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We prove that small smooth solutions of weakly semi-linear Klein-Gordon equations on the torus T d (d ≥ 2) exist over a larger time interval than the one given by local existence theory, for almost every value of the mass. We use a normal form method for the Sobolev energy of the solution. The difficulty, in comparison with previous results obtained on the sphere, comes from the fact that the set of differences of eigenvalues of

. They showed that one has then almost global existence: for any N , if the data are in H s+1 × H s Mathematics Subject Classification: 35L70.

Introduction

The aim of this paper is to study long-time existence problems for semi-linear Klein-Gordon equations of type

(∂ 2 t -∆ + m 2 )v = F (x, v) v| t=0 = v 0 ∂ t v| t=0 = v 1 (0.0.1)
on the torus T d (d ≥ 1). If v 0 , v 1 are smooth on T d and if F is a smooth function vanishing at some order κ + 1 at v = 0, local existence theory implies that (0.0.1) admits, for small > 0, a unique smooth solution defined on intervals of length c -κ . Our goal is to show that for m outside an exceptional subset of zero measure, the solution actually extends at least over an interval of length c -κ 1+ 2 d |log | -A , where A > 1 is a constant. In other words, we want to go beyond the existence time given by local existence theory, in spite of the fact that on the compact manifold T d we cannot use any dispersive property of the equation.

F m (λ n 0 , . . . , λ n p+1 ) -1 M (Π λn 0 u 0 ) • • • (Π λn p+1 u p+1 ) dx(λ n 0 + • • • + λ n p+1 ) 2s
where λ n j are eigenvalues of √ -∆ on the compact manifold M , Π λ is the spectral projector associated to the eigenvalue λ, and F m is given by (0.0.4) F m (ξ 0 , . . . , ξ p+1 ) = j=0

m 2 + ξ 2 j - p+1 j= +1 m 2 + ξ 2 j
for some between 0 and p + 1. The problem is to bound |F m (λ n 0 , . . . , λ n p+1 )| from below, for those λ n j for which the integral in (0.0.3) is nonzero, in such a way that (0.0.3) be controlled by C u j H s for s large enough. When p = 2, which corresponds to a quadratic nonlinearity, and when the manifold M = T d , one can get a lower bound for |F m | by a negative power of the smallest of the three eigenvalues λ n 1 , λ n 2 , λ n 3 , whatever the value of m > 0. This very special property is the key of the results obtained in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF] for quadratic nonlinearities on the torus. For higher order nonlinearities and for a general manifold, the only lower bounds one is able to get, when say p is an odd integer, hold true only for almost every m, and are of type (0.0.5)

|F m (λ n 0 , . . . , λ n p+1 )| ≥ c(1

+ λ n 0 + • • • + λ n p+1 ) -N 0
with a large enough N 0 . Such estimates are useless when plugged in (0.0.3), as they make loose N 0 derivatives.

The situation is better when the manifold M is the sphere. In this case, using that the eigenvalues of √ -∆ on S d are the integers, up to a small perturbation, one can get, instead of (0.0.5), that for almost every m > 0, there are c > 0, N 0 ∈ N with (0.0.6)

|F m (λ n 0 , . . . , λ n p+1 )| ≥ c(1 + third largest among (λ n 0 , . . . , λ n p+1 )) -N 0 for any n 0 , . . . , n p+1 (still assuming for simplification that p is odd). In other words, the loss in (0.0.3) is given by a large power of a small frequency, which allows us to estimate, for s N 0 , (0.0.3) by C j u j H s . Inequality (0.0.6) can be proved essentially because the set (0.0.7)

{λ n iλ n j ; n i , n j ∈ N} is close to a discrete subset of R. Such a property for the spectrum of a compact manifold holds true only in very special cases (see the paper of Guillemin [START_REF] Guillemin | Lectures on spectral theory of elliptic operators[END_REF] for more on this issue). For generic compact manifolds, (0.0.7) is actually dense in R. This is in particular the case for the torus of dimension d ≥ 2. Our main task will be to prove that in this case, in spite of the fact that an inequality as strong as (0.0.6) is not true, we may prove a weaker lower bound, using that we can use harmonic analysis on T d . We shall show that if A > 1 is given, for almost every m, there are c > 0, N 0 ∈ N such that Comparing with (0.0.6), we see that division by F m will not just make loose a power of low frequencies |n 1 |, . . . , |n p |. We shall also have a loss of d derivatives acting on high frequencies. To recover this, we shall use that equation (0.0.1) is weakly semi-linear (solving the linear equation makes gain one derivative, while the nonlinearity involves no derivative of v) and Hamiltonian. This last property allows one to gain one more derivative through commutators in energy inequalities. Consequently, the expressions to study are of form (0.0.3) but with the exponent 2s replaced by 2s -2. In the case d = 2 for instance, this shows that we may recover the loss of derivatives displayed by (0.0.8), up to a logarithm. In other words expressions of type (0.0.3) may be controlled by C u j H s , up to a logarithmic loss which may be transfered on a loss of type |log | A through partition of frequencies between zones

|n 0 | + |n p+1 | < -k and |n 0 | + |n p+1 | ≥ -k for some k > 0.
Let us give some hints on the way we prove (0.0.8). This inequality follows from the estimate of the measure of sets of form (0.0.9)

{m ∈ I; |F m (|n 0 |, . . . , |n p+1 |)| < r}
where I ⊂]0, +∞[ is a compact interval and r is the right hand side of (0.0.8). We show, using tools of subanalytic geometry, that I may be written for any fixed n 0 , . . . , n p+1 as the union of a uniform number of intervals over which |∂F m /∂m| is bounded from below by a large negative power of small frequencies (1

+ |n 1 | + • • • + |n p |) -N 1
, and of a remaining set.

1 The semi-linear Klein-Gordon equation 

T d = (R/2πZ) d for the standard torus. Denote by = ∂ 2 t -∆ the d'Alembert operator on R × T d . Let F : T d × R → R, (x, v) → F (x, v) be a real valued smooth function. We shall assume (1.1.1)
∂ j v F (x, 0) ≡ 0 for j = 0, . . . , κ for some κ ∈ N * . Let m ∈]0, +∞[. We consider the solution v of the Klein-Gordon equation

( + m 2 )v = F (x, v) v| t=0 = v 0 ∂ t v| t=0 = v 1 (1.1.2) where v 0 ∈ H s+1 (T d , R), v 1 ∈ H s (T d , R)
, and > 0 is small enough. By local existence theory, one knows that if s is large enough and ∈]0, 1[, equation (1.1.2) admits for any (v 0 , v 1 ) in the unit ball of H s+1 × H s a unique smooth solution defined on the interval |t| ≤ c -κ , for some uniform positive constant c. Moreover, v(t, •) H s+1 + ∂ t v(t, •) H s may be controlled by C , for another uniform constant C > 0, on the interval of existence. The goal of this paper is to show that under convenient assumptions, one may extend such a solution and such an upper bound to an interval of length (almost) equal to -κ 1+ 2 d . Let us state the main result.

Theorem 1.1.1 There is a zero measure subset N of ]0, +∞[ and for every m ∈]0, +∞[-N and any A > 1, there are

s 0 > 0, c > 0, 0 > 0 such that for any ∈]0, 0 [, any (v 0 , v 1 ) in the unit ball of H s 0 +1 (T d , R) × H s 0 (T d , R), equation (1.1.2) has a unique solution v ∈ C 0 (] -T , T [, H s 0 +1 ) ∩ C 1 (] -T , T [, H s 0 ) with T ≥ c -κ 1+ 2 d |log | -A .
Moreover, for any s ≥ s 0 , there are s > 0, c s > 0, C s > 0 such that when < s and

(v 0 , v 1 ) is in the unit ball of H s+1 (T d , R) × H s (T d , R), v(t, •) H s+1 + ∂ t v(t, •) H s is bounded by C s for |t| ≤ c s -κ 1+ 2 d |log | -A .
Remarks • As already mentioned in the introduction, one can prove an almost global existence result (i.e. over an interval of length c N -N for any N ) for equation (1.1.2) on T 1 . This has been done by Bourgain [START_REF] Bourgain | Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations[END_REF], Bambusi [START_REF] Bambusi | Birkhoff normal form for some nonlinear PDEs[END_REF], Bambusi-Grébert [START_REF] Bambusi | Birkhoff normal form for partial differential equations with tame modulus[END_REF]. Such an almost global theorem has been proved in higher dimensions as well by Bambusi, Delort, Grébert and Szeftel [START_REF] Bambusi | Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF] for equation (1.1.2) on the sphere S d (or more generally on a Zoll manifold).

• If one considers equation (1.1.2) on S d , with a nonlinearity of form F (v, ∂ t v, ∇ x v), with F homogeneous of even degree κ + 1, it has been proved by Delort and Szeftel [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF][START_REF] Delort | Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds[END_REF], that the solution exists over an interval of length c -2κ (i.e. essentially the time of existence obtained in theorem 1.1.1 in dimension d = 2). We are unable in the case of the torus T d (d ≥ 2), to obtain a better existence interval than the one given by local existence theory, when the nonlinearities involve derivatives.

• The almost existence result of dimension 1 is obtained by an iterative method, allowing one to construct successive normal forms for the equation. We cannot hope for such a method to work on T d (d ≥ 2), since our first reduction will make us loose derivatives (because of the bad behaviour of the eigenvalues of -∆ on T d ). This loss will be recovered because the right hand side of the equation contains no derivative of v. But the remainders which will be generated will not enjoy a similar structure, preventing us to iterate the argument.

Paradifferential operators and remainders

For n ∈ Z d we set (1.2.1)

ϕ n (x) = 1 (2π) d/2 e inx so that (ϕ n ) n∈Z d is an Hilbertian basis of L 2 (T d , C). For u ∈ L 2 (T d , C) we denote by Π n u the orthogonal projection of u on the span of ϕ n and by û(n) = u, ϕ n so that (1.2.2)

Π n u = û(n)ϕ n (x).

Let us define the following class of operators:

Definition 1.2.1 Let p ∈ N, µ ∈ R, ν ∈ R + , δ ∈]0, 1[. We denote by Σ µ,ν p,δ the space of maps (c, u 1 , . . . , u p , λ) → a(c, u 1 , . . . , u p , λ) C ∞ (T d , C) p+1 × R d → C ∞ (T d , C) (1.2.3)
satisfying the following conditions: 

(i) The map (1.2.3) is C (p + 1)-linear in (c,
|) √ 1 + λ 2 A(Λ γ 0 m Π n 0 c, Λ γ 1 m Π n 1 u 1 , . . . , Λ γp m Π np u p )b(λ)
where Λ m = √ -∆ + m 2 . Then we get an element of Σ µ,ν p,δ if Supp χ is small enough and ν is large enough. Actually, all symbols we shall have to deal with will be of form (1.2.7).

We shall use also classes of multilinear operators, for which we shall be interested only in less precise properties.

Definition 1.2.2 Let p ∈ N, µ ∈ R, ν ∈ R + , δ ∈]0, 1[. We denote by M µ,ν
p+1,δ the space of all C (p + 1)-linear maps (u 1 , . . . , u p+1 ) → M (u 1 , . . . , u p+1 ), defined on C ∞ (T d ) p+1 , with values in L 2 (T d ), such that (i) For any n 0 , . . . , n p+1 ∈ Z d , any u 1 , . . . ,

u p+1 ∈ C ∞ (T d ) (1.2.8) Π n 0 [M (Π n 1 u 1 , . . . , Π n p+1 u p+1 )] ≡ 0 if |n 0 -n p+1 | > δ(|n 0 | + |n p+1 |) or |n | def = max(|n 1 |, . . . , |n p |) > δ(|n 0 | + |n p+1 |).
(ii) For any N ∈ N, there is C N > 0 such that for any u 1 , . . . , u p+1 ∈ C ∞ (T d ), any n 0 , . . . , n p+1 in Z d , (1.2.9)

Π n 0 [M (Π n 1 u 1 , . . . , Π n p+1 u p+1 )] L 2 ≤ C N (1 + |n 0 | + |n p+1 |) µ (1 + |n |) ν+N (|n 0 -n p+1 | + |n | + 1) N p+1 j=1 u j 2 L .
The best constant C N in the preceding inequality will be denoted M M µ,ν p+1,δ (N ) .

We may extend the action of operators in M µ,ν p+1,δ to Sobolev spaces. Actually, it follows from the above conditions:

Lemma 1.2.3 Let p ∈ N, µ ∈ R, ν ∈ R + , δ ∈]0, 1[. There is s 0 ∈ R + such that for any s ≥ s 0 , any M ∈ M µ,ν
p+1,δ may be extended as a continuous map from

H s 0 (T d ) × • • • × H s 0 (T d ) × H s (T d ) to H s-µ (T d ), with norm controlled by C M M µ,ν p+1,δ (d+1) .
Let us define now from the class of multilinear symbols of definition 1.2.1 another family of symbols. (ii) One denotes by S µ,ν δ = p≥0 S µ,ν p,δ .

Definition 1.2.4 (i) Let p ∈ N, µ ∈ R, ν ∈ R + , δ ∈]0, 1[. We denote by S µ,ν p,δ the space of maps (u, λ) → a(u, ū, λ) defined on C ∞ (T d , C) × R d , with values in C ∞ (T d , C),
We now quantize elements of the preceding class of symbols.

Definition 1.2.5 Let a ∈ S µ,ν δ . For u, w ∈ C ∞ (T d , C) we define (1.2.11) Op(a(u, ū; •))w = 1 (2π) d/2 n∈Z d e inx a(u(x), ū(x); n) ŵ(n).
Let us remark that the above operators may be written in terms of the multilinear maps of definition 1.2.2. Actually, let us define using notation (1.2.10)

M (u 1 , . . . , u p+1 ) = 1 (2π) d/2 n∈Z d e inx a (c , u 1 , . . . , u p ; n)û p+1 (n). We have (1.2.12) Π n 0 M (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) = ϕ n p+1 a (c , ϕ n 1 , . . . , ϕ np ; n p+1 ), ϕ n 0 ϕ n 0 û1 (n 1 ) • • • ûp+1 (n p+1 ).
The bracket may be written

(1.2.13) 1 (2π) d/2 k a (ϕ k , ϕ n 1 , . . . , ϕ np ; n p+1 ), ϕ n 0 -n p+1 ĉ (k). Consequently, by condition (1.2.5) we must have n 0 -n p+1 = k + n 1 + • • • + n p , whence by (1.2.6) and since c is C ∞ , an estimate of (1.2.13) by (1.2.14) C N n p+1 µ (1+|n 1 |+• • •+|n p |+|n 0 -n 1 -• • • -n p+1 |) ν (1+|n 0 -n 1 -• • • -n p+1 |) -N
for any N . Moreover, (1.2.4) implies that we must have

max(|n 0 -n 1 -• • • -n p+1 |, |n 1 |, . . . , |n p |) < δ|n p+1 |.
If δ > 0 is small enough, this implies that condition (1.2.8) of definition 1.2.2 is satisfied by (1.2.12) for a new value of δ. Moreover (1.2.14) implies (1.2.9). We have proved:

Lemma 1.2.6 Let p ∈ N, µ ∈ R, ν ∈ R + , δ > 0 small enough.
There is δ ∈]0, 1[ and for any a ∈ S µ,ν p,δ , there are elements M ∈ M µ,ν p+1,δ = 0, . . . , p such that

(1.2.15) Op(a(u, ū; •))w = p =0 M (ū, . . . , ū , u, . . . , u p- , w) for any u, w ∈ C ∞ (T d , C).
Remark If we use lemma 1.2.3, we see that there is s 0 > 0 such that for any a ∈ S µ,ν p,δ , the map (u, w) → Op(a(u, ū; •))w extends as a continuous map from

H s 0 (T d ) × H s (T d ) to H s-µ (T d ) for any s ≥ s 0 .
We shall now establish a result of symbolic calculus.

Proposition 1.2.7 Let p ∈ N, µ ∈ R, ν ∈ R + , δ > 0 small enough. There are ν > 0, δ ∈]0, 1[ such that for any real valued a ∈ S µ,ν p,δ , any s ∈ R + , one may find operators M ∈ M 2s+µ-1,ν p+1,δ = 0, . . . , p such that (1.2.16) (Λ 2s m Op(a(u, ū; •)) -Op(a(u, ū; •)) * Λ 2s m )u, u = p =0 M (ū, . . . , ū , u, . . . , u p+1- ), u . Moreover, if one assumes that a(u, ū; n) ≡ a(u, ū; n ) when |n| = |n |, (1.2.17) 
p =0 Π n 0 M (ū, . . . , ū, u, . . . , u, Π n p+1 u) ≡ 0 holds true for any u ∈ C ∞ (T d , C), any n 0 , n p+1 ∈ Z d with |n 0 | = |n p+1 |. Proof: Let us denote by A(x, n) = a(u(x), ū(x); n) and by Â(k, n) = A(•, n), ϕ k . Then we may write for any u, v ∈ C ∞ (T d , C) Op(a(u, ū; •))u, v = 1 (2π) d/2 n T d e inx A(x, n)û(n)v(x) dx = 1 (2π) d/2 n k Â(k -n, n)û(n)v(k).
By an immediate computation, we get also

Op(a(u, ū; •)) * u, v = 1 (2π) d/2 n k Â(k -n, k)û(n)v(k). Denote by λ m (n) = m 2 + |n| 2 .
Using that a is real valued, we may write

(Λ 2s m Op(a(u, ū; •)) -Op(a(u, ū; •)) * Λ 2s m )u, v = 1 (2π) d/2 n k [λ m (k) 2s Â(k -n, n) -λ m (n) 2s Â(k -n, k)]û(n)v(k) = M , v (1.2.18)
where M (k) is defined by

M (k) = 1 (2π) d/2 n b(k, n)û(n) b(k, n) = λ m (k) 2s Â(k -n, n) -λ m (n) 2s Â(k -n, k). (1.2.19)
Let us decompose a as in (1.2.10) and define the scalar quantity

(1.2.20) b (u 1 , . . . , u p ; k, n) = λ m (k) 2s a (c , u 1 , . . . , u p ; n) -λ m (n) 2s a (c , u 1 , . . . , u p ; k), ϕ k-n . Set (1.2.21) M (u 1 , . . . , u p ) = 1 (2π) d n k e ikx b (u 1 , . . . , u p ; k, n)û p+1 (n).
Remark 

), u = 1 (2π) d/2 p =0 n k b (ū, . . . , ū, u . . . , u; k, n)û(n)û(k) = M , û , which because of (1.2.18) implies (1.2.16). Let us check that each M belongs to M 2s+µ-1,ν p+1,δ . Let us compute first b (Π n 1 u 1 , . . . , Π np u p ; k, n) from expression (1.2.20). By condition (ii) of definition 1.2.1, if this quantity is nonzero, we must have max(|n 1 |, . . . , |n p |) < δ(|n| + |k|),
and we may assume that c has nonzero modes only for frequencies smaller that δ(|n| + |k|). Consequently, using (1.2.5), we see that b (Π We shall assume that δ > 0 is small enough so that Cδ < 1. Since λ m is a symbol of order 1, and a satisfies (1.2.6), it follows from (1.2.20) and the fact that ĉ is rapidly decaying that

n 1 u 1 , . . . , Π np u p ; k, n) is supported for (1.
|b (Π n 1 u 1 , . . . , Π np u p ; k, n)| ≤ C(1 + |k| + |n|) 2s+µ-1 (1 + |k -n|)(1 + |n |) ν p 1 |û j (n j )|. If in (1.2.20) we write ϕ k-n = [λ m (k -n)] -2 (-∆ + m 2 )ϕ k-n
and perform integrations by parts, we get in the same way an upper bound in terms of

C(1 + |k| + |n|) 2s+µ-1 (1 + |k -n|) 1-N (1 + |n |) ν+N p 1 |û j (n j )|.
It follows from these inequalities that

Π n 0 M (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) L 2 ≤ C(1 + |n 0 |+|n p+1 |) 2s+µ-1 (1 + |n |) ν+1+N (|n 0 -n p+1 | + |n | + 1) N p+1 1 u j L 2 ,
which is the wanted estimate of type (1.2.9). Property (1.2.8) follows from (1.2.22). This concludes the proof of the proposition.

2

We shall have to use also classes of remainder operators. 

|) = max{|n j |; 1 ≤ j ≤ p + 1, j = j 0 } + 1. Definition 1.2.8 Let p ∈ N, µ ∈ R, ν ∈ R + . We denote by R µ,ν p+1 the space of C (p + 1)- linear maps from C ∞ (T d , C) p+1 to L 2 (T d , C), (u 1 , . . . , u p+1 ) → R(u 1 , . . . , u p+1 ) such that for any N ∈ N, there is C > 0 such that for any n 0 , . . . , n p+1 ∈ Z d , any u 1 , . . . , u p+1 ∈ C ∞ (T d , C) (1.2.24) Π n 0 R(Π n 1 u 1 , . . . , Π n p+1 u p+1 ) L 2 ≤ C(1 + |n 0 |) µ max 2 (|n 1 |, . . . , |n p+1 |) ν+N (1 + |n 0 | + • • • + |n p+1 |) N p+1 j=1 u j L 2 .
We have Lemma 1.2.9 Let p ∈ N, ν ∈ R + be given. There is

s 0 ∈ R + such that for any s > s 0 , any µ ∈ R, any R ∈ R µ,ν p+1 , (u 1 , . . . , u p+1 ) → R(u 1 , . . . , u p+1 ) extends as a bounded map from H s (T d ) × • • • × H s (T d ) to H 2s-µ-ν-2(d+1) (T d ). Moreover, one can estimate (1.2.25) R(u 1 , . . . , u p+1 ) H 2s-µ-ν-2(d+1) ≤ C 1≤j 1 <j 2 ≤p+1 k =j 1 ,j 2 u k H s 0 u j 1 H s u j 2 H s .
Proof: We may assume that µ = 0. We bound Π n 0 R(u 1 , . . . , u p+1 ) L 2 decomposing u j as n j Π n j u j and using (1.2.24). By symmetry we limit ourselves to summation over

|n 1 | ≤ • • • ≤ |n p | ≤ |n p+1 | so that we have to bound |n 1 |≤•••≤|np|≤|n p+1 | (1 + |n p |) ν+N (1 + |n 0 | + • • • + |n p+1 |) N p-1 1 (1 + |n j |) -s 0 (1 + |n p |) -s (1 + |n p+1 |) -s c n p+1 × p-1 1 u j H s 0 u p H s u p+1 H s (1.2.26)
for a 2 sequence (c n p+1 ) n p+1 . When we sum for |n p+1 | ≥ 1 2 |n 0 | we take N = 2s. We get for the general term of (1.2.26) the upper bound

C p-1 1 (1 + |n j |) -s 0 (1 + |n p |) ν+s (1 + |n p+1 |) -3s+d+1 (1 + |n 0 -n p+1 |) -d-1 c n p+1 ≤ C p-1 1 (1 + |n j |) -s 0 (1 + |n p |) -d-1 (1 + |n 0 -n p+1 |) -d-1 c n p+1 (1 + |n 0 |) -2s+ν+2(d+1)
using that on the summation |n p+1 | ≥ 1 2 |n 0 | and |n p | ≤ |n p+1 |, and taking s 0 large enough so that 2s ≥ ν + 2(d + 1). If we sum for |n p+1 | < 1 2 |n 0 |, we take N = 2sνd -1. We get for the general term of (1.2.26) the upper bound

(1 + |n 0 |) -2s+ν+2(d+1) (1 + |n 0 -n p+1 |) -d-1 p-1 1 (1 + |n j |) -s 0 (1 + |n p |) s-d-1 (1 + |n p+1 |) -s c n p+1 ≤ C(1 + |n 0 |) -2s+ν+2(d+1) (1 + |n 0 -n p+1 |) -d-1 p-1 1 (1 + |n j |) -s 0 (1 + |n p |) -d-1 c n p+1 .
We get in both cases for the n 1 , . . . , n p+1 sum an upper bound of type (1

+ |n 0 |) -2s+ν+2(d+1) c n 0 , for a new 2 sequence (c n 0 ) n 0 . 2 
To conclude this subsection, let us introduce another class of operators.

Definition 1.2.10 Let p ∈ N, µ ∈ R, ν ∈ R + . We denote by R µ,ν p+1 the space of maps u → R(u) defined on C ∞ (T d , C) with values in L 2 (T d , C) such that there is a family of elements R ∈ R µ,ν p+1 , = 0, . . . , p + 1 satisfying (1.2.27) R(u) = p+1 =0 R (ū, . . . , ū , u, . . . , u p+1- 
).

When p is odd, we set R µ,ν p+1 = R µ,ν p+1 . When p is even, we denote by R µ,ν p+1 the subspace of R 

Π n 0 R (Π n 1 ū, . . . , Π n ū, Π n +1 u, . . . , Π n p+1 u), u ≡ 0 for any u ∈ C ∞ (T d , C
), where stands for the sum extended over all (n 0 , . . . , n p+1 ) ∈ (Z d ) p+2 such that there is a bijection σ : {0, . . . , } → { +1, . . . , p+1} with |n σ(j) | = |n j | for j = 0, . . . , .

Paralinearization of the equation

Our goal in this subsection is to write equation (1.1.2) using a paradifferential expression for the nonlinearity. We shall make a change of unknown, writing with

Λ m = √ -∆ + m 2 , (1.3.1) u = (D t + Λ m )v, v = 1 2 Λ -1 m (u + ū)
so that (1.1.2) may be written

(D t -Λ m )u = -F (x, 1 2 Λ -1 m (u + ū)) u| t=0 = u 0 (1.3.2) with u 0 = -iv 1 + Λ m v 0 ∈ H s (T d , C).
The main result of this subsection is the following one: Proposition 1.3.1 Let δ ∈]0, 1[ be given. There is ν ∈ R + , there are for p = κ, . . . , 2κ -1 real valued symbols a p ∈ S -1,ν p,δ and remainder operators R p ∈ R 0,ν p+1 , there is a map u → S(u) satisfying for any s 0 > d/2, any s ≥ s 0 , and any u in H s (T d , C) belonging to the unit ball of

H s 0 (T d , C), S(u) H s ≤ C s u 2κ
H s 0 u H s , such that the first equation in (1.3.2) may be written

(1.3.3) (D t -Λ m )u = 2κ-1 p=κ Op(a p (u, ū; •))(u + ū) + 2κ-1 p=κ R p (u) + S(u).
Moreover, one may assume that a p (u, ū; n) = a p (u, ū; n

) if |n| = |n |.
Proof: We decompose

(1.3.4) -F (x, v) = - 2κ-1 p=κ (∂ p+1 v F )(x, 0) (p + 1)! v p+1 + G(x, v)
where G(x, v) vanishes at order 2κ + 1 at v = 0. The contribution of G will be incorporated in the S term of (1.3.3). We have to treat each term in the right hand side of (1.3.4) i.e. quantities of type c(x)v p+1 where c is smooth and real valued. We decompose

(1.3.5) c(x)v p+1 = k n 1 • • • n p+1 (Π k c)(Π n 1 v) • • • (Π n p+1 v).
We decompose (1. 

k n 1 • • • n p+1 χ |k| + |n | 1 + |n p+1 | 2 (Π k c)(Π n 1 v) • • • (Π n p+1 v)
(where |n | = max(|n 1 |, . . . , |n p |)), of terms of the same type obtained through permutation of n 1 , . . . , n p+1 , and of (1.3.7)

k n 1 • • • n p+1 A(|k|, |n 1 |, . . . , |n p+1 |)(Π k c)(Π n 1 v) • • • (Π n p+1 v)
where A stands for a real valued bounded function, supported inside the domain

(1.3.8) |k| + max 2 (|n 1 |, . . . , |n p+1 |) ≥ c max(|n 1 |, . . . , |n p+1 |)
for some c > 0, and invariant under permutations of |n 1 |, . . . ,

|n p+1 |. Define R p (u 1 , . . . , u p+1 ) = p + 1 1 2 p+1 k n 1 • • • n p+1 A(|k|, |n 1 |, . . . , |n p+1 |) ×(Π k c)(Π n 1 Λ -1 m u 1 ) • • • (Π n p+1 Λ -1 m u p+1 ) (1.3.9) and (1.3.10) R p (u) = p+1 =0
R p (ū, . . . , ū , u . . . , u).

Then (1.3.7) is given by R p (u) and so contributes to the second term in the right hand side of (1.

3.3) if we show that R p ∈ R 0,ν p+1 . Set k 0 = n 0 -n 1 -• • • -n p+1 . Then Π n 0 R p (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) = p + 1 1 2 p+1 A(|k 0 |, |n 1 |, . . . , |n p+1 |)Π n 0 [(Π k 0 c)(Π n 1 Λ -1 m u 1 ) • • • (Π n p+1 Λ -1 m u p+1 )].
(1.3.11)

Using Sobolev injection, we see that the L 2 norm of this quantity is bounded from above for any N by

C N (1 + |k 0 |) -N (1 + max 2 (|n 1 |, . . . , |n p+1 |)) ν p+1 1 u j L 2
for some ν depending only on p. 

A(|k|, |n 1 |, . . . , |n p+1 |) 1 2 p+1 p + 1 p+1 j=1 (1 + |n j | 2 ) -1/2 × T d (Π k c)(Π -n 0 ū)(Π n 1 ū) • • • (Π n ū)(Π n +1 u) • • • (Π n p+1 u) dx .
(1.3.12)

Denote Π λ = 1 #{n ∈ Z d ; |n| = λ} n;|n|=λ Π n .
Then we can in (1.3.12) replace the integral by the quantity

T d ( Π |k| c)( Π |n 0 | ū) • • • ( Π |n | ū)( Π |n +1 | u) • • • ( Π |n p+1 | u) dx
which is real since c is real, and since (n 0 , . . . , n p+1 ) verify the condition defining the sum in (1.2.28). Consequently (1.3.12) vanishes identically, which shows that R p ∈ R 0,ν p+1 .

To finish the proof of the proposition, we are left with showing that (1.3.6) may be written as a contribution to the first term in the right hand side of (1.3.3). Define (1.3.13)

a p (u, ū; n p+1 ) = k n 1 • • • np (Π k c)(Π n 1 v) • • • (Π np v)χ |k| + |n | 1 + |n p+1 | 2 1 2 (m 2 + |n p+1 | 2 ) -1/2 .
Since c and v are real valued, and since Π n v = Π -n v, we see that a p is real valued. Set for

λ ∈ R d b(c, u 1 , . . . , u p ; λ) = 1 2 p k n 1 • • • np (Π k c)(Π n 1 Λ -1 m u 1 ) • • • (Π np Λ -1 m u p ) ×χ |k| + |n | √ 1 + λ 2 1 2 (m 2 + λ 2 ) -1/2 .
Then by the example following definition 1

.2.1, b ∈ Σ -1,ν p,δ
for some ν > 0, and for any given δ > 0 if Supp χ is taken small enough. Moreover

a p (u, ū; λ) = p =0 p b(c, ū, . . . , ū , u, . . . , u; λ) ∈ S -1,ν p,δ
and by definition 1.2.5, (1.3.6) equals Op(a p (u, ū; •))(u + ū) and so contributes to the first term in the right hand side of (1.3.3). Moreover, by (1.3.13), a p (u, ū; n p+1 ) = a p (u, ū; n p+1 ) if

|n p+1 | = |n p+1 |. 2
2 Proof of the main theorem

Geometric bounds

Consider the function on (R d ) p+2 depending on the parameter m ∈]0, +∞[, defined for = 0, . . . , p + 1 by

(2.1.1) F m (ξ 0 , . . . , ξ p+1 ) = j=0 m 2 + |ξ j | 2 - p+1 j= +1 m 2 + |ξ j | 2 .
The main result of this subsection is the following:

Theorem 2.1.1 Let A > 1 be given. There is a zero measure subset N of ]0, +∞[ such that for any integers 0 ≤ ≤ p + 1, any m ∈]0, +∞[-N , there are constants c > 0, N 0 ∈ N such that the lower bound The proof of the theorem will rely on some geometric estimates that we shall deduce from results of [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF]. Let I ⊂]0, +∞[ be some compact interval and define for 0 ≤ ≤ p + 1 functions

|F m (n 0 , . . . , n p+1 )| ≥ c(1 + |n 0 | + |n p+1 |) -d (log(e + |n 0 | + |n p+1 |) -A × (1 + |n 0 -n p+1 |) -N 0 (1 + |n 1 | + • • • + |n p |) -N 0 (2.
f : [0, 1] × [0, 1] p+2 × I -→ R (z, x 0 , . . . , x p+1 , y) → f (z, x 0 , . . . , x p+1 , y) g : [0, 1] × [0, 1] p × I -→ R, (z, x 1 , . . . , x p , y) → g (z, x 1 , . . . , x p , y) (2.1.3) by f (z, x 0 , . . . , x p+1 , y) = j=0 z 2 + y 2 x 2 j - p+1 j= +1 z 2 + y 2 x 2 j g (z, x 1 , . . . , x p , y) = z j=1 z z 2 + y 2 x 2 j - p j= +1 z z 2 + y 2 x 2 j
when z > 0, g (0, x 1 , . . . , x p , y) ≡ 0.

(2.1.4)

Then the graphs of f , g are subanalytic subsets of [0, 1] p+3 × I and [0, 1] p+1 × I respectively, so that f , g are continuous subanalytic functions (see Bierstone-Milman [START_REF] Bierstone | Semianalytic and subanalytic sets[END_REF] for an introduction to subanalytic sets and functions). Let us consider the set Γ of points (z, x) ∈ [0, 1] p+3 (resp. (z, x) ∈ [0, 1] p+1 ) such that y → f (z, x, y) (resp. y → g (z, x, y)) vanishes identically. If (z, x) ∈ Γ and z = 0, we must have = p 2 and

j≤ x 2κ j - j≥ +1 x 2κ j = 0 ∀k ∈ N *
where the sum is taken respectively for 0 ≤ j ≤ p + 1 in the case of f and 1 ≤ j ≤ p for g . This implies that there is a bijection σ : {0, . . . , } → { + 1, . . . , p + 1} (resp. σ : {1, . . . , } → { + 1, . . . , p}) such that x σ(j) = x j for any j = 0, . . . , (resp. j = 1, . . . , ) -see for instance the proof of lemma 5.6 in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF]. When p is even, denote by S p the set of all bijections respectively from {0, . . . , p/2} to { p 2 +1, . . . , p+1} and from {1, . . . , p/2} to { p 2 +1, . . . , p}. Define for 0 ≤ ≤ p+1

ρ (z, x) ≡ z if = p 2 ρ (z, x) = z σ∈Sp j≤p/2 (x 2 σ(j) -x 2 j ) 2 if = p 2 , (2.1.5)
where the sum in the above formula is taken for j ≥ 0 (resp. j ≥ 1) when we study f (resp. g ). Then the set {ρ = 0} contains those points (z, x) such that y → f (z, x, y) (resp. y → g (z, x, y)) vanishes identically. Let us prove the following result:

Proposition 2.1.2 (i) There are N ∈ N, α 0 > 0, δ > 0, C > 0 such that for any 0 ≤ ≤ p + 1, any α ∈]0, α 0 [, any N ≥ N , any (z, x) ∈ [0, 1] p+3 (resp. (z, x) ∈ [0, 1] p+1 ) with ρ (z, x) = 0, the sets I f (z, x, α) = {y ∈ I; |f (z, x, y)| < αρ (z, x) N } I g (z, x, α) = {y ∈ I; |g (z, x, y)| < αρ (z, x) N } (2.1.6)
have Lebesgue measure bounded from above by Cα δ ρ (z, x) N δ .

(ii) For any N ≥ N , there is K ∈ N such that for any α ∈]0, α 0 [, any (z, x) ∈ [0, 1] p+1 , the set I g (z, x, α) may be written as the union of at most K open disjoint subintervals of I.

Proof: (i) is nothing but the statement of theorem 5.1 in [START_REF] Delort | Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres[END_REF].

To prove (ii) we must show that I g (z, x, α) has a number of connected components bounded from above by a fixed constant K.

Let Σ = {(z, x, y, α) ∈ [0, 1] p+1 × I × [0, α 0 ]; |g(z, x, α)| < αρ(z, x) N }.
This is a relatively compact subanalytic subset of R p+3 . Consider the projection

π : [0, 1] p+1 × I × [0, α 0 ] → [0, 1] p+1 × [0, α 0 ] (z, x, y, α) → (z, x, α).
By theorem 2.5 of the paper of Hardt [START_REF] Hardt | Stratification of real analytic mappings and images[END_REF], the number of connected components of π -1 (z, x, α)∩Σ is uniformly bounded. This concludes the proof.

2

We shall deduce theorem 2.1.1 from several lemmas. Let us first introduce some notations. When p is odd or p is even and = p/2, we set Z p = ∅. When p is even and = p/2, we define

Z p = {n = (n 1 , . . . , n p ) ∈ (Z d ) p ; there is a bijection σ : {1, . . . , } → { + 1, . . . , p} such that |n σ(j) | = |n j | j = 1, . . . , }. (2.1.7)
We set also Of course, Z p = ∅ if p is odd or p is even and = p/2.

We remark first that it is enough to prove (2.1.2) for those (n 1 , . . . , n p ) which do not belong to Z p : actually, if p is even, = p/2 and (n 1 , . . . , n p ) ∈ Z p , we have |F m (n 0 , . . . , n p+1 )| =

m 2 + |n 0 | 2 -m 2 + |n p+1 | 2
which is bounded from below, when m stays in some compact interval, by

||n 0 | 2 -|n p+1 | 2 | m 2 + |n 0 | 2 + m 2 + |n p+1 | 2 ≥ c(1 + |n 0 | + |n p+1 |) -1 when |n 0 | = |n p+1 |, n 0 , n p+1 ∈ Z d . Consequently (2.1.
2) holds true trivially. From now on, we shall always consider p-tuples n which do not belong to Z p .

Let us define for = 0, . . . , p + 1 another function on (R d ) p given by (2.1.9)

G m (ξ 1 , . . . , ξ p ) = j=1 m 2 + |ξ j | 2 - p j= +1 m 2 + |ξ j | 2 .
Let J ⊂]0, +∞[ be a given compact interval. For α > 0,

N 0 ∈ N, 0 ≤ ≤ p + 1, n = (n 0 , . . . , n p+1 ) ∈ (Z d ) p+2 define E J (n, α, N 0 ) = {m ∈ J; |F m (n 0 , . . . , n p+1 )| < α(1 + |n 0 | + |n p+1 |) -d (log(e + |n 0 | + |n p+1 |)) -A ×(1 + |n 0 -n p+1 |) -N 0 (1 + |n 1 | + • • • + |n p |) -N 0 }. (2.1.10) We set also for β > 0, N 1 ∈ N * , n = (n 1 , . . . , n p ) ∈ (Z d ) p -Z p (2.1.11) E J (n , β, N 1 ) = m ∈ J; ∂G m ∂m (n 1 , . . . , n p ) < β(1 + |n 1 | + • • • + |n p |) -N 1 .
We define for γ > β a subset of (Z d ) p+2 by

S(β, γ, N 1 ) = (n 0 , . . . , n p+1 ) ∈ (Z d ) p+2 -Z p ; |n 0 | < γ 3β (1 + |n 1 | + • • • + |n p |) N 1 or |n p+1 | < γ 3β (1 + |n 1 | + • • • + |n p |) N 1 .
(2.1.12)

Lemma 2.1.3 Let δ, α 0 , N be the constants defined in the statement of proposition 2.1.2. There are constants

C 1 > 0, M ∈ N * such that for any β ∈]0, α 0 [, any N 1 ∈ N with N 1 ≥ M N and N 1 > dpM δ , one has (2.1.13) meas n ∈(Z d ) p -Z p E J (n , β, N 1 ) ≤ C 1 β δ .
Proof: Set y = 1 m and

z = 1 + p j=1 |n j | -1
, x j = |n j |z, j = 1, . . . , p.

Denote by X the set of points (z, x) ∈ [0, 1] p+1 of the preceding form for (n 1 , . . . , n p ) describing (Z d ) p . When p is even and = p/2, let X p be the image of Z p defined by (2.1.7) under the map n → (z, x). Using definition (2.1.5), we see that there are constants M > 0, C > 0, depending only on p, such that for 0

≤ ≤ p + 1 (2.1.14) ∀(z, x) ∈ X -X p , z M ≤ ρ (z, x) ≤ Cz.
Remark that

∂G m ∂m (n ) = j=1 m m 2 + |n j | 2 - p j= +1 m m 2 + |n j | 2 = 1 z g (z, x 1 , . . . , x p , y)
with the above notations. Then if

I = {m -1 ; m ∈ J}, we see that m ∈ E J (n , β, N 1 ) for n ∈ Z p if and only if y = 1 m satisfies (2.1.15) |g (z, x 1 , . . . , x p , y)| < βz N 1 +1 ≤ βρ (z, x) (N 1 +1)/M
using (2.1.14). Applying proposition 2.1.2 (i), we see that for any fixed value of (z, x) ∈ X -X p , the measure of those y such that (2.1.15) holds true is bounded from above by

Cβ δ ρ (z, x) N 1 +1 M δ ≤ Cβ δ z N 1 +1 M δ
if we assume N 1 ≥ M N and β ∈]0, α 0 [. Consequently, we get, with a constant C depending only on J,

meas (E J (n , β, N 1 )) ≤ C β δ (1 + |n 1 | + • • • + |n p |) -N 1 +1 M δ .
Inequality (2.1.13) follows from this estimate and the assumption on

N 1 . 2 Lemma 2.1.4 There are constants M ∈ N * , θ > 1, C 2 > 0 such that for any N 0 , N 1 ∈ N * satisfying N 0 > N M N 1 and N 0 δ > d(p + 2)M N 1 , any 0 < β < γ with γ β > θ, any α > 0 satisfying α[β/2γ] -N 0 /N 1 < α 0 , one has (2.1.16) meas n∈S(β,γ,N 1 ) E J (n, α, N 0 ) ≤ C 2 α δ β 2γ - N 0 N 1 δ . Proof: We first remark that if |n 0 | + |n p+1 | > γ β (1 + |n 1 | + • • • + |n p |) N 1 and n ∈ S(β, γ, N 1 ), then either |n 0 | ≥ 2 3 γ β (1 + |n 1 | + • • • + |n p |) N 1 or |n p+1 | ≥ 2 3 γ β (1 + |n 1 | + • • • + |n p |) N 1 which implies that |F m (n 0 , . . . , n p+1 )| ≥ c γ β (1 + |n 1 | + • • • + |n p |) N 1
for some constant c > 0 depending only on p and J, if γ β > θ large enough. Consequently, if α < α 0 small enough relatively to c, we see that we have in this case E J (n, α, N 0 ) = ∅ when n ∈ S(β, γ, N 1 ). We may therefore consider only indices n such that n ∈ S(β, γ, N 1 ) and

|n 0 | + |n p+1 | ≤ γ β (1 + |n 1 | + • • • + |n p |) N 1 .
Consequently, for m ∈ E J (n, α, N 0 ) and n ∈ S(β, γ, N 1 ),we have

|F m (n 0 , . . . , n p+1 )| < α(1 + |n 1 | + • • • + |n p |) -N 0 ≤ α[β/2γ] -N 0 /N 1 (1 + |n 0 | + • • • + |n p+1 |) -N 0 /N 1 . (2.1.17) Define for n ∈ (Z d ) p+2 (2.1.18) z = 1 + p+1 j=0 |n j | -1
, x j = |n j |z, j = 0, . . . , p + 1, denote by X ⊂ [0, 1] p+3 the set of points (z, x) of the preceding form, and let X p be the image of the set Z p defined by (2.1.8) under the map n → (z, x). By (2.1.5) we have again

∀(z, x) ∈ X -X p , z M ≤ ρ (z, x) ≤ Cz
for some large enough M , depending only on p. Moreover

F m (n 0 , . . . , n p+1 ) = m z f (z, x 0 , . . . , x p+1 , y)
and (2.1.17) implies that if n ∈ S(β, γ, N 1 ) and m ∈ E J (n, α, N 0 ), then y satisfies

|f (z, x 0 , . . . , x p+1 , y)| ≤ Cα β 2γ - N 0 N 1 z 1+ N 0 N 1 ≤ Cα β 2γ - N 0 N 1 ρ (z, x) 1 M 1+ N 0 N 1 . (2.1.19) 
We assume that α, N 0 , N 1 satisfy the conditions of the statement of the lemma. Then by (i) of proposition 2.1.2 we get that the measure of those y ∈ I satisfying (2.1.19) is bounded from above by

C α β 2γ - N 0 N 1 δ z δ M 1+ N 0 N 1
for some constant C, independent of N 0 , N 1 , α, β, γ. Consequently the measure of E J (n, α, N 0 ) is bounded from above when n ∈ S(β, γ, N 1 ) by

C α β 2γ - N 0 N 1 δ (1 + |n 0 | + • • • + |n p+1 |) -δ M 1+ N 0 N 1 .
The conclusion of the lemma follows by summation, using that δ M (1

+ N 0 N 1 ) > (p + 2)d. 2 
End of proof of theorem 2.1.1: We fix N 0 , N 1 satisfying the conditions stated in lemmas 2.1.3 and 2.1.4, and such that N 0 > dp + N 1 . We write when n ∈ S(β, γ, N 1 ), 0 ≤ ≤ p + 1,

E J (n, α, N 0 ) ⊂ [E J (n, α, N 0 ) ∩ E J (n , β, N 1 )] ∪ [E J (n, α, N 0 ) ∩ (E J (n , β, N 1 )) c ]
and estimate, using that we reduced ourselves to those n ∈ Z p

meas n;n ∈Z p E J (n, α, N 0 ) ≤ meas n∈S(β,γ,N 1 ) E J (n, α, N 0 ) + meas n ∈Z p E J (n , β, N 1 ) +meas n∈S(β,γ,N 1 ) c -Z p E J (n, α, N 0 ) ∩ (E J (n , β, N 1 )) c .
(2.1.20)

Let us bound the measure of E J (n, α, N 0 ) ∩ (E J (n , β, N 1 )) c for n ∈ S(β, γ, N 1 ) c -Z p . If m belongs to that set, the inequality in (2.1.10) holds true. Remark that we may assume ≤ p:

if = p + 1, |F m (n 0 , . . . , n p+1 )| ≥ c(1 + |n 0 | + |n p+1 |)
for some c > 0, which is not compatible with (2.1.10) for α < α 0 small enough. Let us write (2.1.10) as

||n 0 | -|n p+1 | + G m (n 0 , . . . , n p+1 )| < α(1 + |n 0 | + |n p+1 |) -d (log(e + |n 0 | + |n p+1 |)) -A ×(1 + |n 0 -n p+1 |) -N 0 (1 + |n 1 | + • • • + |n p |) -N 0 (2.1.21)
with, using notation (2.1.9),

G m (n 0 , . . . , n p+1 ) = G m (n 1 , . . . , n p ) + R m (n 0 , n p+1 ) R m (n 0 , n p+1 ) = m 2 + |n 0 | 2 -|n 0 | - m 2 + |n p+1 | 2 -|n p+1 | .
(2.1.22)

Since n ∈ S(β, γ, N 1 ) c , we have by (2.1.12)

(2.1.23)

|n 0 | ≥ γ 3β (1 + |n 1 | + • • • + |n p |) N 1 , |n p+1 | ≥ γ 3β (1 + |n 1 | + • • • + |n p |) N 1 .
Consequently, there is a constant C > 0, depending only on J, such that

∂R m ∂m (n 0 , n p+1 ) ≤ C β γ (1 + |n 1 | + • • • + |n p |) -N 1 .
If γ is large enough and m ∈ E J (n , β, N 1 ) c , we deduce from (2.1.11) that

(2.1.24) ∂ G m ∂m (n 0 , n p+1 ) ≥ β 2 (1 + |n 1 | + • • • + |n p |) -N 1 .
By (ii) of proposition 2.1.2, we know that there is K ∈ N, independent of α, β, γ, such that the set J -E J (n , β, N 1 ) is the union of at most K disjoint intervals J j (n , β, N 1 ), 1 ≤ j ≤ K. Consequently, we have and on each interval J j (n , β, N 1 ), (2.1.24) holds true. We may on each such interval perform in the characteristic function of (2.1.21) the change of variable of integration given by m → G m (n 0 , . . . , n p+1 ). Because of (2.1.24), this allows us to estimate the measure of (2.1.25) by

K 2 β α(1 + |n 0 | + |n p+1 |) -d (log(e + |n 0 | + |n p+1 |)) -A × (1 + |n 0 -n p+1 |) -N 0 (1 + |n 1 | + • • • + |n p |) -N 0 +N 1 .
Summing in n 0 , . . . , n p+1 , we see that since N 0 > dp + N 1 and A > 

C 2 α δ β 2γ - N 0 N 1 δ + C 1 β δ + C 3 α β 20 if α, β are small enough, γ is large enough and α β γ - N 0 
N 1 is small enough. If we take β = α σ , γ = α -σ with σ > 0 small enough, and α 1, we finally get for some δ > 0

meas n;n ∈Z p E J (n, α, N 0 ) ≤ Cα δ → 0 if α → 0 + .
This implies that the set of those m ∈ J for which (2.1.2) does not hold true for any c > 0 is of zero measure, and concludes the proof of the theorem. 2

In the following subsection, we shall also use a simpler version of theorem 2.1.1. Let us introduce some notations. For m ∈]0, +∞[, ξ j ∈ R d , j = 0, . . . , p+1, e = (e 0 , . . . , e p+1 ) ∈ {-1, 1} p+2 , define

(2.1.26)

F (e) m (ξ 0 , . . . , ξ p+1 ) = p+1 j=0 e j m 2 + |ξ j | 2 .
When p is even and #{j; e j = 1} = p 2 + 1, denote by Z (e) the set of all (n 0 , . . . , n p+1 ) ∈ (Z d ) p+2 such that there is a bijection σ from {j; 0 ≤ j ≤ p + 1, e j = 1} to {j; 0 ≤ j ≤ p + 1, e j = -1} so that for any j in the first set |n j | = |n σ(j) |. In the other cases, set Z (e) = ∅. Proposition 2.1.5 There is a zero measure subset N of ]0, +∞[, and for any m ∈]0, +∞[-N , there are N 0 ∈ N, c > 0 such that for any (n 0 , . . . , n p+1 ) in (Z d ) p+2 -Z (e) one has 

+ |n 0 | + |n p+1 |)(1 + |n 1 | + • • • + |n p |) -N 0 .
Proof: The proof of (2.1.27) is similar to the one of lemma 2.1.4. Define f (e) (z, x 0 , . . . , x p+1 , y) = p+1 j=0 e j z 2 + y 2 x 2 j for (z, x) ∈ [0, 1] p+3 , y belonging to some compact interval I of ]0, +∞[. Let X (resp. X (e) ) be the image of (Z d ) p+2 (resp. Z (e) ) under the map (n 0 , . . . , n p+1 ) → (z, x) given by (2.1.18). Using proposition 2.1.2, and reasoning as in the proof of lemma 2.1.4, one obtains that for large enough N 0 and small enough α, the measure of (2.1.29) {y ∈ I; ∃(z, x) ∈ X -X (e) , | f (e) (z, x, y)| < αz N 0 +1 } is bounded from above by Cα δ z δ(N 0 +1) for some uniform constant C > 0 and δ > 0. If N 0 is large enough, one deduces from this that the set of those m for which (2.1.27) does not hold true for any c > 0 is of zero measure.

To prove (2.1.28), remark that this inequality follows from (2.1.27) when there is some constant 

C > 0 such that |n 0 | + |n p+1 | ≤ C(1 + |n 1 | + • • • + |n p |).
(u(t, •)) = 1 2 Λ s m u(t, •), Λ s m u(t, •) .
We compute first the time derivative of the above quantity.

Lemma 2.2.1 There are ν ∈ R + , δ > 0 small enough and for any large enough s 0 ∈ R, any s ≥ s 0 , there are:

• Multilinear operators M p ∈ M 2s-2,ν p+1,δ κ ≤ p ≤ 2κ -1, 0 ≤ ≤ p, satisfying condition (1.2.17) for any p, • Multilinear operators M p ∈ M 2s-1,ν p+1,δ κ ≤ p ≤ 2κ -1, 0 ≤ ≤ p, • Elements R p ∈ R 2s,ν p+1 κ ≤ p ≤ 2κ -1, • A map u → S(u) defined on H s (T d , C) with values in R, satisfying when u H s 0 ≤ 1 (2.2.2) | S(u)| ≤ C u 2κ H s 0 u 2 H s such that d dt Θ s (u(t, •)) = 2κ-1 p=κ p =0 Re i M p (ū, . . . , ū , u, . . . , u p+1 
- ), u + 2κ-1 p=κ p =0 Re i M p (ū, . . . , ū , u, . . . , u p+1 
- ), ū + 2κ-1 p=κ Re i R p (u, ū), u + S(u).
(2.2.3)

Proof: We compute using (1.3.3)

d dt Θ s (u(t, •)) = Re Λ s m ∂ t u(t, •), Λ s m u(t, •) = 2κ-1 p=κ Re i Λ 2s m Op(a p (u, ū; •))u, u + 2κ-1 p=κ Re i Λ 2s m Op(a p (u, ū; •))ū, u + 2κ-1 p=κ Re i Λ 2s m R p (u), u + Re i Λ s m S(u), Λ s m u .
(2.2.4)

The last term gives S(u). The first term in the right hand side may be written

2κ-1 p=κ Re i 2 [Λ 2s m Op(a p (u, ū; •)) -Op(a p (u, ū; •)) * Λ 2s m ]u, u
and so, since a p is real valued and of order -1, gives according to proposition 1.2.7 the first sum in the right hand side of (2.2.3). Define a p,∨ (u, ū; n) = a p (u, ū; -n). Since a p is real valued, we may write the general term of the second sum in the right hand side of (2.2.4)

-Re i Λ 2s m Op(a p (u, ū; •))ū, u = -Re i Λ 2s m Op(a p,∨ (u, ū; •))u, ū = p =0 Re i M p (ū, . . . , ū , u, . . . , u p+1- 
), ū for some M p ∈ M 2s-1,ν p+1,δ , by lemma 1.2.6. This gives the second sum in the right hand side of (2.2.3). Finally, up to a change of notations, the last but one term in (2.2.4) gives the last but one term in (2.2.3). This concludes the proof.
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Our aim now is to perturb Θ s (u(t, •)) in such a way that terms homogeneous of degree smaller than 2κ + 2 will be eliminated in the right hand side of (2.2.3).

Proposition 2.2.2

There is s 0 large enough and for any s > s 0 two maps

Θ 1 s : H s (T d , C)×]0, 1/2[ → R (u, ) → Θ 1 s (u, ) Θ 2 s : H s (T d , C) → R u → Θ 2 s (u), (2.2.5) 
such that there is a constant C s > 0 and for any u

∈ H s (T 2 , C) with u H s 0 ≤ 1, any ∈]0, 1/2[ |Θ 1 s (u, )| ≤ C s |log | A -κ 1-2 d u κ H s 0 u 2 H s |Θ 2 s (u)| ≤ C s u κ H s 0 u 2 H s , (2.2.6) 
and such that

(2.2.7) R(u) def = d dt [Θ s (u(t, •)) -Θ 1 s (u(t, •), ) -Θ 2 s (u(t, •))] satisfies for any ∈]0, 1/2[ (2.2.8) |R(u)| ≤ C s |log | A -κ 1-2 d u 2κ H s 0 u 2 H s + C s 2κ d u κ H s 0 u 2 H s .
To prove proposition 2.2.2, we shall need the following lemma. When M (u 1 , . . . , u p+1 ) is a (p + 1)-linear form, let us define for 0 ≤ ≤ p + 1

L ± (M )(u 1 , . . . , u p+1 ) = ±Λ m M (u 1 , . . . , u p+1 ) - j=1 M (u 1 , . . . , Λ m u j , . . . , u p+1 ) + p+1 j= +1
M (u 1 , . . . , Λ m u j , . . . , u p+1 ).

(2.2.9)

Lemma 2.2.3 Let N be the subset defined in theorem 2.1.1, and fix m ∈]0, +∞[-N . There is ν such that the following statements hold true for any δ > 0 small enough, any large enough s, any integer p with κ ≤ p ≤ 2κ -1, any integer with 0 ≤ ≤ p + 1:

(i) If M p is an element of M 2s-2,ν p+1,δ , define (2.2.10) M p, (u 1 , . . . , u p+1 ) = n 0 n p+1 1 {|n 0 |+|n p+1 |< -κ/d ,|n 0 | =|n p+1 |} Π n 0 M p (u 1 , . . . , u p , Π n p+1 u p+1 ).
Then there is M p, ∈ M 2s,ν+ν p+1,δ satisfying

(2.2.11) L -(M p, )(u 1 , . . . , u p+1 ) = M p, (u 1 , . . . , u p+1 )
with the estimate for all N ≥ ν (2.2.12)

M p, M 2s,ν+ν p+1,δ (N -ν) ≤ C|log | A -κ 1-2 d M p M 2s-2,ν p+1,δ (N ) . (ii) Let M p ∈ M 2s-1,ν p+1,δ . There is M p ∈ M 2s-2,ν+ν p+1,δ with (2.2.13) L + ( M p )(u 1 , . . . , u p+1 ) = M p (u 1 , . . . , u p+1 ).
(iii) Let R p ∈ R 2s,ν p+1 . Assume that for any (n 0 , . . . , n p+1 ) ∈ Z (e) defined after (2. Proof: (i) We substitute in (2.2.11) Π n j u j to u j j = 1, . . . , p + 1, and compose on the left with Π n 0 . According to (2.2.9) and using notations (2.1.1), equality (2.2.11) may be written (2.2.16) -F m (n 0 , . . . , n p+1 )Π n 0 M p, (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) = Π n 0 M p, (Π n 1 u 1 , . . . , Π n p+1 u p+1 ).

We may use (2. F m (n 0 , . . . , n p+1 )

-1 Π n 0 M p, (Π n 1 u 1 , . . . , Π n p+1 u p+1 )

we obtain according to (2.2.17) and definition 1.2.2, that M p, ∈ M 2s,ν+2N 0 p+1,δ with the estimate (2.2.12) with ν = 2N 0 . This gives (i) of the lemma.

(ii) In the same way as above, we deduce from (2.2.13) and (2.2.9) the equality (2.2.18) F (e) m (n 0 , . . . , n p+1 )Π n 0 M p (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) = Π n 0 M p (Π n 1 u 1 , . . . , Π n p+1 u p+1 )

where F If we assume that T ≤ c -κ 1+ 2 d |log | -A for a small enough c > 0, and that is small enough, we get u(t, •) 2 H s ≤ C(2B 2 ) 2 . If K has been chosen initially so that 2CB 2 < K 2 , we get by a standard continuity argument that the a priori bound u(t, •) H s ≤ K holds true on [0, c -κ 1+ 2 d |log | -A ], and so that the solution extends to such an interval. This concludes the proof of the theorem.
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  |F m (|n 0 |, . . . , |n p+1 |)| ≥ c(1 + |n 0 | + |n p+1 |) -d log(e + |n 0 | + |n p+1 |) -A ×(1 + |n 0n p+1 |) -N 0 (1 + |n 1 | + • • • + |n p |) -N 0 (0.0.8) for any n 0 , . . . , n p+1 ∈ Z d with |n 0 |, |n p+1 | |n 1 | + • • • + |n p | (stillassuming for simplification that p is odd).

  such that there is a family a of elements of Σ µ,ν p,δ = 0, . . . , p, and a family of functions c ∈ C ∞ (T d , C), such that (1.2.10) a(u, ū; λ) = p =0 a (c , ū, . . . , ū , u, . . . , u p-; λ).

  2.22) |n -k| ≤ Cδ(|n| + |k|) and |n | = max(|n 1 |, . . . , |n p |) ≤ δ(|n| + |k|).

3 . 5 )

 35 as a sum of terms for which |k| + max 2 (|n 1 |, . . . , |n p+1 |) is much smaller than max(|n 1 |, . . . , |n p+1 |) and a remaining term: take χ ∈ C ∞ 0 (R), χ ≡ 1 close to zero, Supp χ small enough. Then (1.3.5) is the sum of (1.3.6)

1 . 2 )

 12 holds true for any n 0 , . . . , n p+1 ∈ Z d satisfying the following conditions: • If p is odd, or p is even and = p/2, |n 0 |, |n p+1 | > max(|n 1 |, . . . , |n p |), • If p is even and = p/2, |n 0 |, |n p+1 | > max(|n 1 |, . . . , |n p |) and |n 0 | = |n p+1 |.

( 2 . 1 . 8 )

 218 Z p = {(n 0 , n , n p+1 ) ∈ (Z d ) p+2 ; n ∈ Z p and |n 0 | = |n p+1 |}.

( 2 .

 2 1.25) E J (n, α, N 0 ) ∩ (E J (n , β, N 1 )) c ⊂ K j=1 {m ∈ J j (n , β, N 1 ); (2.1.21) holds true},

( 2 .

 2 1.27) | F (e) m (n 0 , . . . , n p+1 )| ≥ c(1 + |n 0 | + • • • + |n p+1 |) -N 0 . Moreover, if e 0 e p+1 =1, one has the inequality (2.1.28) | F (e) m (n 0 , . . . , n p+1 )| ≥ c(1

  1.26) withe 0 = • • • = e = -1, e +1 = • • • = e p+1 = 1, any u 1 , . . . , u p+1 (2.2.14) Π n 0 R p (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) ≡ 0.Then there is R p ∈ R 2s,ν+ν p+1 such that (2.2.15) L -(R p )(u 1 , . . . , u p+1 ) = R p (u 1 , . . . , u p+1 ).

1 . 2 )

 12 to bound |F m (n 0 , . . . , n p+1 )| from below, since the assumption concerning (n 0 , . . . , n p+1 ) of theorem 2.1.1 holds true because of condition (1.2.8) of definition 1.2.2, and because of the cut-off for |n 0 | = |n p+1 | in (2.2.10). We deduce from (2.1.2) and the condition|n 0 | + |n p+1 | ≤ -κ/d the estimate |F m (n 0 , . . . , n p+1 )| -1 ≤ C(1 + |n 0 | + |n p+1 |) 2 -κ 1-2 d |log | A × (1 + |n 0n p+1 |) N 0 (1 + |n 1 | + • • • + |n p |) N 0 .(2.2.17) If we define M p, (u 1 , . . . , u p ) = -

m

  is defined by (2.1.26) with e 1 = • • • = e = -1, e 0 = e +1 = • • • = e p+1 = 1. Remark that we may assume that (n 0 , . . . , n p+1 ) ∈ Z (e) defined after (2.1.26). Actually, because of the support condition (1.2.8), we cannot find any j ∈ {1, . . . , } such that |n j | = |n 0 |. Consequently, we may use the lower bound (2.1.28). If we define M p dividing in (2.2.18) by F (e)m , we thus see that we get an element of M 2s-2,ν+ν p+1,δ for some ν. This gives (ii).(iii) We deduce again from (2.2.15)F (e) m (n 0 , . . . , n p+1 )Π n 0 R p (Π n 1 u 1 , . . . , Π n p+1 u p+1 ) = Π n 0 R p (Π n 1 u 1 , . . . , Π n p+1 u p+1 )where e 0 = • • • = e = -1, e +1 = • • • = e p+1 = 1. By

( 1 + 1 ( 1 + 1 u

 1111 |n 0 | + |n p+1 |) 2s-2 (1 + |n |) ν+N (|n 0n p+1 | + |n | + 1) N ×1 {|n 0 |+|n p+1 |≥ -κ/d ,|n 0 -n p+1 |<δ(|n 0 |+|n p+1 |),|n |<δ(|n 0 |+|n p+1 |)} ×(1 + |n 0 |) -s (1 + |n p+1 |) -s p |n j |) -s 0 c n p+1 p j H s 0 u p+1 H s (2.2.20)for a sequence (c n p+1 ) n p+1 in the unit ball of 2 . The gain of two powers of (|n 0 | + |n p+1 |) in the first term in the right hand side, coming from the fact that M p ∈ M 2s-2,ν p+1,δ , together with the condition |n 0 | + |n p+1 | > -κ/d , allows us to estimate, for N large enough and s 0

  u 1 , . . . , u p ) and smooth in λ.(ii) δ For any n 0 , . . . , n p ∈ Z d , λ ∈ R such that max(|n 0 |, . . . , |n p |) > δ|λ|, one has For any α, β ∈ N d , there is C > 0 such that for any n 0 , . . . ,n p ∈ Z d , any λ ∈ R d , . . . , ϕ np , λ) L ∞ (T d ) ≤ C λ µ-|β| (1 + |n 0 | + • • • + |n p |) ν+|α| .

	Moreover, when n p+1 = n 0 + • • • + n p
	(1.2.5)		a(ϕ n 0 , . . . , ϕ np , λ), ϕ n p+1 ≡ 0.
	(iii) (1.2.6) λ a(ϕ n 0 Remark Inequality (1.2.6) shows that the map (1.2.3) may be extended to H s (T d ) p+1 × R d for ∂ α x ∂ β s large enough.
	An example of a symbol satisfying the conditions of definition 1.2.1 may be obtained as follows.
	Let λ → b(λ) be a symbol of order µ on R d (in the usual sense). Let A(X 0 , . . . , X p ) be a p + 1 linear form on (C d ) p+1 , and let χ ∈ C ∞ 0 (R). Define if γ 0 , . . . , γ p ∈ R (1.2.7)
	a(c, u 1 , . . . , u p , λ) =	χ	max(|n 0 |, . . . , |n p
	n 0 ,...,np		
	(1.2.4)		a(ϕ n 0 , . . . , ϕ np , λ) ≡ 0.

  that (1.2.20) and (1.2.19) and the definition of A imply that (1.2.17) holds true. Moreover

p =0 M (ū, . . . , ū , u, . . . , u p+1-

  If n 1 , . . . , n p+1 ∈ Z d and if i 0 ∈ {1, . . . , p + 1} is such that |n i 0 | = max(|n 1 |, . . . , |n p+1 |), we denote (1.2.23) max 2 (|n 1 |, . . . , |n p+1

  If |k 0 | ≥ c 2 max(|n 1 |, . . . , |n p+1 |) we get an upper bound of form (1.2.24). If |k 0 | < c 2 max(|n 1 |, . . . , |n p+1 |), it follows from (1.3.8) that max the left hand side of (1.2.28), with R replaced by R p given by (1.3.11), equals Im n 0 ,...,n p+1 k

2 (|n 1 |, . . . , |n p+1 |) ≥ c 2 max(|n 1 |, . . . , |n p+1 |) and from the equality n 0 = k 0 +n 1 +• • •+n p+1 that |n 0 | ≤ C max(|n 1 |, . . . , |n p+1 |). Consequently, estimate (1.2.24) for (1.3.11) is trivial, and R p ∈ R 0,ν p+1 . When p is even and = p/2,

  On the other hand, when |n 0 | + |n p+1 | > C(1 + |n 1 | + • • • + |n p |) with a large enough C, (2.1.28) is trivial because of the assumption e 0 e p+1 = 1. This concludes the proof.

	2.2 Energy inequality and proof of the main theorem
	We shall prove the main theorem, estimating for u solution of (1.3.3)
	(2.2.1)	Θ s
		2
		21

  condition (2.2.14) we may assume that (n 0 , . . . , n p+1 ) ∈ Z(e) . Using (2.1.27), we deduce from the above equality and definition 1.2.8 that R p ∈ R 2s,ν+ν p+1 . This concludes the proof. 2Proof of proposition 2.2.2: Consider the right hand side of (2.2.3). Since M p satisfies conditions (1.2.17), we may always assume that Π n 0 M p (u 1 , . . . , u p , Π n p+1 u p+1 ) ≡ 0 for any u 1 , . . . , u p+1 and any n 0 , n p+1 with |n 0 | = |n p+1 |. Let us then decomposeM p (u 1 , . . . , u p+1 ) = M p, (u 1 , . . . , u p+1 ) + V p, (u 1 , . . . , u p+1 )where the first term is given by (2.2.10) and the second one by (2.2.19) V p, (u 1 , . . . , u p+1 ) =n 0 n p+1 1 {|n 0 |+|n p+1 |≥ -κ/d } Π n 0 M p (u 1 , . . . , u p , Π n p+1 u p+1 ).By (1.2.9), we get Π n 0 V p, (u 1 , . . . , u p+1 ) H -s ≤ C N

	n 1	• • •

ANR project Equa-disp.

Re i V p, (ū, . . . , ū, u, . . . , u), u is bounded from above by the last term in the right hand side of (2.2.8). In the rest of the proof, we may therefore replace in the right hand side of (2.2.3) M p by M p, .

The contributions R p ∈ R 2s,ν p+1 in the right hand side of (2.2.3) satisfy condition (1.2.28). Consequently, we may assume that (2.2.14) holds true for R p . Apply now (i) (resp. (ii), resp. (iii)) of lemma 2.2.3 to M p, (resp. M p , resp. R p ). This defines M p, (resp. M p , resp. R p ). Set

), u .

(2.2.22)

The general term in Θ 1 s (u, ) has modulus bounded from above by

for u in the unit ball of H s 0 , using lemma 1.2.3 and (2.2.12). This gives the first inequality (2.2.6). To obtain the estimate of Θ 

(2.2.24) Take B > 1 a constant such that for any (v 0 , v 1 ) in the unit ball of H s+1 × H s , u(0, •) = (-iv 1 + Λ m v 0 ) satisfies u(0, •) H s ≤ B . Let K > B be another constant to be chosen, and assume that for τ in some interval [0, T ] we have u(τ, •) H s ≤ K and u(τ, •) H s 0 ≤ 1. Using (2.2.1) and (2.2.6) we deduce from (2.2.24) that there is a constant C > 0, independent of B, K, , such that as long as t ∈ [0, T ]