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1 Introduction

1.1 A regularity theorem

In this article we show some regularity results for solutions (in the sense
of geometric measure theory) of the isoperimetric problem in a Riemannian
manifold.

Definition 1.1. Let M be a Riemannian manifold of dimension n (possibly
of infinite volume).
We denote by τM the class of relatively compact open sets of M with C∞

boundary.
The function I : [0, V ol(M)[→ [0,+∞[ such that I(0) = 0

I :

{
]0, V ol(M)[ → [0,+∞[
v 7→ InfΩ∈τM,V ol(Ω)=v{V oln−1(∂Ω)}

is called the isoperimetric profile function (shortly the isoperimetric profile)
of the manifold M.

We define a solution of the isoperimetric problem for volume v as an in-
tegral current T such that M(T ) = v and M(∂T ) = I(v). If M is compact,
such currents exist for all v ∈]0, V ol(M)[. The regularity theory of mini-
mizing currents, inaugurated by Federer and Fleming, that culminated with
F. Almgren’s works, shows that the solutions of the isoperimetric problem
are almost smooth: they are submanifolds with smooth boundary, in the
complement of a singular set of codimension at least equal to 7 [Alm76].

For manifolds M of dimension greater than 8, there are minimizing cur-
rents whith non smooth boundary, in R

n see, for example, [Alm76], [Mor03],
[BGG69]. The first result, reached by Bombieri, De Giorgi, Giusti [BGG69]
shows that the cone C := {(x, y) ∈ R

4 × R
4 : |x| = |y|} is singular at the

origin and has minimal area in R
8. In every ball of R

n, such a current is a
solution of the isoperimetric problem. Almgren’s theorem is thus optimal.
Therefore, additional conditions are required to get more regularity.

The aim of this article is to show that a solution of the isoperimetric prob-
lem, sufficiently close in the flat norm to a domain B with smooth boundary
∂B, is also smooth and very close to B in the Ck,α topology. For further
applications of this theorem, we also require that the Riemannian metric of
Mn is variable. The main result is the following.

Theorem 1. Let Mn be a compact Riemannian manifold, gj a sequence of
Riemannian metrics of class C∞ that converges to a fixed metric g∞ in the
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C4 topology. Let B be a domain of M with smooth boundary ∂B, consider
Tj a sequence of solutions of the isoperimetric problem of (Mn, gj) such that

(∗) : Mg∞(B − Tj) → 0.

Then ∂Tj is the graph in normal exponential coordinates of a function uj on
∂B.

Furthermore, for all α ∈]0, 1[, uj ∈ C2,α(∂B) and ||uj||C2,α(∂B) → 0.

1.2 Previous results

We can find a particular case of theorem 1 in an article [MJ00] of David
L. Johnson and F. Morgan. Indeed, these authors show that the solutions
of the isoperimetric problem in small volumes are close to small balls. The
article [Nar06] goes farther. It shows that the solutions of the isoperimetric
problem belong to a family of domains, called pseudo-bubbles, that we can
construct by application of the implicit function theorem. This shows that
the isoperimetric problem reduces, naturally (and in particular, in a way
compatible with the symmetries of the ambient Riemannian manifold), to
a variational problem in finite dimension. We can recover an unpublished
result of Bruce Kleiner (dating back to 1985), that can be stated as follows.

Theorem 1.1 (Kleiner). Let M be a Riemannian manifold. Let G be a
group of isometries that acts transitively on M, K ≤ G the isotropy group
of a point.
Then for small v > 0, there exists a solution of the isoperimetric profile in
volume v that is K invariant.

We learned about this result only in may 2005, as there is no written
trace and no other reference than [Tom93]. B. Kleiner persuaded us that he
had since 1985 the elements of the proof of theorem 1.

1.3 Future application

From Theorem 1, we can argue that if, for a v̄ > 0, all the solutions of
the isoperimetric problem in volume v̄ are smooth, then the solutions of the
isoperimetric problem for volumes v close to v̄ are smooth too. Under this
condition, we could be able to reduce the isoperimetric problem for volumes
close to v̄ to a variational problem in finite dimension, as developed by [Nar06]
for v0 = 0. This will be done in a separate paper.
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1.4 Sketch of the proof of Theorem 1

First, assume that the metric is fixed, i.e. gj = g. We make essential use
of Allard’s theorem [All72] (Theorem 8.1): if a varifold V = ∂T ∋ a has, in
a ball B(a, r), a weight ||V ||(B(a, r)) sufficiently close to ωn−1R

n−1 (where
ωn−1 is the volume of the unit ball of Rn−1), then V is the graph of a function
u ∈ C1,α. A regularity theorem for elliptic partial differential equations and
a bootstrap argument imply that u ∈ C∞ and also give upper bounds for
||u||C2,α.

In order to show that ∂Tj satisfies the conditions of Allard’s regularity
theorem, we compare ∂Tj to suitably chosen deformations of ∂T with fixed
enclosed volume.

Unfortunately for our purposes, Allard’s theorem is stated in Euclidean
space. We are forced to give a Riemannian version via isometric embedding of
Riemannian manifolds in Euclidean spaces. Furthermore we need to control
the second fundamental form of the isometric embeddings relative to different
metrics on M. To make this possible we use a fine analysis of the proof of the
Nash’s isometric embedding theorem that M. Gromov did in [Gro86b], this
highlights the fact that free isometric embeddings can be chosen to depend
continuously on the metric.

2 Plan of the article

1. Section 1 provides Riemannian versions of 3 classical results of geomet-
ric measure theory: Allard’s regularity theorem, the link between first
variation and mean curvature in the case of currents and varifolds, the
monotonicity formula.

2. Section 2 is the core of the paper and gives the proof of theorem 1 in
case of a fixed metric. It starts by a detailed sketch of the proof. This
part has the aim of elucidating the basic ideas (subsection 2.2).

3. Section 3 deals with the general case of variable metrics.

2.1 Acknowledgements

I wish to thank Renata Grimaldi of University of Palermo for the fruitful
discussions that we had during my P.H.D. studies, about the subject of my
thesis; my P.H.D. advisor Pierre Pansu. I’m grateful to Istituto Nazionale di
Alta Matematica ”Francesco Severi” of Rome (Italy) for financial support.
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3 Regularity Theory

3.1 Introduction

The aim of this section is to adapt several classical results of geometric mea-
sure theory stated in Euclidean spaces to arbitrary Riemannian manifolds.

3.2 Notations

In this section we are concerned with a Riemannian manifold M of class at
least C3 (this condition is needed only to ensure the existence of an isometric
embedding via Nash’s theorem) and we keep fixed an isometric embedding
i : M →֒ R

N . We denote

βi = ||IIi→֒M||∞,M

where IIi→֒M is the second fundamental form of the embedding i and ||.||∞,M
is the supremum norm taken on M. We observe, incidentally, that the second
fundamental form depends on first and second derivatives of the embedding
i by continuous functions. Hence, if we have 2 embeddings i1, i2 that are ε
close in the C2 topology, then βi1, βi2 will be const.ε close and the constant
is independent of embeddings i1, i2. Indeed the constant depends only on
M and the intrinsic metric.

Remarks: In the rest of this paper we adopt the convention to denote
variables with letters without subscripts and constants by letters with sub-
scripts.

3.3 Mean curvature vector based on an hypersurface

For further applications, we give hereby a formula for mean curvature of
an hypersurface N that is a graph in normal exponential coordinates on a
neighborhood of ∂B. Let

HN
ν (y) =

n−1∑

1 i

IINy (ei, ei) = −
n−1∑

1 i

< ∇ei
ν, ei >g (y) (1)

where (e1, . . . , en−1) is an orthonormal basis of TyN such that (e1, . . . , en−2) =
TyN ∩ Ty∂B

r and Br is the domain whose boundary is the hypersurface
equidistant at distance r to ∂B.
Let ν be a unit normal vector of N , we extend ν to a vector field, that we
denote always ν, over an entire neighborhood Ur0(∂B) such that [θ, ν] = 0
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where [·, ·] indicates the Lie bracket of two vector fields, and θ is the vector
field obtained by taking the gradient of the signed distance function to ∂B
having positive values outside B.
Introduce a chart φ of M. At first we choose a chart Θ in a neighborhood
of ∂B then we set

φ :

{
] − r, r[×U → Ur ⊆ M
(t, x) 7→ expΘ(x) (tθ(Θ(x))) .

where U ⊆ R
n is the domain of Θ. By choosing r less than the normal

injectivity radius of ∂B, we have that φ is a diffeomorphism. (t, x) are called
Fermi coordinates based at ∂B.
Set ν = a + bθ hence en−1 = −b

|a|a + |a|θ. We set (ẽ1 = e1, . . . , ẽn−1 =

en−2, ẽn−1 = a
|a|). We observe that the explicit calculation that follows is

independent from the extensions choosed for the vector fields ei.
We have, by a straightforward calculation:

− < ∇en−1ν, en−1 >=
−b2
|a|2 < ∇aa, a > − b2

|a|2 + b∇ab (2)

−
n−2∑

i=1

< ∇ei
ν, ei >= −

n−2∑

i=1

< ∇ei
a, ei > −

n−2∑

i=1

b < ∇ei
θ, ei > . (3)

Thus

− < ∇en−1ν, en−1 >= −div∂Bt
(a)+ < ∇ẽn−1a, ẽn−1 > +bH∂B

η +b < ∇ẽn−1θ, ẽn−1 >

(4)

Hν(t, x) = −div∂Bt
(a)+ < ∇aa, a > −bII∂Bt

θ (a, a) + bH∂Bt

θ + b∇ab (5)

where II∂Bt

θ and H∂Bt

θ are respectively the second fundamental form and the
mean curvature in the direction of θ of the equidistant hypersurface at dis-
tance t from ∂B computed at the point exp∂B(tθ(Θ(x))).

Assume that N is the graph, in normal exponential coordinates, of a
function u. Let

Wu :=
√

1 + ‖−→∇ i∗u(g)u‖2
i∗u(g).

Then

b =

{
1

Wu
< ν, θ >≥ 0 ν outward

− 1
Wu

< ν, θ >≤ 0 ν inward

a = dφ
(

−buI(0,x),(u(x),x)

(−→∇gu
u
))

(6)
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where I(0,x),(u(x),x) is the usual identification in R
n ∼=] − r, r[×U of T(0,x)] −

r, r[×U with T(u(x),x)]−r, r[×U that is induced by the chosen system of Fermi
coordinates based at ∂B (notation inspired by [Cha95]). In the sequel we
always make identifications via φ freely. Let b = − 1

Wu
, we can write

a =
u

Wu
I(0,x),(u(x),x)

(−→∇gu
u
)

. (7)

this leads to

HN
νinw

(u, x) = −div(Sn−1,gu)(

−→∇gu
u

Wu

) − 1

W 2
u

< ∇−→∇guu
(
u
−→∇gu

u

Wu

),
−→∇gu

u >gu
(8)

+
u2

W 3
u

IIu
θ (
−→∇gu

u,
−→∇gu

u)

− 1

Wu
Hu

θ (u, x) +
1

Wu
<

−→∇gu
(

1

Wu
), u

−→∇gu
u

Wu
) >gu

with < νext, θ >≥ 0.

3.4 Allard’s Regularity Theorem

The proof of the theorem 4.1 is mainly based on a regularity theorem for
almost minimizing varifolds. In the article [All72], it is stated in an Euclidean
ambient context. Using isometric embeddings we can deduce a Riemannian
version of it.

We restate, here, for completeness sake, the regularity theorem of chapter
8 page 466 of [All72] that will be of frequent use in the sequel. For this
statement we use the notations of the original article [All72]. X (M) denotes
smooth vectorfields on M, ||V || the weight of a varifold (a positive measure
on M) Θ its density at a point, δV (g) the first variation of the varifold V in
the direction of vectorfield g.

Theorem 3.1 (Allard’s Regularity Theorem, Euclidean version). Let
p > 1 be a real number. Let q be the conjugate exponent, 1

p
+ 1

q
= 1. Let k

be a integer number, 1 ≤ k ≤ n. We assume that k < p < +∞ if k > 1, and
that p ≥ 2, if k = 1.

For all ε ∈]0, 1[ there exists η1 > 0, (that depends on ε) such that for all
reals R > 0, for all integer d ≥ 1, for all varifolds V ∈ Vk(R

n) and for all
points a ∈ spt||V ||, if

1. Θk(||V ||, x) ≥ d for ||V || almost all x ∈ BRn(a,R);
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2. ||V ||(U(a,R)) ≤ (1 + η1)dωkR
k;

3. δV (g) ≤ η1d
1
pR

k
p
−1

(∫

Rn |g|q||V ||(dx)
) 1

q with g ∈ X (Rn) and supp(g) ⊂
U(a,R).

Then
there exists a map F1 : R

k → R
n such that

1. F1 ∈ C1(Rk,Rn) and F1 ◦T = Id, where T : R
n → R

k is an orthogonal
projection,

2. U(a, (1 − ε)R) ∩ spt||V || = U(a, (1 − ε)R) ∩ F1(R
k),

3. ∀y, z ∈ R
k, ||dF1(y) − dF1(z)|| ≤ ε

(
|y−z|

R

)1− k
p

.

Theorem 3.2 (Allard’s Regularity Theorem, Riemannian version).
Let Mn be a compact Riemannian manifold, i : M →֒ R

N an isometric
embedding.
Let p > 1 be a real number. Let q be the conjugate exponent, 1

p
+ 1

q
= 1. Let

k be an integer number, 1 ≤ k ≤ n. We assume that k < p < +∞ if k > 1,
and that p ≥ 2, if k = 1.

For all ε ∈]0, 1[ there exists η̃1 (that depends on ε ), such that there exists
a R̃1 > 0 and for all 0 < R̃ ≤ R̃1, for all integer number 0 < d̃ < +∞, for
all varifolds V ∈ Vk(Mn), and for all point a ∈ spt||V ||, if

1. Θk(||V ||, x) ≥ d̃ for ||V || almost every x ∈ BM(a, R̃);

2. ||V ||(B(a, R̃)) ≤ (1 + η̃1)d̃ωkR̃
k,

3. δV (g) ≤ η̃1d̃
1
p R̃

k
p
−1

(∫

M |g|q||V ||(dx)
) 1

q , with g ∈ X (M)

et supp(g) ⊂ B(a, R̃).

Then
there exists a function F̃1 : R

k → M, R0 < R̃ (F̃1 and R0 are mutually
independent) such that

1. F̃1 ∈ C1(Rk,M), dF̃1(0) is an isometry,

2. B(a, (1 − ε)R0) ∩ spt||V || = B(a, (1 − ε)R0) ∩ F̃1(R
k),

3. ||dF̃1(y) − dF̃1(z)|| ≤ ε
(

|y−z|
R0

)1− k
p

for all y, z ∈ R
k.
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Remark: In the statement of the theorem the constant η̃1 depends on
the embedding i and on η1 produced by theorem 3.1.

Idea of the proof: At this point we try to apply theorem 3.1 to the
varifold i#(V ). Actually, if V satisfies the assumptions 1, 2 and 3 of theo-
rem 3.2, then i#(V ) satisfies the hypothesis of Allard’s Regularity Theorem,
Euclidean version (see theorem 3.1) but, with different constants.

To this aim, we need to compare the intrinsic distance of a submanifold
and the distance of the ambient manifold restricted to the submanifold.

Lemma 3.1. Let M be an embedded manifold into R
N of arbitrary codimen-

sion. i : M →֒ R
N an isometric embedding and βi his second fundamental

form.
Fix a point a ∈ R

N , a ∈ M and consider a second point y 6= a different from
a on M, now take the geodesic σ of M of length R̃ that joins a and y on M
and the Euclidean segment [a, y] of length R.
Then
there exists a constant δi > 0 that depends only on βi so that R̃ ≤ R(1+δiR

2).

Proof: We take as origin of coordinates the point a and parametrize σ

a
R̃

σ(s)
R

y

R
N

M

by its arc length s. Consider the function f(s) = |σ(s)|2. Then f(R̃) = R2,
f ′(s) = 2 < σ′, σ > (s),

f ′′(s) = 2(< σ′′, σ > (s)+ < σ′, σ′ > (s))
= 2 + 2 < σ′′, σ > (s)
= 2 + 2 < σ′′, σ − sσ′ > (s).

Since (σ−sσ′)′ = σ′−σ′−sσ′′, ||(σ−sσ′)′|| ≤ s||σ′′|| ≤ sβi, we get ||σ−sσ′|| ≤
s2

2
βi. It follows that f ′′(s) ≥ 2 − s2β2

i , f
′(s) − f ′(0) = f ′(s) ≥ 2s − s3

3
β2

i ,

f(s) ≥ s2 − s4

12
β2

i , which implies

f(R̃) = R2 ≥ R̃2 − R̃4

12
β2

i . (9)



11

Finally R̃ ≤ R(1 + R2const.
24

β2
i ) = R(1 + R2δi) where δi is a constant that

depends only on βi. 2.

Proof of Allard’s Regularity Theorem, Riemannian version. In
this context, variables and constants respect the previous convention and
furthermore constants and variables relative to intrinsic objects of M are
denoted with a tilda. From the following formula [4.4 (1) in [All72]]:

δ(i#V )(g) = δV (g⊤) −
∫

Gk(M)

g⊥(x) · h(M, (x, S))dV (x, S) (10)

with g ∈ X (U(a,R0)), g(x) = g⊤(x) + g⊥(x), g⊤(x) ∈ TxM, g⊥(x) ∈ T⊥
x M,

we can deduce that assumption 3 of theorem 3.1 is satisfied with some suit-
ably chosen constants. To see this, it is sufficient to control the Euclidean
mean curvature of i#V .
Now, we assume that R0, η̃1, R̃ verify the following conditions:

• 0 < R0 < min

{

infx∈i(B(a,R̃)) {|x− a|RN} ,
√

(1+η1)
1
k −1

δi

}

,

• d̃ = d,

• 0 < η̃1 ≤ min
{

η1

2
, 1+η1

(1+δ̃iR2
0)k

− 1
}

,

• 0 < R̃ ≤ η̃1

βi(1+η̃1)
1
p ω

1
p
k

=: R̃1.

Remark: First we choose R0 > 0, then η̃1 and after that R̃1 with depen-
dences in this order.

The condition 0 < R0 <

√

(1+η1)
1
k −1

δi
serves to assert that 1+η1

(1+δiR2
0)k − 1 > 0

and there exists η̃1 such that (1 + η̃1)ωkR̃
k ≤ (1 + η1)ωkR

k.
The condition 0 < R0 < infx∈i(B(a,R̃)) {|x− a|RN} serves to assert that

spt||i#V || ∩ i(B(a,R0)) ⊆ i(spt||V || ∩B(a, R̃)).
From what was said, it follows

||i#V ||(BRN (a,R0)) ≤ ||V ||(BM(a, R̃)) ≤ d(1 + η̃1)ωkR̃
k ≤ d(1 + η1)ωkR

k
0.

(11)
The first term on the right hand side of equation (10) is estimated thanks

to assumption 3,

|δV (g⊤)| ≤ η̃1d
1
p R̃

k
p
−1

(∫

M
|g⊤|q||V ||(dx)

) 1
q

≤ η̃1d
1
p R̃

k
p
−1||g||Lq(||V ||).
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To the second term, we apply Hölder’s inequality,

|
∫

Gk(M)

g⊥(x) · h(M, (x, S))dV (x, S)| ≤ βi

{∫

Supp(g)

d||V ||
} 1

p

||g||Lq(||V ||).

Choosing vectorfields g supported in the R0-ball makes

{∫

Supp(g)

d||V ||
} 1

p

≤ {||i#V ||(B(a,R0))}
1
p ≤ d

1
p (1 + η1)ωkR

k
0 .

It follows that

δ(i#V )(g) ≤ ηd
1
pR

k
p
−1

0

(∫

Rn |g|q||V ||(dx)
) 1

q . (12)

Now we can apply theorem 3.1 (Allard’s Euclidean) to i#V at point a with
R = R0 as described previously to obtain (with a little abuse of notation for
i−1), F̃1 = i−1 ◦ F1 where F1 is given by theorem 3.1 (Allard Euclidean). It
can be easily seen that dF1(0) = Id and that i is an isometric embedding.
This implies that dF̃1(0) is an isometry.
In the remaining part of this section we assume ε = 1

2
.

3.5 First Variation of Solutions of the Isoperimetric
Problem

In this subsection, we check that varifold solutions of the isoperimetric prob-
lem have constant mean curvature. This will used later, in Lemma 4.1,
where Levy-Gromov’s inequality will be used to verify the third assumption
in Allard’s theorem.

Lemma 3.2. Let V be the varifold associated to a current ∂D of dimension
n − 1, that is the boundary of a current D of dimension n solution of the
isoperimetric problem.
Then
there exists a constant H so that for every vector field X ∈ X (M) we have

δ∂D(X) = −H
∫

Spt||∂D||
< X, ν > ||∂D||(x),

where ν is the outward normal to the boundary of D.

Proof: As X (M) is the space of section of the tangent bundle TM → M,
it has a natural structure of vector space (possibly of infinite dimension).
Consider the following linear functionals on this vector space:

F lux :

{
X (M) → R

X 7→
∫

∂D
< X, ν > dV ol∂D(x)
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δ∂D :

{
X (M) → R

X 7→ δ∂D(X)

Lemma 3.3. If F lux(X) = 0,
then
there exists a variation h(t, x) such that M((ht)#D) = M(D) and

[
∂h
∂t

]

t=0
=

X.

Proof: Construction of h. We start with the flow h̃(t, x) of X (i.e:
X(x) := ∂

∂t
h̃(t, x)|t=0) and we make a correction by a flow Hs of a vector field

Y that has F lux(Y ) 6= 0. Now, we consider the function

f :

{
I2 → M

(s, t) 7→ M((Hs ◦ ht)(D)) − V ol(D)

where I is an interval of the real line. It is smooth by classical theorems
of differentiation of an integral, since we make an integration on rectifiable
currents.
We apply the implicit function theorem at point (0, 0) to function f in order
to find an s(t) that satisfies

M((Hs(t) ◦ h̃t)(D)) − V ol(D) = 0.

Such an application of implicit function theorem is possible since

∂

∂s
f(0, 0) = F lux(Y ) 6= 0.

We have also s′(0) = 0. Indeed

d

dt
f(s(t), t) = s′(t)

∫

ht(D)

div(Y ) +

∫

D

div(Hs(t)∗X)

and an evaluation at t = 0 gives

s′(0)F lux(Y ) + F lux(X) = 0

hence s′(0) = 0 since F lux(Y ) 6= 0 and F lux(X) = 0.
Now if we apply the previous argument to h(t, x) = Hs(t) ◦ h̃(t, x) we can see
that

∂

∂t
h(0, x) = s′(0)Y (ht(x)) +Hs(0)∗X = X,

by the fact s′(0) = 0. 2.

End of the proof of lemma 3.2.
Let X be a vector field with F lux(X) = 0. Applying lemma 3.3, there

exists a variation h(t, x) satisfing the following two properties
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1. M((ht)#D) = M(D)

2. ∂h
∂t t=0

= X,

provided F lux(X) = 0 and

d

dt
[M((ht)#∂D)]t=0 = δ∂D(X) = 0.

In other words, Ker(F lux) ⊆ Ker(δ∂D). Hence there exists λ ∈ R for which
it is true that δ∂D = λF lux. We set H = −λ. This notation is justified
by the fact that on the smooth part of ∂D, H is equal to the genuine mean
curvature. 2.

3.6 Riemannian Monotonicity Formula

Theorem 3.3 (Riemannian Monotonicity Formula). Let T ∈ RVn(M)
be a varifold solution of the isoperimetric problem, consider x ∈ Spt||∂T ||,
and R > 0.
Then

Θ(||∂T ||, x)ωn−1R
n−1e−(|H|+βi)R ≤ ||∂T ||B(x,R), (13)

where H is the mean curvature of ∂T .

Proof: When M is Euclidean space, this result is due to W. K. Allard,
[All72]. In order to adapt it to the situation considered here, we make use
of an isometric embedding i of M (whose existence is stated by Nash’s the-
orem) and then we look at the current i#T in order to apply the Euclidean
statement. In this case we see that the term to consider, instead of simply
taking into account the mean curvature of T in M, involves the mean cur-
vature of i#T into R

N . This is not really a problem because of our control
on the norm of the second fundamental form of the embedding of M in R

N

by the upper bound βi. Therefore

Θ(||∂T ||, x)ωn−1R
n−1e−(|H|+βi)R ≤ ||∂T ||B(x,R).

2.
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4 The Normal Graph Theorem

Theorem 4.1. Let Mn be a Riemannian manifold with injectivity radius
injM > 0. Let i : M →֒ R

N be an isometric embedding with second funda-
mental form bounded by βi. Let B be a compact domain whose boundary ∂B
is smooth with normal injectivity radius r0 > 0 and second fundamental form
||II∂B||∞ ≤ β.
Then
there exists ε0(injM, βi, r0, β, V ol(B), V ol(∂B)) > 0 such that for every cur-
rent T solution of the isoperimetric problem that satisfies condition (∗)

V ol(B∆T ) ≤ ε0, (∗)

∂T is the normal graph of a function u on ∂B.
Furthermore, for all α ∈]0, 1[, u ∈ C2,α(∂B) and ||u||C2,α(∂B) tends to 0 as
V ol(B∆T ) tends to 0. This convergence is uniform. The constants involved
only depend on injM, βi, r0 ,β, V ol(B) and V ol(∂B).

Remark: All the constants that bound the geometry of the ambient
space are calculated on a tubular neighborhood of ∂B where the normal ex-
ponential map is a diffeomorphism, except for the confinement theorem.
The proof of theorem 4.1 occupies paragraphs 4.1 to 4.7.
We give at first a sketch of this proof and then a series of lemmas that are
used in the true proof.

4.1 Sketch of the Proof of theorem 4.1

1. At a first stage we make use of an a priori estimate of the mean curva-
ture for solutions of the isoperimetric problem, this is Lévy-Gromov’s
lemma, stated in 4.1.

2. Secondly, we apply Allard’s regularity theorem (Riemannian version)
to prove that ∂T is a C1,α submanifold.
To this aim we proceed as in the following steps:

(a) We stand on a sufficently small scale R in order to estimate the
first variation like required by theorem 3.2.

(b) We estimate the volume of the intersection of ∂T with a ball
BM(x,R) and we proceed as follows: we cut ∂T with BM(x,R)
and replace T by T ′ of equal volume thanks to the construction
(lemma 4.3) of a one parameter family of diffeomorphisms that
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perturbes T preserving the volumes of perturbed domains. This
leads to the estimates of lemmas 4.3, 4.7.

(c) We apply Allard’s theorem and we conclude that ∂T is of class
C1,α.
Remark: The tangent cone is hence a vector space. As showed
by Frank Morgan in [Mor03], it follows that ∂T is as smooth as
the metric. We shall give a direct proof of this.

3. We confine ∂T in a tubular neighborhood of ∂B, of sufficiently small
thickness, in theorem 4.2. For this, 4.3 is combined with the Rieman-
nian monotonicity formula 3.3.

4. We calculate a bound on r (the tubular neighborhood thickness) so that
the projection π, of the tubular neighborhood Ur0(∂B) of thickness r
on ∂B, restricted to ∂T is a local diffeomorphism and, after, via a
topological argument we argue that π|∂T is a global diffeomorphism.
This shows that ∂T is the global normal graph on ∂B of a function u.
By an application of the implicit function theorem, u is then of class
C1,α.

5. A geometric argument shows that the C1 norm of u goes to zero if
r → 0. An appeal to Ascoli-Arzelà’s theorem is needed to show that
||u||C1,α → 0 when r → 0.

6. Finally we use elliptic regularity theory, Schauder’s estimates, in order
to find upper bounds on ||u||C2,α and with the same technique of Ascoli-
Arzelà of point 5, we show ||u||C2,α → 0 when r → 0.

4.2 A priori estimates on mean curvature

Set

1. k := Min
{

−1, infUr0 (∂B) KM
}

,

2. δ := Max
{

supUr0 (∂B) KM, 1
}

.

Denote by H∂T the mean curvature of ∂T . It is constant for isoperimetric
domains.

Lemma 4.1. Let Mn be a compact Riemannian manifold. Let B a domain
whose boundary ∂B is smooth with normal injectivity radius r0 > 0 and
second fundamental form ||II∂B||∞ ≤ β < +∞.
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Then
there exists ε1 > 0 and H1 > 0 such that for every current T solution of the
isoperimetric problem that satisfies the condition

V ol(T∆B) ≤ ε1,

|H∂T | ≤ H1(k, n, V ol(B), V ol(∂B)). (14)

Proof: We give first a qualitative argument and after another one that
gives an explicit apriori upper bound for H1(k, n, V olg(B), V ol(∂B)).

Qualitative Argument:
Let Tj be a sequence of solutions of the isoperimetric problem for (M, g)
such that V ol(Tj∆B) tends to 0. Since V ol(Tj) tends to V ol(B), V ol(∂Tj)
tends to IM(V ol(B)) ≤ V ol(∂B).

Assume by contradiction that the mean curvature hj ≥ 0 of ∂Tj tends to
infinity. Using Heintze and Karcher’s volume comparison theorem, Gromov
proves in [Gro86a] that

V olg(Tj) ≤ V olg(∂Tj)

∫ z(hj ,k)

0

[ck(t) − hjsk(t)]
n−1 dt, (15)

where z(hj , k) is the first positive zero of ck(t) − hjsk(t). Here

cδ :







R → R

t 7→







cos(
√
δt) si δ > 0

1 si δ = 0

cosh(
√
δt) si δ < 0

sδ :







R → R

t 7→







1√
δ
sin(

√
δt) si δ > 0

t si δ = 0
1√
δ
sinh(

√
δt) si δ < 0

We easily see that z(hj , k) → 0. Furthermore

∫ z(hj ,k)

0

[ck(t) − hjsk(t)]
n−1 dt ≤

∫ z(hj ,k)

0

[ck(t)]
n−1 dt→ 0,

a contradiction.
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Effective Argument: To make the previous argument effective, it is
sufficient to explicitly estimate V ol(∂T ) in terms of V ol(B), V ol(∂B) and
curvature bounds. For s ∈ [−r0, r0], let Bs be the domain whose boundary
is parallel, at distance s, to ∂B (Bs is inside B if s < 0). Let

ε1 = max{V ol(Br0) − V ol(B), V ol(B) − V ol(B−r0)}.

If V ol(T∆B) < ε1, there exists s such that V ol(T ) = V ol(Bs). Then

V ol(∂T ) ≤ V ol(∂Bs) ≤ (ck(s) + |H∂B|sk(s))
n−1V ol(∂B),

by Heintze-Karcher. 2.

4.3 Volume of the Intersection of a smooth hypersur-
face with a ball of the ambient Riemannian mani-
fold

Let τδ,β > 0 be the first positive zero of the function cδ − βsδ.
Set λ(β, δ)(t) = 1

cδ(t)−βsδ(t)
for t ∈ [0, τδ,β[.

Lemma 4.2. Let M be a Riemannian manifold, V ⊂ M be a smooth hyper-
surface. There exists R2 > 0 and C2 > 0 so for every R < R2 and for every
x ∈M at distance d < R2 from V , if R′ = d+R, then

V ol(V ∩B(x,R)) ≤ (1 + C2R
′)ωn−1R

′n−1.

R2 depends only on β, r0, injM (bound on the second fundamental form of
V , normal injectivity radius of V , injectivity radius of M ), δ0 (geometry of
the ambient Riemannian manifold) and C2 depends on the same quantities
plus a lower bound on Ricci curvature of V .

Remark: In the proof of theorem 4.1 we apply lemma 4.2 with V = ∂B,
d ≤ R3, but, d ≤ R2 is enough too.

Idea of the proof. Using comparison theorems for distortion of the nor-
mal exponential map based on a submanifold, we can compare the intrinsic
and extrinsic distance functions on V →֒ M. This allows us to reduce the
problem to the estimation of the volume of an intrinsic ball of V , i.e. to
Bishop-Gromov’s inequality.
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x

y

z

R

b

d

V

∂BM(x,R)

Proof:
Whenever y ∈ V such that dM(x, V ) = dM(x, y) = d there exists R′′ for

which

V ∩B(x,R) ⊆ BV (y, R′′).

We can take for exemple R′′ ≤ supz∈V ∩B(x,R){dV (y, z)}.
Set

k2 := Min{ inf{RicV }
n− 2

,−1}.

then

V ol(V ∩B(x,R)) ≤ BV (y, R′′) (16)

≤ V ol
M

n−1
k

(B(o, R′′)) (17)

= αn−2

∫ R′′

0

sk(t)
n−2dt, (18)

where the first inequality from Bishop-Gromov’s.
We have then

V ol(V ∩BM(x,R)) ≤ (1 + C ′(k2)(R
′′)2)ωn−1R

′′n−1
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after expanding the term

V ol
M

n−1
k

(B(o, R′′)) − V olRn−1(o, R′′)

ωn−1R′′n−1

by a Taylor-Lagrange type formula.

We still have to verify that R′′ ≤ 1 + CR′. For this we need to compare
the intrinsic and extrinsic distances on V .
Let π be the projection of Ur0 on V .
Following a comparison result of Heintze and Karcher we get

(cδ(t) − βsδ(t))
2g0 ≤ gt ≤ (ck(t) + βsk(t))

2g0, (19)

the preceding expression is understood in the sense of quadratic forms. Let
z ∈ V so that dM(x, z) = R, dV (y, z) = R′′ and dM(x, z) = b. If we consider
the minimizing geodesic γ of M that joins y to z parameterized by arc length
and let us denote ∆̃ = Sups∈[o,b]{dM(γ(s), ∂B)}, there are points p ∈ ∂B,

q ∈ γ, p, q ∈ BM(y, b) for which ∆̃ = dM(p, q) and conclude ∆̃ ≤ b.
If we take R2 such that 0 < R2 := Min{ τδ,β

2
, τ1, r0, injM} where τ1 is the first

positive zero of (cδ −βsδ)
′, provided that cδ −βsδ be decreasing and positive

on [0, R2] we then infer

b ≥
∫

|cδ − βsδ|(s)||dπ(γ′)||g0 (20)

≥ (cδ(∆̃) − βsδ(∆̃))lg0(π ◦ γ) (21)

≥ (cδ(2R) − βsδ(2R))R′′, (22)

whence
R′′(R) ≤ λ(β, δ)(b)b ≤ (1 + C(β, δ)b)b (23)

Incidentally we observe that the preceding equation gives us an analogue
result to lemma 3.1 in case of an arbitrary Riemannian ambient manifold,
but always in codimension 1. We observe also a non sharp estimate

R′′(R) ≤ λ(β, δ)(2R)b

because λ(β, δ) is decreasing in a neighborhood of the origin.
By triangle inequality, we get b ≤ d+R and consequently

R′′(R) ≤ λ(β, δ)(2R)(d+R).

If we look at the Taylor expansion of λ(β, δ)(t) = 1 + βt+ O(t2), we notice
at a qualitative level that

R′′(R) ≤ (1+β2R+O(R2))(d+R) = (1+O(R))(d+R) = (1+CR)(d+R)
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where the constant C = SupR∈[0,R2]{λ(β,δ)(2R)
R

}. So we get

V ol(V ∩BM(x,R)) ≤ (1+C ′(k2)((1+CR)(d+R))2)ωn−1((1+CR)(d+R))n−1

and finally
V ol(V ∩ BM(x,R)) ≤ (1 + C2R

′)ωn−1R
′n−1

for C2 depending on a lower bound on Ricci curvature tensor of V , on an
upper bound on the second fundamental formof V and un upper bound on
curvature tensor of ambient manifold. 2.

4.4 Compensation of Volume Process

Remark: In this subsection we make no assumption on the distance of an
arbitrary point x of ∂T . Let R3 := Min{injM, r0,

diam(B)
4

}.

∂T ′

∂Ur

∂B

∂T

x

∂Ur

y′
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Lemma 4.3. There exists C3 > 0 such that whenever R < R3, a <
R
2
, there

is ε3 > 0 so that, for every x ∈ ∂T , there exists a vector field ξx with the
following properties

1. the support of ξx is disjoint from B(x,R) ;

2. the flow φt is defined for t ∈ [−R,R], and for t ∈ [−R
2
, R

2
], ξx is the

gradient of the signed distance function to ∂B;

3. the norm of the covariant derivative |∇ξx| < C3.

Furthermore, for every solution T of the isoperimetric problem whose bound-
ary contains x, and V ol(T∆B) < ε3, there exists t ∈ [−a, a] such that
T ′ = (B ∩ B(x,R)) ∪ (φt(T ) \ B(x,R)) has volume equal to volume of T .
In particular,

V ol(∂T ∩B(x,R)) ≤ V ol(∂B ∩B(x,R)) + V ol((T∆B) ∩ ∂B(x,R))
+ V ol(φt#(∂T )) − V ol(∂T ).

(24)
Constants C3 and ε3 depend only on the geometry of the problem, of the a
priori choice of a vector field fixed once and for all on U∂B(r0) and on a bump
function ψ defined once at all also.

Remarks:

1. In the proof of theorem 4.1 we use lemma 4.3 with ε0 ≤ ε3, among
other contraints that will be clear in the sequel.

2. Furthermore if δv := V ol(B ∩ B(x,R)) − V ol(T ∩ B(x,R)) ≤ 0 then
t ≥ 0 and if δv > 0 then t < 0 (balancing of volume).

3. The parameter a serves to control that t be small, as this t will control
the term |V ol(T ′ ∩ Supp(ϕ)) − V ol(T ∩ Supp(ϕ))|

Idea of proof. The vector field ξx is obtained with the classical tech-
nique of multiplication by a bump function the metric vector gradient of the
signed distance function ∂B. This bump function has support in a neighbor-
hood of a point that belongs to ∂B and that is far away from x. We provide
also that the flow of this vector field significantly increases the volume of B.
This is sufficient to suitably change the volume of T . We can then operate a
balancing of a given volume variation.

Proof: First, we make the following geometric construction of a vector field
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ν. Fix a point y′ ∈ ∂B with B(x,R) ∩ B(y, R) = ∅ (it suffices to take y′ so
that d(x, y′) ≥ R + 1

2
diam(B), for example).

Let U∂B(r0) := {x ∈ M|d(x, ∂B) < r0}. By the choice of r0, the normal
exponential map

exp∂B :

{
∂B×] − r0, r0[ → U∂B(r0)
(q, t) 7→ expq(tν(q))

is a diffeomorphism.
Let ν be the extension by parallel transport on normal (to ∂B) geodesics of
the exterior normal issuing from ∂B (equivalently, ν is the gradient of the
signed distance function to ∂B), in a vector field defined on Ur0(∂B).
Let

ψ :

{

R → [0, 1]

s 7→ χ[0,1/2](|s|) + e4/3e
1

s2−1χ]1/2,1[(|s|)
Now, we modulate ν with the smooth function ψ and we set

ξx := ψ(
d(y′, .)

R
)ν = ψ1ν.

It can be seen that ||∇Xξx|| ≤ ||ψ′||∞,[−1,1]||X|| + ||∇Xν|| ≤ C3||X||, estab-
lishing that C3 depends on geometric quantities and on the choice of ψ.

Let {ϕt} be the flow (one parameter group of diffeomorphisms of M) of
the vector field ξx.
It’s true that Supp(ϕ) ⊂ BM(y′, R).

Now, consider, whenever a ∈]0, R
2
[ the functions f, g, h defined as follows:

g :

{
[−a, a] → R

t 7→ V olg,n(ϕt(B))

f :

{
[−a, a] → R

t 7→ V olg,n(ϕt(T̃ ))

h :

{
[−a, a] → R

t 7→ V olg,n(ϕt(T ))

where T̃ := (T −B(x,R)) ∪ (B ∩ B(x,R)).
For the aims of the proof, we need to show that V ol(T ) ∈ f([−a, a]) with an
argument independent of x as f depends on x.
By construction

d
dt

[V olg,n(ϕt(B))] =
∫

ϕt(∂B)
ψ1 < ν, ν > dV olϕt(∂B)

≥ ψ(t)V ol(∂Bt ∩ Supp(ψ1))
= V ol(∂Bt ∩ Supp(ψ1)),

(25)
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hence letting R′ := R
2(ck+βsk)(R

2
)

and

(cδ − βsδ)(
R
2
)(Infy′∈∂BV ol(∂B ∩ B(y′, R′)) := C ′

3,

g′(t) ≥ V ol(∂Bt ∩ Supp(ψ1))
≥ C ′

3,
(26)

whenever t < R
2
.

Hence g is strictly increasing and g(a) − g(−a) ≥ 2aC ′
3 =: ∆3.

Let

J :=

∣
∣
∣
∣
det

(
∂ϕt(y)

∂y

)∣
∣
∣
∣
∞,[−a,a]×Ur0(∂B)

≤ enC3a,

by similar arguments to those of the proof of lemma 4.4.
From

|f(t) − h(t)| = |V oln(B ∩ B(x,R)) − V oln(T ∩B(x,R))|
≤ V ol((T∆B) ∩B(x,R))
≤ ε3,

|h(t) − g(t)| ≤ |V ol(ϕt(T∆B))|
≤ JV ol(T∆B)
≤ enC3aε3,

it follows that

|f(t) − g(t)| ≤ ε3 + Jε3 ≤ (1 + enC3a)ε3 =: σ,

σ is independent on x.
If we take

0 < ε3 ≤
1

2(1 + enC3a)
aC ′

3, (27)

then

σ ≤ 1

2
min{g(0) − g(−a), g(a) − g(0)}, (28)

therefore

[g(−a) + σ, g(a) − σ] ⊆ f([−a, a]).
With this choice for ε3 we obtain

V ol(T ) ∈ [g(−a) + σ, g(a) − σ],

so, there exists t ∈ [−a, a] depending on x such that f(t) = V ol(T ) =
V ol(ϕt(T̃ )) and we conclude the proof by taking T ′ := ϕt(T̃ ).
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Finally
V oln−1(∂T ) = I(V ol(T ))

≤ V oln−1(∂T
′),

whence

V oln−1(∂T
′) ≤ V ol(∂B ∩ B(x,R)) + V ol((T∆B) ∩ ∂B(x,R))

+V oln−1(ϕt#(∂T )) − V ol(∂T ∩ B(x,R)),

which implies (24) 2.

4.5 Comparison of the area of the boundary of an
isoperimetric domain with the area of its own vari-

ation with constant volume

Lemma 4.4. Let M be a Riemannian manifold. For every C > 0, for every
vector field ξ on M such that |∇ξ| < C, whose flow is denoted by φt, and
whenever V is a hypersurface embedded in M ,

V ol(φt#V ) ≤ e(n−1)C|t|vol(V ).

Proof: It suffices to majorate the norm of the differential of diffeomor-
phism φt.

|dxφt(v)| = (g(x)(v))
1
2 = (g(φt(x))(dxφt(v)))

1
2 = (φ∗

t (gM)(x)(v))
1
2

(φ∗
t (gM)(x)(v))

1
2 ≤ eC|t|g(x)(v) = eC|t||v|.

The last inequality comes from the following lemma.

Lemma 4.5. (φ∗
t (gM)(x)(v)) ≤ e2C|t|g(x)(v).

Proof:
∂

∂t
(φ∗

t (gM)) = φ∗
tLξgM, (29)

We assume for the moment that we can show the following inequality:

LξgM = 2 × symmetric part of ∇ξ. (30)

We use this fact to establish

LξgM ≤ 2|∇ξ|gM ≤ 2CgM,
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hence φ∗LξgM ≤ 2Cφ∗
t (gM).

Set t 7→ φ∗
t (gM) = qt, on TxM, then qt satisfies ∂

∂t
qt ≤ 2Cqt with q0 = gM.

It follows that whenever x ∈ M and v ∈ TxM, qt(v) ≤ e2C|t|q0(v) we have
(φ∗

t (gM)(x)(v)) ≤ e2C|t|g(x)(v).
It remains to show that LξgM = 2 × symmetric part of ∇ξ.
Let Aξ := Lξ −∇ξ. We look at this operator on 2 covariant tensor fields and
evaluate it on the metric gM. We obtain LξgM = AξgM and then

0 = Aξ(g(w1, w2)) = (Aξg)(w1, w2) + g(−∇w1ξ, w2) + g(−w1,∇w2ξ)

it is obvious that |LξgM| ≤ 2|∇ξ|. 2.

End of the proof of lemma 4.4.
We apply the inequality of lemma 4.5 to the members of an orthonormal

basis (v1, . . . , vn−1) of the tangent space TxV , we find

|φt#(v1 ∧ · · · ∧ vn−1)| ≤ e(n−1)C|t|.

By an integration on V , one gets

V ol(φt#V ) ≤ e(n−1)C|t|vol(V ).

2.

Lemma 4.6. Whenever R > 0, x ∈ Spt||∂T || there exists R4,
R
2
< R4 < R,

such that

V ol((T∆B) ∩ ∂B(x,R4)) ≤
2

R
V ol(T∆B).

Proof: By a straightforward application of the coarea formula and the
mean value theorem for integrals. 2.

Remark: At this point of the article we cannot put restrictions on the
distance of x ∈ ∂T to ∂B.
This lemma is used in the confinement lemma to majorate the volume of ∂T
in a geodesic ball. In lemma 4.7, we need to control the (n−1)−dimensional
volume of the intersection of ∂T with a geodesic ball of radius R centered in
x. To make it possible we need to have the quantity d(x,∂B)

R
very small.
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Lemma 4.7. Whenever η > 0, there is R5 such that whenever R < R5, there
are R6, r6, ε6 > 0 (depending only on R and on the geometry of the problem)

such that 0 < R
2
< R6 < R, 0 < r6 ≤

(
R
2

)3
and if T is a current solution of

the isoperimetric problem with the property V ol(B∆T ) ≤ ε6,
then,
whenever x ∈ Spt||∂T || with d(x, ∂B) ≤ r6 we have

V ol(∂T ∩ BM(x,R6)) ≤ (1 + η)ωn−1R
n−1
6 . (31)

Remarks:

1. In this context there are 2 distance scales. The scale of R6 the radius
of the cutting geodesic ball of the ambient Riemannian manifold, that
is the same as the scale of R and that of r6 that is the distance between
an arbitrary point of ∂T and a point of ∂B. This is an important point
in the estimates required by Allard’s theorem, as the proof of lemma
4.2 shows. Without this control on the scales involved we cannot have
good control on the volume of the intersection of the hypersurface ∂B
with an ambient geodesic ball.

2. The presence of interval ]R
2
, R[ is just a technical complication due to

the mean value theorem for integrals in the estimates of the (n− 1) −
dimensional volume of the part of ∂T ∩ B(x,R) that is T∆B.

Proof:

Let A := C2s
(

1 + s2

23

)

, B :=
(

1 + s2

23

)n−1

− 1.

Let R5 be the greatest positive real number s such that

1. s ≤Min{injM, r0,
diam(B)

4
, R3},

2.

AB +B + A ≤ 1

3
η. (32)

We fix r6 > 0 with r6 ≤
(

R
2

)3
.

Let x ∈ Spt||∂T ||.
Let a be the greatest positive real number s < R

2
with

(e(n−1)C3s − 1)M ≤ 1

3
ηωn−1

(
R

2

)n−1

(33)

whereM is the maximum the isoperimetric profile on the interval [vol(B)/2, 2vol(B)].
i.e.

a ≤Min{ 1

(n− 1)C3

log

[

1 +
ηωn−1

(
R
2

)n−1

3M

]

,
R

2
}.
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Set ε6 := Min{ε3,
V ol(B)

2
, 1

3
ηωn−1

(
R
2

)n}.
Let T be a solution of the isoperimetric problem such that V ol(T∆B) < ε6.
By (24) we find t(x) ∈ [−a, a] and ε3 (given by lemma 4.3) satisfying

V ol(∂T ∩B(x,R)) ≤ V ol(∂B ∩B(x,R)) + V ol((T∆B) ∩ ∂B(x,R))
+V oln−1(ϕt#(∂T )) − V oln−1(∂T ).

(34)
From lemma 4.7 we have

V ol(∂T ∩B(x,R)) ≤ V ol(∂B ∩B(x,R)) + V ol((T∆B) ∩ ∂B(x,R))
+(e(n−1)C3t − 1)V oln−1(∂T ).

(35)
By lemma 4.6 we get R4 satisfying

V ol((T∆B) ∩ ∂B(x,R4)) ≤ 2
R
V ol(T∆B)

≤ 2
R
ε6.

Let R6 := R4. Lemmas 4.4, 4.6 and 4.2 combined give

V ol(∂T∩B(x,R6)) ≤ (1+O(R6))ωn−1R
n−1
6 +

2

R
V ol(T∆B)+(e(n−1)C3a−1)M,

(36)
as, by lemma 4.2,

V ol(∂B ∩ B(x,R)) ≤ (1 + O(R))ωn−1R
n−1,

and by lemma 4.6 0 < R
2
< R6 < R.

By (33), (32) and the choice of ε6, equation (36) becomes

V ol(∂T ∩B(x,R6)) ≤ (1+
1

3
η)ωn−1R

n−1
6 +

1

3
ηωn−1R

n−1
6 +

1

3
ηωn−1R

n−1
6 . (37)

Finally
V ol(∂T ∩ B(x,R6)) ≤ (1 + η)ωn−1R

n−1
6 (38)

2.

4.6 Confinement of an Isoperimetric Domain by Mono-
tonicity Formula

Theorem 4.2. Let Mn be a Riemannian manifold. Let B a compact domain
whose boundary ∂B is smooth.
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For every s > 0, there exists ε7(s) > 0 with the property that if T is a current
solution of the isoperimetric problem with

V ol(B∆T ) < ε7,

then ∂T is contained in a tubular neighborhood of thickness s of ∂B.

Idea of the proof: By contradiction, we assume that there is a current
T and a point x ∈ ∂T at distance > s of ∂B. We choose R ∈]s/2, s[ so
that the intersection T∆B with the sphere ∂B(x,R) has small area. The
mecanism of balancing gives an estimation of the area of ∂T ∩ B(x,R), as
∂B∩B(x,R) = ∅.This majoration contradicts the minoration given by mono-
tonicity formula (Lemma 3.3), if vol(T∆B) is too small.
Proof: Set s > 0. Let H1 be the constant produced by lemma 4.1 (Lévy-
Gromov). Let C3 be the constant given by lemma 4.3. Let M be the max-
imum of the isoperimetric profile on the interval [vol(B)/2, 2vol(B)]. Let βi

be a bound on the second fundamental form of an isometric immersion of M
in R

N the Euclidean space. We can choose a so that

(e(n−1)C3a − 1)M <
1

2
ωn−1

(s

2

)n−1

e−(H1+βi)s. (39)

Let ε3 be the second constant given by lemma 4.3, when, in this lemma, we
take R = s/2. Let ε7 < ε3, ε7 < vol(B)/2 and

2ε7

s
<

1

2
ωn−1

(s

2

)n−1

e−(H1+βi)s.

Let T be a current solution of the isoperimetric problem satisfying

vol(T∆B) < ε7.

We argue by contradiction. Assume there is a point x ∈ ∂T placed at distance
> s from ∂B.
The balancing of volume (lemme 4.3) gives for all R ≤Min{s, R3}

V ol(∂T ∩ B(x,R)) ≤ V ol((T∆B) ∩ ∂B(x,R)) + V ol(φt#(∂T )) − V ol(∂T ),

as B(x,R)∩B = ∅. We apply lemma 4.4 with C = C3 and we set R7 ∈]s/2, s[
defining R7 := R4 obtained by applying lemma 4.6 with R = s such that

vol((T∆B) ∩B(x,R7)) ≤
2

s
V ol(T∆B).
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It follows

vol(∂T ∩ B(x,R7)) ≤
2ε7

s
+ (e(n−1)C3a − 1)V ol(∂T )

vol(∂T ∩ B(x,R)) ≤ 2ε7

s
+ (e(n−1)C3a − 1)M.

Invoking lemma 4.1 (Lévy-Gromov), the mean curvature of ∂T satisfies

|H| ≤ H1.

Monotonicity inequality (lemma 3.3 ) gives us

vol(∂T ∩B(x,R7)) ≥ ωn−1R
n−1
7 e−(|H|+βi)R7 ,

which, by our choice of ε7, contradicts the preceding inequality. We conclude
that ∂T is contained in a tubular neighborhood of thickness s of ∂B. 2.

4.7 Proof of Theorem 4.1

Application of Allard’s Theorem We give now the proof of theorem
4.1. We must show that solutions T of the isoperimetric problem which are
close to B volumewise are graphs of small functions. Therefore, we fix a
number r and will find ε0(r) such that V ol(T∆B) < ε0(r) implies that ∂T
is the graph of a function u with ||u||∞ < r. Later on, stronger norms of u
will be estimated in terms of r.

Proof: Set α ∈]0, 1[, ε = 1
2
, d = 1 and p = n−1

1−α
in the Riemannian

Allard’s theorem. Theorem 3.2 provides us with a constant η̃1 and radius
R̃1. Consider R3 = Min{injM, r0,

diam(B)
4

} as defined in section 4.4 and let

R = Min{R̃1, R3,
η̃1

H1[(1+η̃1)ωn−1]
1
p
}. Pick a radius r ≤

(
R
2

)3
and set ε′0 =

Min{ε6, ε7(r)}. Let T be a solution of the isoperimetric problem satisfying

V ol(T∆B) ≤ ε′0.

Then from the comparison lemma 4.7 applied with η = η̃1, we obtain a
R6 ∈]R

2
, R[ with the property

||V ||(B(x,R6)) ≤ (1 + η̃1)dωkR
k
6 . (40)
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From lemmas 3.2 and 4.1 we argue that whenever g ∈ X (M) with
Supp(g) ⊂ BM(x,R6),

δ∂T (g) ≤ H1(V ol(∂T ∩ B(x,R6)))
1
p ||g||Lq(∂T ). (41)

Hence, an application of comparison lemma 4.7 allows us to get

δ∂T (g) ≤
{

H1[(1 + η̃1)ωn−1]
1
pR6

}

R
n−1

p
−1

6 ||g||Lq(∂T ) ≤ η̃1R
n−1

p
−1

6 ||g||Lq(∂T ),

(42)
because {

H1[(1 + η̃1)ωn−1]
1
pR

}

≤ η̃1, (43)

by the choice of R.
Finally the confinement lemma allows us to state that the support of ∂T is
in a tubular neighborhood of thickness r.
The Riemannian version of Allard’s theorem applies with R̃ = R. It provides
us with a radius R0, and for all x ∈ ∂T , with a C1 map F : R

n−1 → M whose
image of a neighborhood of the origin is exactly ||i#(∂T )||∩BRN (x, 1

2
R0) and

whose differential satisfies

||dFz − dFz′|| ≤ ε

(
d(z, z′)

R0

)α

∀z, z′ ∈ R
n−1, |z|, |z′| < R0.

π|∂T is a local diffeomorphism. In what follows r indicates again the
thickness of a tubular neighborhood of ∂B in which ∂T is confined, π is the
projection of Ur(∂B) on ∂B, θ is the gradient vector of the signed distance
function to ∂B and g0 the induced metric by that of M on ∂B.
In addition to r ≤ (R/2)3, we shall need that

√
r < (1 − ε)R0 = 1

2
R0 and

c(r) < 1, for a function c to be defined in the sequel. Therefore we let r1 be
the largest radius satifying these conditions.

Let ε0 = min{ε′0, V ol({x ∈ M|d(x, ∂B) ≤ r1})}. From now on, we as-
sume that V ol(T∆B) < ε0.

Consider the function

f :

{
] − 1

2
R0,

1
2
R0[ → R

t 7→ dM(F (tv), ∂B)

where R0 is given by Allard’s theorem, v is a unit vector in Tx∂T .
Allard’s theorem gives a C1,α bound on F . Riemannian comparison the-

orems (Heintze-Karcher) gives C2 bounds on the distance to ∂B in terms of
ambient sectional curvature and the second fundamental form of ∂B. There-
fore f is C1,α bounded. If its derivative at 0 were large, then f would take
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large values. Since f is confined within ] − r, r[, its derivative f ′(0) is small,
|f ′(0)| < c(r). This shows that | < dF (v), θ > | < c(r) for all unit vectors
v. If c(r) < 1, this implies that the differential of the projection to ∂B,
restricted to ∂T , is onto, i.e. π|∂T is a local diffeomorphism.

Furthermore, as r gets smaller, the differential of π|∂T gets closer and
closer to an isometry.

π|∂T is a global diffeomorphism

Lemma 4.8. Let U be a tubular neighborhood of B. There exists ω ∈
Λn−1(U) such that dω = dV olg.

Proof: U being a connected non compact manifold of dimension n implies
Hn(U ,R) = 0, see [God71] theorem 6.1 of page 216. 2.

By two preceding lemmas we have

V olg(T ) =

∫

T

dω =

∫

∂T

ω = ηV olg(B) = η

∫

∂B

ω

with η close to 1, but
∫

∂T

ω = mη′
∫

∂B

ω = m

∫

B

dω = mV oln(B)

with η′ close to 1, as π∗(ω|∂B) is close to ω|∂T as ∂T is C1 close to ∂B and

η′
∫

∂T

ω =

∫

∂T

π∗(ω|∂B) = m

∫

∂B

ω.

This establishes that m = 1. In other words we have showed that π|∂T is a
global diffeomorphism.
Furthermore,

u = d(·, ∂B) ◦ F ◦ (π ◦ F )−1 (44)

shows that u belongs to C1,α(∂B).

C2,α and Higher order Regularity. Let us first give a precise definition
of the Cℓ,α norms.

Definition 4.1. Let M be a compact Riemannian manifold, let u be a func-
tion on M. We say that u ∈ Cℓ,α(M,Rm) if the representative of u in every
coordinates chart is of class Cℓ,α.
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Definition 4.2. Let u ∈ Cℓ,α(M). We set

||u||Cℓ,α(M) = max
l

{
||u|Ωl

||Cℓ,α(Ωl)

}
,

where ||u|Ωl
||Cℓ,α(Ωl) := ||u ◦ Θ−1||Cℓ,α(Ul) with {Ωl

Θ
︷︸︸︷∼= Ul ⊆ R

n−1} be a fixed
atlas of M.

At this point, we continue by attaching the argument of Morgan 3.3 and
C2,α regularity and also Cℓ,α follows easily. Using these facts, we show ||u||C1,α

is small and after by Schauder’s estimates we can conclude that ||u||C2,α is
small. In order to show that u is more regular we use the same argument
used in [Mor03] proposition 3.3 page 5044 as indicated at the end of the proof
of [Mor03] proposition 3.5 page 5047. For reader’s convenience, we restate
here the theorem.

Proposition 4.1 ([Mor03] prop. 3.3). Let f be a real function defined on
an open set Ω of R

n−1 with the property

d

dt

[∫

Ω

F (x, f(x) + tg(x),∇(f(x) + tg(x)))dx

]

t=0

= 0

whenever g is a function with Supp(g) ⊂⊂ Ω. Assume F and ∂F
∂fi

are Cℓ−1,α

and F is elliptic, i.e. the matrix ∂F
∂fi∂fj

is positive definite.

Then
f is Cℓ,α.

Proof: The proof can be found in [Mor03] 2.

In local coordinates, we can see ∂T locally like the graph of a function f
of class C1,α.
For smooth variations g with compact support the area functional A(f) :=
∫
A(x, f,∇f(x))dx and the volume functional V(f) :=

∫
V (x, f(x))dx satisfy

the relation:
d

dt
[A(f + tg) − λV(f + tg)] |t=0 = 0 (45)

for some Lagrange multiplier λ that is the mean curvature of ∂T . The func-
tional A−λV then satisfies the regularity and ellipticity assumptions required
by 4.1, hence ∂T is as regular as possible and at least of class C2,α, which
implies by an application of the implicit function theorem that F given by
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Allard’s theorem belongs to C2,α and therefore that u is also of class C2,α.
In other words, there exists F̃ of class C2,α such that

u = d(·, ∂B) ◦ F̃ ◦ (π ◦ F̃ )−1,

and we conclude that u is of class C2,α.

C2,α Estimates. Now we are in a position to exploit the formula of the first
section for the mean curvature of a normal graph. This allows to estimate
the C1,α norm and C2,α norm of u. Straightforward computations will show
that the C2,α norm of u goes to zero when r → 0. We now give the details of
these calculations. We consider a system of Fermi coordinates (r, x) centerd
at a point p ∈ ∂B, with x normal coordinates on an open set of ∂B centered
in p as in [Gra01]. Let

ui :=
∂u

∂xi
, uij :=

∂2u

∂xixj
,

g := dt2 + gij(r, x)dxidxj, (46)

||∇gu
u||2gu

= gi,j(u, x)uiuj, (47)

∇gu
Wu = −1

2
1√

(1+||∇u||2)3
{

∂
∂r
glj(u, x)uiujul

}

− 1
2

1√
(1+||∇u||2)3

{
∂

∂θig
jl(u, x)ujul + 2glj(u, x)uiuijul

}
gim ∂

∂θm

(48)

1

Wu

[div∂Br (∇gu
u)]|r=u =

[
1

Wu

gij(u, x) + f ij(x, u,∇u)
]

uij + f(x, u,∇u).
(49)

Notice that f(x, u,∇u) , f ij(x, u,∇u) → 0 , ||u||C1 → 0. The functions

f, f ij :

{
R

n−1 × R × R
n−1 → R

(x, y, z) 7→ f(x, y, z)

have the same regularity than the metric with respect to variables x, y and
they are of class C∞ with respect to z. We carry the same calculations for
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the remaining 4 terms of formla (8).

HN
νinw

(u, x) = −div(Sn−1,gu)(

−→∇gu
u

Wu
) − 1

W 2
u

< ∇−→∇guu
(
u
−→∇gu

u

Wu
),
−→∇gu

u >gu

+
u2

W 3
u

IIu
θ (
−→∇gu

u,
−→∇gu

u)

− 1

Wu
Hu

θ (u, x) +
1

Wu
<

−→∇gu
(

1

Wu
), u

−→∇gu
u

Wu
) >gu

with < νinw, θ >≤ 0.

< ∇−b∇u(−b∇u),−b∇u) > = −1
1+||∇u||2

(
< gimumfi∇u,∇u >

)

+ −1
1+||∇u||2

(

< 1
Wu

∇∇u∇u,∇u >
) (50)

where

fi := − 1

2
√

(1 + ||∇u||2)3

{

glj
,1uiujul + glj

,i uluj + 2gliuluij

}

.

1
W 2

u
< ∇−→∇guu

(u
−→∇guu
Wu

),
−→∇gu

u >gu
= 1

W 3
u
< du(∇u)∇u,∇u >

+ < ∇−b∇u(−b∇u),−b∇u) >
(51)

It is easy to see that the expression

1

W 3
u

< du(∇u)∇u,∇u >=
1

W 3
u

(
gijgpluiujulup

)
(52)

does not depends on second partial derivatives of u. For this reason we can
set

f̃1(x, u,∇u) :=
1

W 3
u

< du(∇u)∇u,∇u > . (53)

The following quantities depend only on u, x and on the first derivatives of
u.

f̃ ij(x, u,∇u)uij + f̃(x, u,∇u) :=< ∇−b∇u(−b∇u),−b∇u) >, (54)

f ∗(x, u,∇u) := − u2

W 3
u

II∂Bu

(∇u,∇u) = − u2

W 3
u

gijglmuiulΓ
1
ij(u, x). (55)

The expression

−b2u∇∇u

(
1

Wu

)

= − u

W 2
u

gimumfi (56)
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depends linearly on second derivatives of u. We set

u(f̄ ijuij + f̄(x, u,∇u)) := −b2u∇∇u

(
1

Wu

)

. (57)

We obtain [
1

Wu

gij(u, x) + lij(x, u,∇u)
]

uij = h1 + h2 (58)

where h1 = H∂T
ν − 1

Wu
H∂Bu

θ and

h2 = f(x, u,∇u) − f̄(x, u,∇u) − f̃1(x, u,∇u) − f̃(x, u,∇u) − f ∗(x, u,∇u).

The equation of constant mean curvature for normal graphs takes the form
[

1

Wu
gij(u, x) + lij(x, u,∇u)

]

uij = h(x, u,∇u), (59)

with h(x, u,∇u) , lij(x, u,∇u), f ∗, f̄ , f̃1, f̃ , f̃ ij, f̃ → 0 , ||u||C1 → 0 and

h, lij, f ∗, f̄ , f̄ ij, f̃ ij, f̃ :

{
R

n−1 × R × R
n−1 → R

(x, y, z) 7→ f(x, y, z)

have the same regularity as the Levi-Civita connection with respect to vari-
ables x, y and are of class C∞ with respect to z. If k ≤ KM ≤ δ, then by
Heintze-Karcher’s theorem [HK78] we get

(cδ(u) − βsδ(u))
2 g0 ≤ g(u, x) ≤ (cδ(u) + βsδ(u))

2 g0 (60)

g−1
0

(cδ(u) − βsδ(u))
2 ≤ g(u, x)−1 ≤ g−1

0

(cδ(u) + βsδ(u))
2 . (61)

Consequently, there are 0 < A1 ≤ A2 for which

A1In−1

(cδ(u) + βsδ(u))
2 ≤ g(u, x)−1 ≤ A2In−1

(cδ(u) − βsδ(u))
2 , (62)

hence the equation
Lu := aijuij = h̃(x)

with aij(x) := 1
Wu
gij(u, x) + lij(x, u,∇u), h̃(x) = h(x, u(x),∇u(x)) is uni-

formly elliptic as the lij → 0 when r ց 0. Using the theory of elliptic partial
differential equations, we can obtain Lp estimates on the norm W 2,p of the
function u.

||u||2,p ≤ c1||h̃||0,p + c2||u||Lp,
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where c1, c2 depend on ellipticity constants A1 and A2, and therefore on the
geometry of the situation (B, ∂B, βi, β,M) and of the choice of the atlas

{Ωl

x
︷︸︸︷∼= Ul ⊆ R

n−1} used to define

||u||Cℓ,α(∂B) := max
l

{
||u|Ωl

||Cℓ,α(Ωl)

}

where ||u|Ωl
||Cℓ,α(Ωl) := ||u ◦ (x)−1||Cℓ,α(Ul).

Finally,

||u||W 2,p(∂B) ≤ c1(∂B,A1, A2)||h̃||W 0,p(∂B) + c2(∂B,A1, A2)||u||Lp(∂B), (63)

||u||C1,α(∂B) ≤ c3(∂B)||u||W 2,p(∂B). (64)

Theorem 4.3 (The Comparison Principle for Curvatures). Let B1 and
B2 being two submanifolds with boundary, of dimension n of M, B1 ⊆ B2,
let x ∈ ∂B1 ∩ ∂B2.
Then
< H∂B1(x), νext >≤< H∂B2(x), νext >

Proof: [Ale62] 2.

Lemma 4.9.

|H∂T
ν − 1

Wu
H∂Bu

θ | ≤ C(r, ||u||C1, k, δ, II∂B
θ ) → 2Lip(H∂B

θ (·))diam(∂B)

when r → 0.

Proof: Let x1, x2 ∈ ∂B be defined as u(x2) := Maxx∈∂B{u(x)} and
u(x1) := Minx∈∂B{u(x)}.
Then

Bu(x1) ⊆ T ⊆ Bu(x2)

and Bu(x1), Bu(x2) have smooth boundary and are tangent to ∂T at p1 =
(x1, u(x1)) and p2 = (x2, u(x2)). We deduce then, by comparison principle
applied to Bu(x1), T , Bu(x2) that

H∂Bu(x1)

θ (x1) ≤ H∂T
ν (x) ≤ H∂Bu(x2)

θ (x2). (65)

We assume that r ≤ r := Min{R
2
, r1,

π√
δ
}.

We substract the same quantity to the sides of (65)

H∂Bu(x1)

θ (x1) − 1
Wu
H∂Bu(x)

θ (x) ≤ H∂T
ν − 1

Wu
H∂Bu(x)

θ (x)

≤ H∂Bu(x2)

θ (x2) − 1
Wu
H∂Bu(x)

θ (x)
(66)
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|H∂T
ν − 1

Wu
H∂Bu(x)

θ (x)| ≤ |H∂Bu(x1)

θ (x1) −H∂Bu(x2)

θ (x2)|
+ |H∂Bu(x1)

θ (x1) − 1
Wu
H∂Bu(x)

θ (x)| (67)

and after we apply the triangle inequality repeatedly to obtain

|H∂Bu(x1)

θ (x1) − H∂Bu(x2)

θ (x2)| ≤ |H∂Bu(x1)

θ (x1) − H∂B
θ (x1)|

+ |H∂Bu(x2)

θ (x2) − H∂B
θ (x2)|

+ |H∂B
θ (x1) − H∂B

θ (x2)|
(68)

|H∂Bu(x1)

θ − 1
Wu
H∂Bu(x)

θ | ≤ |H∂Bu(x1)

θ (x1)|
(

1 − 1
Wu

)

+ 1
Wu

|H∂Bu(x1)

θ (x1) −H∂Bu(x)

θ (x)|
(69)

|H∂Bu(x1)

θ (x1) − H∂Bu(x)

θ (x)| ≤ |H∂Bu(x1)

θ (x1) − H∂B
θ (x1)|

+ |H∂B
θ (x) − H∂Bu(x)

θ (x)|
+ |H∂B

θ (x) − H∂B
θ (x1)|.

(70)

To majorate the middle term, we need to prove the following lemma.

Lemma 4.10. There exists b3(s) such that whenever y ∈ ∂B,

|H∂Bs

θ (y) −H∂B
θ (y)| ≤ b3(s). (71)

Proof: Let

b′3(s, y) := |
n−1∑

i=1

ctgδ(s+ c1(y, λi(y))) −H∂B
θ (y)|

b′′3(s, y) := |ak(s+ c2(y,H
∂B
θ (y))) −H∂B

θ (y)|
b3(s, y) := Max {b′3(s, y), b′′3(s, y)}

where ctgδ(c1(x, s)) = s, c1(x, s) ∈]0, π√
δ
[ ctgk(c2(x, s)) = s,

if s >
√
−k, tgk(c2(x, s)) = s, if s <

√
−k and c2(x,

√
−k) =

√
−k

ak(s) =







ctgk(s) , s >
√
−k√

−k , s =
√
−k

tgk(s) , s <
√
−k

We find b3(s) := ||b3(s, y)||∞,∂B 2.

Continuation of the proof of lemma 4.9. If we set

C(r, ||u||C1, k, δ, II∂B
θ ) := 4b3(r) + 2Lip(H∂B

θ (·))diam(∂B)

+
(

1 − 1
Wu

)

||H∂B
θ (·)||∞,∂B,
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we conclude that

|H∂T
ν − 1

Wu
H∂Bu(x)

θ (x)| ≤ C(r, ||u||C1, k, δ, II∂B
θ ) (72)

2.

End of C2,α estimates, in case when ∂B has constant mean curva-
ture. The preceding arguments allow us to state that

||h̃||W 0,p(∂B) → 0 , r → 0

||u||Lp(∂B) → 0 , r → 0

hence

||u||C1,α(∂B) → 0 , r → 0.

If we apply the classical Schauder estimates theory we write

||u||C2,α(∂B) ≤ c4(∂B)||h̃||C0,α(∂B) + c5(∂B,A1, A2)||u||C0(∂B). (73)

Therefore

||u||C2,α(∂B) → 0 , r → 0 ∀α ∈]0, 1[ (74)

as h1 and h2 are C∞ expressions with respect to u and ∇u and hence converge
in C0,α topology, necessarily to 0.

Remark: Alternatively, finer calculations would show that

||u||C1,α(∂B) ≤ C(geom, βi, ε, R
α) ∀α ∈]0, 1[.

With the aid of the following lemma, this would show that

||u||C1,α(∂B) → 0 , r → 0.

Lemma 4.11. ∀ε > 0, ∀M > 0, ∀α < β there exists δ > 0 such that if
||u||Ck ≤ ε and ||u||Cβ ≤M then ||u||Cℓ,α ≤ δ.

Proof: Compactness of the injections of Cℓ,β →֒ Cℓ,α (a direct conse-
quence of Ascoli-Arzelà’s theorem). 2.
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End of C2,α estimates, general case. Qualitative Argument. Whenever
r goes to 0, the quantity |H∂T

ν − 1
Wu
H∂Bu

θ | goes to 0. To see this it is not
necessary to use lemma 4.9, and the end of the proof remains unchanged.

Effective Argument. We need to improve lemma 4.9. As u is bounded
in C2 norm, the second fundamental form of ∂T is bounded. Using the
fact that ∂T is everywhere transversal to the vector field θ̂, we show that
the normal the injectivity radius of ∂T is bounded from below. We can
use a tubular neighborhood of ∂T , and, applying the comparison theorem
for curvatures to gives lower and upper bounds for mean curvature of ∂B
by mean curvature of equidistant hypersurfaces of ∂T . This gives an upper
bound of |H∂T

ν − 1
Wu
H∂Bu

θ |. The very end of the proof of C2,α estimates
remains unchanged.

5 Proof of the Normal Graph Theorem, Vari-

able Metrics Case

Proof: We apply the ”Embedding Theorem” of page 223 of [Gro86b] to
obtain a free isometric embedding i∞ for (M, g∞) fixed. Furthermore, an
application of the ”Main Theorem” of page 118 to this embedding to obtain
free isometric embeddings ij of (M, gj) in R

N close in the C3 topology (see
[Gro86b][page 18]) of i∞. As constants on which the estimations of theo-
rem 4.1 depend are continuous in the C3 topology, we apply theorem 4.1 to
(Mj, gj), with the embeddings ij , to establish the conclusion. 2.
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