a)

0.00

0.04

0.08

0.12

0.16

0.20

0.24

 0  20  40  60  80  100

∆η

ω⊥t

b)

FIG. 4: Dynamics of density modulations as obtained numerically
(solid red line with error bars) and comparisons with Eq. (8)(green
dashed line) and Eq. (9) (blue dotted line).a) The parameters are the
same as in the experiment (in particular,σR = 1.7µm) with VR =
0.02µ. Hereω⊥t0 ≃ 3 and we have usedt1 = 0.5t0. b) Same as a)
but withσR = 3.4µm. Here,ω⊥t0 ≃ 8.5 ≫ 1, so that we have used
t1 = t0 (see text).

large so that the first rhs term in Eq. (5) can now be ne-
glected. Assuming small phase gradients, we are left with
the equation∂2

t δñk + ~
2k4δñk/4m

2 = 0 whereδñk(ρ, t)
is the 1D Fourier transform ofδñ along z, and whose so-
lution readsδñk(t) = δñk(t1) cos

[

(~k2/2m)(t− t1)
]

+

(2mδ ˙̃nk(t1)/~k
2) sin

[

(~k2/2m)(t− t1)
]

. If t0 ≫ 1/ω⊥,
we can take1/ω⊥ ≪ t1 ≤ t0 and the exact value oft1
does not matter much (we uset1 = t0). If t0 . 1/ω⊥,
the determination oft1 is not straightforward but can be
found through fitting procedures, for instance. Then, accord-
ing to Eq. (7),δñk(t1) ≃ −V (z)/g is mainly determined
by the initial density modulations of the trapped BEC while
δ ˙̃nk(t1) ≃ −(ñ0∂

2
zV (z)/mω⊥) arctan(ω⊥t1) results from

the phase modulation created in the first stage of the TOF. For
~ω⊥ ≪ µ as in the experiment, the cosine term can be ne-
glected and we find

∆η(t) ≃
√

8(VR/~ω⊥) arctan(ω⊥t1)I[σR, t− t1] (9)

whereI(σR, t) =
√

∫ 1

0
dκ (1 − κ) sin2 [(2~t/mσ2

R)κ2] for a
speckle potential.

Numerical integrations of the complete 3D GPE confirm
the expected behavior of∆η during the TOF at short [Eq. (8)]
and long [Eq. (9)] times as shown in Fig. 4. This validates our
scenario in a quantitative manner.

Three remarks are in order. First, we find that, due
to the development of phase modulations in the first stage
of the TOF, the density modulations in the expanded BEC
(∆η ∝ VR/~ω⊥) can be larger than those in the trapped BEC
(∆η ∝ VR/µ) if µ > ~ω⊥. Second, the density pattern
is completely determined by the realization of the disorder.
Third, Eq. (9) shows that the density modulations saturate at
∆η ≃

√
2(VR/~ω⊥) arctan(ω⊥t1) for very long timest [22].

These properties are in qualitative agreement with the experi-
mental observations.

In conclusion, we have shown that large density modula-
tions develop during the TOF of a disordered BEC without
initial phase fluctuations. This effect results from the TOF
process itself which first develops a phase modulation deter-

mined by the initial disorder which is later converted into den-
sity modulations. Our scenario agrees with numerical calcu-
lations and experimental observations. A natural extension
of this work would be to explore the regime of fragmented
BECs where quantum fluctuations of the phases in the vari-
ous fragments may reduce the contrast of the fringes in TOF
images. Another interesting direction would be to explore
regimes where disorder might significantly change the coher-
ence properties of trapped (quasi-)BECs. In this case, initial
phase fluctuations would superimpose to the phase modula-
tion which develops during the first expansion stage. Reveal-
ing this possible effect in TOF images demands to take into
account the effect described in this work.
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