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diffusion processes in quadratic metric.

Part 1: Sharp non-asymptotic oracle inequalities
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Abstract

An adaptive nonparametric estimation procedure is constructed for

the estimation problem of the drift coefficient in diffusion processes. A

non-asymptotic oracle upper bound for the quadratic risk is obtained.
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1 Introduction

Let (Ω,F , (F)t≥0,P) be a filtered probability space on which the following

stochastic differential equation is defined

dyt = S(yt) dt+ dwt , 0 ≤ t ≤ T , (1.1)

where (wt)t≥0 is a scalar standard Wiener process, the initial value y0 is a

given constant and S(·) is an unknown function.

The problem is to estimate the function S from observations of (yt)0≤t≤T

in non-asymptotic setting, and to obtain sharp non-asymptotic bounds for a

minimax quadratic risk. This problem is important for applications.

It seems that, for the first time, the problem of non-asymptotic parameter

estimation for diffusion processes has been studied in [1] for wobling analysis

of the axis of the equator. There, for a special diffusion process, the exact

distribution of the ML-estimators of unknown parameters has been obtained

for any finite sample time T . Unfortunately, in the majority cases, when

the sample time is finite, it is difficult to study classical estimators such

as LS-estimators or ML-estimators since they are non-linear functionals of

observations.

The paper [18] has shown that many difficulties in non-asymptotic pa-

rameter estimation for one-dimensional diffusion processes can be overcome

by the sequential approach. It turns out that the sequential ML-estimator is

more advantageous than the usual one. In particular, it is possible to calcu-

late non-asymptotic bounds for quadratic risk in the sequential procedure.

By making use of the sequential approach non-asymptotic parameter esti-

mation problems have been studied in [16], [5] for multidimensional diffusion

processes and recently in [6] for multidimensional continuous and discrete
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time semimartingales. In the paper [17] a truncated sequential method has

been developed for parameter estimation in diffusion processes.

The sequential approach to nonparametric minimax estimation problem

of the drift coefficient in ergodic diffusion processes has been developed in

[7]-[10],[12]. The papers [7], [8],[10] deal with sequential pointwise kernel esti-

mators of the drift coefficient. A non-asymptotic upper bound was obtained

for absolute error risks. The estimators yield also the optimal convergence

rate as the sample time T →∞. In the paper [8] it is shown that this proce-

dure is minimax and adaptive in the both cases when either the smoothness

is known or unknown. The same type of the sequential kernel estimators

is used in the paper [9] for the nonparametric estimation in the L2−metric

of the drift coefficient via model selection. A non-asymptotic upper bound

for the quadratic risk is proved. The procedure is minimax and adaptive in

the asymptotic setting as well. A sequential asymptotically efficient kernel

estimator is constructed for pointwise drift estimation in [12].

A new method using the concentration inequality for the nonlinear LS-

estimators analysis has been proposed in [3], [19] for homoscedastic nonpara-

metric gaussian regression. A non-asymptotic upper bound for a quadratic

risk (the Oracle inequality) was obtained which is best over the LS-estimators.

This method was developed in [4] for any estimators to regression mod-

els with depending noises for which a non-asymptotic Oracle inequality has

been proved. Further development of this method was done recently in [11]

for heteroscedastic nonparametric regression models with a varying variance

depending on unknown regression function. In the last paper weighted LS-

estimators were used to obtain the non-asymptotic Oracle inequality.
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This paper deals at the first time with the non-asymptotic estimation of

the drift coefficient S in adaptive setting for the quadratic risk

R(ŜT , S) = ES‖ŜT − S‖2 , (1.2)

where ŜT is an estimator of S, ‖S‖2 =
∫ b
a
S2(x)dx , a, b are some real num-

bers, b− a ≥ 1. Here ES is the expectation with respect to the distribution

law PS of the process (yt)t≥0 given the drift S.

Our main goal is to construct by sequential methods an adaptive estima-

tor Ŝ∗ of the function S in (1.1) and to show that the quadratic risk of this

estimator satisfies a sharp non-asymptotic oracle inequality with respect to

a family of weighted LS-estimators.

The sharp non-asymptotic oracle inequality with respect to a estimators

family (Ŝα , α ∈ A) means that the principal term in the upper bound for

the quadratic risk has a coefficient which closes to one, i.e.

R(ŜT , S) ≤ (1 +D(ρ)) min
α∈A

R(Ŝα, S) +
BT (ρ)

T
, (1.3)

where the function D(ρ) → 0 as ρ → 0 and BT (ρ) is some slowly varying

function, i.e. for any δ > 0 and ρ > 0,

lim
T→∞

BT (ρ)

T δ
= 0 . (1.4)

The goal of this paper is to obtain this inequality for model (1.1). To

this end we pass to a discrete time regression model by making use of the

truncated sequential procedure introduced in [8], [9] and [12] and we come

to the Γ- regression scheme, i.e. the sequential kernel estimator at the point

xk on the set Γ has the following representation

Yk = S(xk) + ζk . (1.5)
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Here, see [9], in the contrast with the classical regression model, the noise

sequence (ζk)k≥1 has a complex structure, i.e.

ζk = σk ξk + δk , (1.6)

where (σk)k≥1 is a sequence of observed random variables, (δk)k≥1 is a se-

quence of bounded random variables and (ξk)k≥1 is a sequence of i.i.d. ran-

dom variables N (0, 1) which are independent of (σk)k≥1.

In this paper we propose a new method to construct adaptive estimators

that is based on the approach proposed in [11] and on the penalisation method

proposed in [2]. In our method we propose to add an penalty term with a

small coefficient into the quadratic loss functional used to find an estimator.

This new functional criterion with the penalty term allows us to obtain a

sharp oracle inequality and the above small coefficient provides that the

principal term of the oracle inequality has a coefficient closes to one. The

new criterion allows us to overcome difficulties bound up with depending

noises appearing after the discrete Fourier transformation to model (1.5).

To estimate the function S in model (1.5) we make use of the estimator

family (Ŝα , α ∈ A), where Ŝα is a weighted least squares estimator with

the Pinsker weights. For this family similarly to [11], we construct a special

selection rule, i.e. a random variable α∗ with values in A, for which we

define the selection estimator as Ŝ∗ = Ŝα∗ . We show (see Theorem 3.2 ) that

this selection rule for any 0 < ρ < 1/6 and any T ≥ 32 satisfies the oracle

inequality (1.3) with

D(ρ) =
11ρ+ 7ρ2 + 3ρ3

1− 6ρ
(1.7)

and with some function BT (ρ) satisfying property (1.4).
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We make use of the non-asymptotic analysis method from [11] based

on the non-asymptotic investigation proposed in [2] for the family of least-

squares estimators and developed in [4] for some other families of estimators.

In the second part of this investigation we prove the asymptotic efficiency

of the proposed procedure that is we show that the oracle inequality (1.3)

provides the minimal quadratic risk which coinsides with the Pinsker con-

stant. Juste in this sense the inequality (1.3) is sharp.

The paper is organized as follows. In the next Section we give the defi-

nitions of functional classes and the passage from diffusion model (1.1) to a

discrete time regression model. In Section 3 the sharp non-asymptotic oracle

inequality is given for the regression model (Theorem 3.1). In Section 4 we

prove Theorem 3.1 and Theorem 3.2. Appendix contains the proofs of some

technique results.

2 Passage to a discrete time regression model

To obtain a good estimate of the function S, it is necessary to impose some

conditions on the function S which are similar to the periodicity of the deter-

ministic signal in the white noise model. One of conditions which is sufficient

for this purpose is the assumption that the process (yt) in (1.1) returns to

any vicinity of each point x ∈ [a, b] infinite times. The ergodicity of (yt)

provides this property.

Let L > 1. We define the following functional class :

ΣL = {S ∈ LipL(R) : sup
|z|≤L

|S(z)| ≤ L ; ∀|x| ≥ L ,

∃ Ṡ(x) ∈ C such that − L ≤ Ṡ(x) ≤ −1/L} , (2.1)
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where

LipL(R) =

{
f ∈ C(R) : sup

x,y∈R

|f(x)− f(y)|
|x− y|

≤ L

}
.

First of all, note that if S ∈ ΣL, then there exists the ergodic density

q(x) = qS(x) =
exp{2

∫ x
0
S(z)dz}∫ +∞

−∞ exp{2
∫ y

0
S(z)dz}dy

(2.2)

(see,e.g., Gihman and Skorohod (1972), Ch.4, 18, Th2). It is easy to see that

this density is uniformly bounded in the class (2.1), i.e.

q∗ = sup
x∈R

sup
S∈ΣL

qS(x) < +∞

and bounded away from zero on the interval [−b∗, b∗], i.e.

q∗ = inf
|x|≤b∗

inf
S∈ΣL

qS(x) > 0 , (2.3)

where b∗ = 1 + |a| + |b|. Moreover, we note that the functions from ΣL are

uniformly bounded, i.e.

s∗ = sup
a≤x≤b

sup
S∈ΣL

S2(x) <∞ . (2.4)

To obtain the oracle inequality we pass to discrete time regression model

(1.5) by the same way as in [9]. We start with the partition of the interval

[a, b] by points (xk)1≤k≤n defined as

xk = a +
k

n
(b− a) (2.5)

with n = 2[(T − 1)/2] + 1 ([x] is the integer part of x). At each point xk we

will estimate the function S by the sequential kernel estimator from [9]-[10].

We fix some 0 < t0 < T and we set

τk = inf{t ≥ t0 :

∫ t

t0

Q

(
ys − xk
h

)
ds ≥ Hk} (2.6)
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and

S∗
k

=
1

Hk

∫ τk

t0

Q

(
ys − xk
h

)
dys , (2.7)

where Q(z) = 1{|z|≤1}, h = (b−a)/(2n) and Hk is a positive threshold. From

(1.1) it is easy to obtain that

S∗
k

= S(xk) + ζk .

The error term ζk is represented as the following sum of the approximated

term Bk and the stochastic term:

ζk = Bk +
1√
Hk

ξk ,

where

Bk =
1

Hk

∫ τk

t0

Q

(
ys − xk
h

)
(S(ys) − S(xk))ds ,

ξk =
1√
Hk

∫ τk

t0

Q

(
ys − xk
h

)
dws .

Taking into account that the function S is lipschitzian, we obtain the upper

bound for the approximated term as

|Bk| ≤ Lh . (2.8)

It is easy to see that the random variables (ξk)1≤k≤n are i.i.d. normal N (0, 1).

Moreover, in [12] it is established that the efficient kernel estimator of type

(2.7) has the stochastic term distributed as N (0, 2ThqS(xk)). Therefore for

the efficient estimation at each point xk by kernel estimator (2.7) we need to

estimate the ergodic density (2.2) from the observations (yt)0≤t≤t0 . We put

q̃T (xk) = max{q̂(xk) , εT} ,
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where εT is positive, 0 < εT < 1,

q̂(xk) =
1

2t0h

∫ t0

0

Q

(
ys − xk
h

)
ds . (2.9)

Now we choose the threshold Hk in (2.6)–(2.7) as

Hk = (T − t0)(2q̃T (xk)− ε2
T
)h .

We suppose that for any T ≥ 32 the parameters t0 = t0(T ) and εT satisfy

the following conditions

16 ≤ t0 ≤
T

2
and

√
2 t

−1/8
0 ≤ εT ≤ 1 . (2.10)

Moreover,

lim
T→∞

εT = 0 , lim
T→∞

TεT
t0(T )

= ∞ . (2.11)

Finally, we assume also for any δ > 0 and µ > 0,

lim
T→∞

T µ e−δ
√
t0 = 0 . (2.12)

For example, one can take, for T ≥ 32,

t0 = max{min{ln4 T , T/2} , 16} and εT =
√

2 t
−1/8
0 .

We set now

Γ = {max
1≤k≤n

τk ≤ T} and Yk = S∗
k
1Γ . (2.13)

Therefore on the set Γ one has the discrete time regression model (1.5) with

δl = Bl and σ2
l =

n

(T − t0)(q̃T (xl)− ε2
T
/2)(b− a)

. (2.14)

To study properties of the set Γ we introduce the following functions

%(c, L) = 2c

(
eL

3

+
2q∗

q∗
+ q∗

∫ ∞

0

e−z
2/L+2Lzdz

)
,

K∗(L) = Lmax
(
y2

0
, L2(1 + 2L2 + 2L)2

)
+ y2

0
+ 1
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and

γ(c, L) =
1

54%2(c, L)K∗(L)
. (2.15)

In Appendix A.1 we show the following result.

Proposition 2.1. Suppose that the parameters t0 and εT satisfy the condi-

tions (2.10)–(2.12). Then

sup
S∈ΣL

P(Γc) ≤ T1{q∗<2εT } + 16Te−γ1
√
t01{q∗≥2εT } := ΠT (2.16)

with

γ1 = γ(2, L) min(q2
∗, 1/8) .

Note that the conditions (2.10)–(2.12) imply directly that for any m > 0

lim
T→∞

Tm ΠT = 0 . (2.17)

3 Oracle inequalities

In this section we consider the estimation problem for the following discrete

time regression model. We suppose that on some set Γ ⊆ Ω we have the

following nonparametric regression

Yl = S(xl) + ζl , 1 ≤ l ≤ n , (3.1)

where ζl = σl ξl + δl and n is odd. The points (xl)1≤l≤n are defined in

(2.5) with b − a ≥ 1. The function S is unknown and to be estimated from

observations Y1, . . . , Yn. The quality of an estimator Ŝ will be measured by

the empiric squared error

‖Ŝ − S‖2
n = (Ŝ − S, Ŝ − S)n =

b− a

n

n∑
l=1

(Ŝ(xl)− S(xl))
2 .
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We suppose that (ξi)1≤i≤n is a sequence of i.i.d. random variables N (0, 1),

(σl)1≤l≤n is a sequence of observed positive random variables independent of

(ξi)1≤i≤n and bounded by some nonrandom constant ςn ≥ 1, i.e.

max
1≤l≤n

σ2
l ≤ ςn . (3.2)

Concerning the random sequence δ = (δl)1≤l≤n we suppose that

ES ‖δ‖2
n
<∞ . (3.3)

Note that the model (1.5) is a particular case of (3.1) with Γ defined in

(2.13) and δl = Bl. Indeed, in view of the inequality (2.6), we obtain that,

for any function S ∈ LipL,

max
1≤l≤n

|Bl| ≤ Lh =
L(b− a)

2n
.

Therefore, in this case

‖δ‖2
n
≤ L2(b− a)3

4n2
. (3.4)

Moreover from (2.14), in view of condition (2.10), we obtain that

max
1≤l≤n

σ2
l ≤

4

(b− a)εT
≤ max

(
4

(b− a)εT
, 1

)
= ςn . (3.5)

We make use of the trigonometric basis (φj)j≥1 in L2[a, b] with

φ1 =
1√
b− a

, φj(x) =

√
2

b− a
Trj(2π[j/2]v(x)) , j ≥ 2 , (3.6)

where the function Trj(x) = cos(x) for even j and Trj(x) = sin(x) for odd

j; v(x) = (x − a)/(b − a). This basis is orthonormal for the empiric inner

product generated by the sieve (2.5) , i.e. for any 1 ≤ i, j ≤ n,

(φi , φj)n =
b− a

n

n∑
l=1

φi(xl)φj(xl) = Krij , (3.7)
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where Krij is Kronecker’s symbol.

By making use of this basis we apply the discrete Fourier transformation

to (3.1) and we obtain the Fourier coefficients

θ̂j,n =
b− a

n

n∑
l=1

Ylφj(xl) , θj,n =
b− a

n

n∑
l=1

S(xl)φj(xl) .

From (3.1) it follows directly that these Fourier coefficients satisfy the fol-

lowing equation

θ̂j,n = θj,n + ζj,n (3.8)

with

ζj,n =

√
b− a

n
ξj,n + δj,n ,

where

ξj,n =

√
b− a

n

n∑
l=1

σlξlφj(xl) and δj,n =
b− a

n

n∑
l=1

δl φj(xl) .

Notice that inequality (3.3) and the Bouniakovskii-Cauchy-Schwarz inequal-

ity imply that

|δj,n| ≤ ‖δ‖n ‖φj‖n = ‖δ‖n . (3.9)

We estimate the function S on the sieve (2.5) by the weighted least squares

estimator

Ŝλ(xl) =
n∑
j=1

λ(j) θ̂j,n φj(xl)1Γ , 1 ≤ l ≤ n , (3.10)

where the weight vector λ = (λ(1), . . . , λ(n))′ belongs to some finite set Λ

into Rn, the prime denotes the transposition. We set for any x ∈ [a, b]

Ŝλ(x) = Ŝλ(x1)1{a≤x≤x1} +
n∑
l=2

Ŝλ(xl)1{xl−1<x≤xl} . (3.11)
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Let ν be the cardinal number of the set Λ. We suppose that the components

of the weight vector λ = (λ(1), . . . , λ(n))′ are such that 0 ≤ λ(j) ≤ 1. By

setting λ2 = (λ2(1), . . . , λ2(n))′ we define the following sets

Λ1 = {λ2 , λ ∈ Λ} and Λ2 = Λ ∪ Λ1 . (3.12)

We set

χj(λ) = 1{λj>0} , χ∗ = max
λ∈Λ

n∑
j=1

χj(λ) and µn =
χ∗√
n
. (3.13)

Moreover, for the basis functions (3.6) we shall use the following upper bound

λ∗ = max
λ∈Λ1

sup
a≤x≤b

|
n∑
j=1

λ(j)φj(x)| , (3.14)

where φj = (b − a)φ2
j − 1. Now we have to write a rule to choose a weight

vector λ ∈ Λ. It is obviously, that the best way is to minimize with respect

to λ the empiric squared error

Errn(λ) = ‖Ŝλ − S‖2
n
,

which in our case is equal to

Errn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j)θ̂j,n θj,n +
n∑
j=1

θ2
j,n
. (3.15)

Since θj,n are unknown, we need to replace the term θ̂j,n θj,n by some its

estimator which we choose as

θ̃j,n = θ̂2
j,n
− b− a

n
sj,n

with

sj,n =
b− a

n

n∑
l=1

σ2
l φ

2
j
(xl) . (3.16)

13



For this substitution in the empiric squared error one has to pay a penalty.

Finally, we define the cost function by the following way

Jn(λ) =
n∑
j=1

λ2(j)θ̂2
j,n
− 2

n∑
j=1

λ(j) θ̃j,n + ρPn(λ) , (3.17)

where the penalty term we define as

Pn(λ) =
(b− a)|λ|2sn

n
, sn =

1

n

n∑
l=1

σ2
l , |λ|2 =

n∑
j=1

λ2(j)

and 0 < ρ < 1 is some positive constant which will be chosen later. We set

λ̂ = agrmin
λ∈Λ

Jn(λ) (3.18)

and define an estimator of S at the model (3.1) as

Ŝ∗(x) = Ŝλ̂(x) for a ≤ x ≤ b . (3.19)

In the Oracle inequality we make use of the following function

Υ∗
n
(ρ) = υ∗

1
(ρ)ςn(1 + µn)ν + υ∗

2
(ρ)ςnλ∗ + υ∗

3
(ρ)χ∗δ

∗
n

(3.20)

with δ∗
n

= nES1Γ‖δ‖2
n
,

υ∗
1
(ρ) =

16(b− a)(6 + 3ρ)

ρ
, υ∗

2
(ρ) =

4ρ(b− a)

3
and υ∗

3
(ρ) =

4(6 + ρ)

ρ
.

Now with the help of Υ∗
n
(ρ) we introduce the function which describes the

second term in the upper bound of the Oracle inequality :

Ψn(ρ) = ψ1(ρ)Υ
∗
n
(ρ) + ψ2(ρ)ςn(2ν + ρ2λ∗) + ψ3(ρ)χ∗δ

∗
n
, (3.21)

where

ψ1(ρ) =
1− 2ρ

2ρ(1− 6ρ)
, ψ2(ρ) =

b− a

2ρ(1− 6ρ)
and ψ3(ρ) =

4 + ρ

2ρ(1− 6ρ)
.
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Theorem 3.1. For any n ≥ 3 and 0 < ρ < 1/6, the estimator Ŝ∗ satisfies

the following Oracle inequality

ES‖Ŝ∗ − S‖2
n
≤ 1 + 3ρ

1− 6ρ
min
λ∈Λ

ES‖Ŝλ − S‖2
n

+
Ψn(ρ)

n

+

(
κn(ρ) +

ρ

1− 6ρ
‖S‖2

n

)√
PS(Γ

c) , (3.22)

where

κn(ρ) = (
√

3 + 1)
ρ

1− 6ρ
µ∗
n

and µ∗
n

=
(b− a)ςnχ∗

n
.

Remark 3.1. It is clear that to obtain the asymptotically optimal variance

in the case of unknown regularity one can take, for example, the parameter

ρ going to zero like

ρ = ρn = O

(
1

lnγ n

)
(3.23)

for some γ > 0.

Now we consider the adaptive setting, i.e. we suppose the function S

belongs to the Sobolev space

W k
r

= {S ∈ ΣL ∩ Ck−1([a, b]) :
k∑
j=0

‖S(j)‖2 ≤ r} ,

where the regularity exposant k ≥ 1 and the Sobolev radius r > 0 are

unknown.

We consider the weight family Λ introduced in [11]. For any 0 < ε < 1

we define the set

Aε = {1, . . . , k∗} × {t1, . . . , tm} ,

where k∗ = [1/
√
ε], ti = iε, m = [1/ε2] and we take ε = 1/ lnn for any n ≥ 3.
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For any α = (β, t) ∈ Aε we define the weight vector λα = (λα(1), . . . , λα(n))′

with

λα(j) =


1 , for 1 ≤ j ≤ j0 ,(

1− (j/ωα)
β
)
+
, for j0 < j ≤ n ,

(3.24)

where j0 = j0(α) = [ωα/ lnn] + 1,

ωα = (Aβ t n)1/(2β+1) and Aβ =
(b− a)2β+1(β + 1)(2β + 1)

π2ββ
.

Therefore,

Λ = {λα , α ∈ Aε} (3.25)

and ν = k∗m ≤ ln5/2 n. Note that in this case

n∑
j=1

χj(λ) =
n∑
j=1

1{λα(j)>0} ≤ ωα .

Therefore,

χ∗ ≤ max
α

ωα ≤ (b− a)π−2/3(6n lnn)1/3 .

This yields

lim
n→∞

µn = 0 and lim
n→∞

µ∗n = 0 .

Moreover, if the sequence (δl)1≤l≤n satisfies inequality (3.4) we deduce that

lim
n→∞

χ∗δ
∗
n

= 0 . (3.26)

By Lemma 6.2 from [11] we get for any integer m ≥ 0 and a ≤ x ≤ b

sup
N≥3

sup
1≤n<N

∣∣∣∣∣∣
N∑

j=n+1

(
j

N

)m
φj(x)

∣∣∣∣∣∣ ≤ 2m+1 .

Therefore, for any α ∈ Aε

sup
a≤x≤b

|
n∑
j=1

λ2
α
(j)φj(x)| ≤ 2 + 2 · 2k∗+1 + 22k∗+1 .
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This means that for any δ > 0

lim
n→∞

λ∗
nδ

= 0 .

Moreover, if we choose the parameter ρ as in (3.23) and if we assume as in

(3.5) that the parameter ςn is slowly increasing in n, i.e. for any δ > 0

lim
n→∞

ςn
nδ

= 0

we obtain that for any δ > 0

lim
n→∞

Ψn(ρ)

nδ
= 0 . (3.27)

Now we consider the estimation problem (1.1) via model (1.5). By denot-

ing Ŝα = Ŝλα
We make use of estimating procedure (3.18)–(3.19) with the

weight coefficients set (3.25), i.e. denoting Ŝα = Ŝλα
we set Ŝ∗ = Ŝα̂ with

α̂ = agrmin
α∈Aε

Jn(λα) .

For this procedure we show the following Oracle inequality.

Theorem 3.2. Assume that S ∈ W k
r

with unknown parameters r > 0 and

k ≥ 1. Then the procedure Ŝ∗ with n = 2[(T − 1)/2] + 1, for any T ≥ 32 and

0 < ρ < 1/6, satisfies the following inequality

R(Ŝ∗, S) ≤ (1 + ρ)2(1 + 3ρ)

1− 6ρ
min
α∈Aε

R(Ŝα, S) +
BT (ρ)

n
, (3.28)

where

BT (ρ) = (1 + ρ)(Ψn(ρ) + gT ) +
(1 + ρ)2L2(b− a)3

ρ(1− 6ρ)n

with

gT = n(κn(ρ) + s∗(b− a))
√

ΠT .
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Moreover, for any 0 < ρ < 1/6 and any δ > 0,

lim
T→∞

BT (ρ)

T δ
= 0 . (3.29)

Remark 3.2. Note that to obtain the inequality (3.28) we make use of the

method proposed in [11] and based on the nonasymptotic approach from [2]

and [4].

Remark 3.3. In Part 2 of this research we will show the obtained oracle

inequality is sharp in the sensee that it provides the asymptotic efficiency of

the estimator Ŝα∗. Moreover, we will find the Pinsker constant and will prove

that the asymptotic quadratic risk of the above estimator coincides with this

constant.

4 Proofs

4.1 Proof of Theorem 3.1

First of all, note that on the set Γ we can represent the empiric squared error

Errn(λ) by the following way

Errn(λ) = Jn(λ) + 2
n∑
j=1

λ(j)θ′
j,n

+ ‖S‖2
n
− ρPn(λ) (4.1)

with θ′
j,n

= θ̃j,n − θj,nθ̂j,n. From (3.8) we find that

θ′
j,n

= θj,nζj,n +
b− a

n
ξ̃j,n + 2

√
b− a

n
ξj,nδj,n + δ2

j,n
,

where ξ̃j,n = ξ2
j,n
− sj,n. We set

∆̃(λ) =
b− a

n

n∑
j=1

λ(j) ξ̃j,n , ∆(λ) = 2

√
b− a

n

n∑
j=1

λ(j) ξj,nδj,n . (4.2)

18



We remind that for any ε > 0 and for any x, y

2xy ≤ εx2 + ε−1y2 . (4.3)

Therefore, for some 0 < ε < 1 with help inequality (3.9) we can estimate the

last term as

|∆(λ)| ≤ ε
b− a

n

n∑
j=1

λ2(j) ξ2
j,n

+
1

ε

n∑
j=1

χj δ
2
j,n

≤ ε
b− a

n

n∑
j=1

λ2(j) sj,n + ε∆̃(λ2) +
1

ε
χ∗‖δ‖2

n
,

where the vector λ2 is defined in (3.12). Taking into account that∣∣∣∣∣∣
n∑
j=1

λ2(j) sj,n − |λ|2sn

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1n
n∑
l=1

σ2
l

n∑
j=1

λ2(j)φ
j
(xl)

∣∣∣∣∣∣ ≤ ςnλ∗ (4.4)

we get the following upper bound for ∆(λ), i.e.,

|∆(λ)| ≤ εPn(λ) + ε∆̃(λ2) + ε
(b− a)ςnλ∗

n

+
1

ε
χ∗‖δ‖2

n
. (4.5)

Now putting

M(λ) =
n∑
j=1

λ(j) θj,n ζj,n and ∆1(λ) =
n∑
j=1

λ(j) δ2
j,n

(4.6)

we rewrite (4.1) by the following way

Errn(λ) = Jn(λ) + 2M(λ) + 2∆̃(λ)

+ 2∆(λ) + 2∆1(λ) + ‖S‖2
n
− ρPn(λ) (4.7)

Note now that, we can represent ξ̃j,n as

ξ̃j,n = 2(b− a)
n∑
l=2

uj,lξl +
b− a

n

n∑
l=1

σ2
l
φ2
j
(xl) ξ̃l

= 2Uj,n + Vj,n , (4.8)
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where ξ̃l = ξ2
l − 1 and

uj,l =
1

n
σlφj(xl)

l−1∑
r=1

σrφj(xr)ξr .

To study the function ∆̃(λ) we set

U(λ) =
1
√
sn

n∑
j=1

λ(j)Uj,n 1{sn>0} and V (λ) =
n∑
j=1

λ(j)Vj,n ,

where λ(j) = λ(j)/|λ|. Therefore, we can represent ∆̃(λ) as

∆̃(λ) = 2

√
b− a

n
U(λ)

√
Pn(λ) +

b− a

n
V (λ) .

In Appendix A.2 we show that

sup
λ∈Rn

ESU
2
(λ) ≤ 2ςn . (4.9)

Therefore, in view of definition (3.12) we find that

ES sup
λ∈Λ2

U
2
(λ) ≤

∑
λ∈Λ2

ES U
2
(λ) ≤ 4ςnν . (4.10)

Moreover, taking into account that

ESV
2
j,n
≤

4σ2
∗
n

,

we get that

sup
λ∈Λ2

ES|V (λ)| ≤ 2 ςnµn

and similarly to (4.10) we obtain that

ES sup
λ∈Λ2

|V (λ)| ≤ 4 ςnµnν .

Therefore, if we set

∆̃∗ = sup
λ∈Λ2

U
2
(λ) + sup

λ∈Λ2

|V (λ)| ,
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then we get that

ES ∆̃∗ ≤ 4 ςn(1 + µn)ν . (4.11)

Moreover, taking into account that Pn(λ
2) ≤ Pn(λ) we obtain that for

any λ ∈ Λ2 and 0 < ε < 1

|∆̃(λ)| ≤ εPn(υλ) +
(b− a)(1 + ε)

nε
∆̃∗ (4.12)

with υλ = λ for λ ∈ Λ and υλ = (
√
λ(1), . . . ,

√
λ(1))′ for λ ∈ Λ1. We remind

that the set Λ1 is defined in (3.12). Therefore, from (4.5) replacing ε by ε2

we can get for any λ ∈ Λ the following upper bound for ∆(λ)

|∆(λ)| ≤ 2εPn(λ) +
(b− a)(1 + ε)

n
∆̃∗

+ ε
(b− a)ςnλ∗

n
+
b− a

ε
χ∗‖δ‖2

n
.

Moreover, directly from (3.9) we find that

sup
λ∈Λ

|∆1(λ)| ≤ χ∗‖δ‖2
n
.

Therefore, setting

∆2(λ) = 2∆̃(λ) + 2∆(λ) + 2∆1(λ) ,

we can estimate this term for any λ ∈ Λ as

|∆2(λ)| ≤ 6εPn(λ) +
2(b− a)(1 + 3ε)

εn
∆̃∗

+
2ε(b− a)

n
ςnλ∗ +

2(1 + ε)

ε
χ∗‖δ‖2

n
. (4.13)

Now from (4.1) we obtain that for some fixed λ0 from Λ

Errn(λ̂)− Errn(λ0) = J(λ̂) − J(λ0) + 2M(ϑ̂)

+ ∆2(λ̂)− ρPn(λ̂)−∆2(λ0) + ρPn(λ0) ,
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where ϑ̂ = λ̂−λ0. Therefore by definition of λ̂ in (3.18) and putting ε = ρ/6

we obtain that on the set Γ

Errn(λ̂) ≤ Errn(λ0) + 2M(ϑ̂) + Υn(ρ) + 2ρPn(λ0) , (4.14)

where

Υn(ρ) =
4(b− a)(6 + 3ρ)

nρ
∆̃∗ +

4ρ(b− a)

3n
ςnλ∗

+
4(6 + ρ)

ρ
χ∗‖δ‖2

n
.

From (4.11) it follows that

ESΥn(ρ) ≤
Υ∗
n
(ρ)

n
, (4.15)

where the function Υ∗
n
(ρ) is defined in (3.20).

Now we study the second term in the right-hand part of the inequality

(4.14). Firstly for any weght vector λ ∈ Λ we set ϑ = λ − λ0. Then we

decompose this term as

M(ϑ) =
√
b− aZ(ϑ) +N(ϑ) (4.16)

with

Z(ϑ) = n−1/2

n∑
j=1

ϑ(j) θj,nξj,n and N(ϑ) =
n∑
j=1

ϑ(j) θj,nδj,n .

We define now the weighted discrete Fourier transformation of S, i.e. we

set

Sλ =
n∑
j=1

λ(j) θj,nφj . (4.17)

It is easy to see that in this case

ESZ
2(ϑ) =

b− a

n2

n∑
l=1

ESσ
2
l

 n∑
j=1

ϑ(j)θj,nφj(xl)

2

≤ ςnd(ϑ) , (4.18)
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where

d(ϑ) =
‖Sϑ‖2

n

n
.

Moreover, note that we can represent ϑ(j) = λ(j)− λ0(j) as

ϑ(j) = ϑ(j)χ∗
j

with χ∗
j

= max(1{λ(j)>0} , 1{λ0(j)>0}) .

Therefore, by inequality (4.3) with ε = ρ, we can estimate N(ϑ) as follows

2N(ϑ) = 2
n∑
j=1

ϑ(j) θj,nχ
∗
j
δj,n

≤ ρ ‖Sϑ‖2
n

+
2χ∗‖δ‖2

n

ρ
. (4.19)

Setting

Z∗ = sup
ϑ∈Θ

Z2(ϑ)

d(ϑ)
with Θ = Λ− λ0 ,

we obtain on the set Γ

2M(ϑ) ≤ 2ρ‖Sϑ‖2
n

+
(b− a)Z∗

nρ
+

2χ∗‖δ‖2
n

n
. (4.20)

Note now that from (4.18) it follows that

ES Z
∗ ≤ νςn . (4.21)

Now we estimate the first term in the right-hand part of the inequality (4.20).

On the set Γ we have

‖Sϑ‖2
n
− ‖Ŝϑ‖2

n
=

n∑
j=1

ϑ2(j)(θ2
j,n
− θ̂2

j,n
) ≤ − 2

n∑
j=1

ϑ2(j) θj,n ζj,n

= −2
√
b− aZ1(ϑ)− 2N1(ϑ) , (4.22)

where

Z1(ϑ) =
1√
n

n∑
j=1

ϑ2(j)θj,nξj,n and N1(ϑ) =
n∑
j=1

ϑ2(j) θj,nδj,n .
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By the same way, taking into account that |ϑ(j)| ≤ 1, we find that on the

set Γ

ES Z
2
1
(ϑ) ≤ ςn d(ϑ) .

Similarly, we set

Z∗
1

= sup
ϑ∈Θ

Z2
1
(ϑ)

d(ϑ)

and we obtain that on the set Γ

ES Z
∗
1
≤ νςn . (4.23)

Similarly to (4.17) we estimate the second term in (4.22) as

2N1(ϑ) ≤ ρ‖Sϑ‖2
n +

2χ∗‖δ‖2
n

ρ
.

Therefore, on the set Γ

‖Sϑ‖2
n
≤ ‖Ŝϑ‖2

n
+ 2ρ‖Sϑ‖2

n
+

(b− a)Z∗
1

nρ
+

2χ∗‖δ‖2
n

ρ
,

i.e.

‖Sϑ‖2
n
≤ 1

1− 2ρ
‖Ŝϑ‖2

n
+

1

(1− 2ρ)ρ

(
(b− a)Z∗

1

n
+ 2χ∗‖δ‖2

n

)
. (4.24)

By applying this inequality in (4.20) and by putting Z∗
2

= Z∗+Z∗
1

we obtain

that on the set Γ

2M(ϑ) ≤ 2ρ

1− 2ρ
‖Ŝϑ‖2

n
+

1

ρ(1− 2ρ)

(
(b− a)Z∗

2

n
+ 2χ∗‖δ‖2

n

)
≤ 4ρ(Errn(λ) + Errn(λ0))

1− 2ρ
+

1

ρ(1− 2ρ)

(
(b− a)Z∗

2

n
+ 2χ∗‖δ‖2

n

)
.

Therefore (4.14) implies that

Errn(λ̂)1Γ ≤
1 + 2ρ

1− 6ρ
Errn(λ0)1Γ +

1− 2ρ

1− 6ρ
Υn(ρ)1Γ

+
1

ρ(1− 6ρ)

(
(b− a)Z∗

2

n
+ 2χ∗‖δ‖2

n

)
1Γ +

2ρ(1− 2ρ)

1− 6ρ
Pn(λ0)1Γ ,

24



Now by inequalities (4.21)–(4.23) we get that

ESErrn(λ̂)1Γ ≤
1 + 2ρ

1− 6ρ
ESErrn(λ0)1Γ +

1− 2ρ

n(1− 6ρ)
Υ∗
n
(ρ)

+
2νςn(b− a) + 2χ∗δ

∗
n

nρ(1− 6ρ)
+
ρ(1− 2ρ)

1− 6ρ
ES1ΓPn(λ0) .

By applying here Lemma A.1 with ε = 2ρ we get that

ESErrn(λ̂)1Γ ≤
1 + 3ρ

1− 6ρ
ESErrn(λ0)1Γ +

Ψn(ρ)

n
+ κn(ρ)

√
PS(Γ

c) ,

where the functions Ψn(·) and κn(·) are defined in (3.21)–(3.22). Replacing

here

ESErrn(λ̂)1Γ and ESErrn(λ0)1Γ

by

ES‖Ŝ∗ − S‖2
n
− ‖S‖2

n
PS(Γ

c) and ES‖Ŝλ0
− S‖2

n
− ‖S‖2

n
PS(Γ

c) ,

respectively, we come to the inequality (3.22).

4.2 Proof of Theorem 3.2

We apply now Theorem 3.1 to the estimation problem at the model (1.1)

via model (1.5) with the estimation family (3.25). First, note that, for any

function S ∈ ΣL and for any pointwise estimator Ŝ(·) of the form (3.11) it is

easy to see that

‖Ŝ − S‖2 ≤ (1 + ρ)‖Ŝ − S‖2
n

+ (1 + ρ−1)L2(b− a)3 1

n2

and

‖Ŝ − S‖2
n
≤ (1 + ρ)‖Ŝ − S‖2 + (1 + ρ−1)L2(b− a)3 1

n2
.
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Moreover, inequality (2.4) implies

‖S‖2
n
≤ s∗(b− a)

for any S from ΣL. Therefore inequality (3.22) implies directly (3.28). Hence

Theorem 3.2.

A Appendix

A.1 Proof of Proposition 2.1

Fisrt note that for this proposition we make use the consentration inequality

from [13]. We remind it. For any c > 0 and for any function ψ : R → R

such that

sup
y∈R

|ψ(y)| <∞ and

∫ +∞

−∞
|ψ(y)| dy ≤ c <∞ (A.1)

we set

MS(ψ) =

∫ +∞

−∞
ψ(y) qS(y) dy

and

∆t0,T
(ψ) =

1√
T

∫ T

t0

(ψ(yt)−MS(ψ))dt .

We will denote by ∆t(ψ) = ∆0,t(ψ). Note that now by Theorem 3.2 from

[13] for any function ψ(·) satisfying (A.1) we have

sup
T≥1

sup
S∈ΣL

ES e
γ∆2

T
(ψ) ≤ 4 , (A.2)

where the constant γ = γ(c, L) is defined by (2.15). Therefore taking into

account the inequality

|∆t0,T
(ψ)| ≤ |∆T (ψ)|+ |∆t0

(ψ)| ,
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we obtain that for any µ > 0 and for any ψ satisfying (A.1)

sup
1≤t0≤T

sup
S∈ΣL

PS(|∆t0,T
(ψ)| ≥ 2µ) ≤ 8 e−γµ

2

. (A.3)

Now we estimate the probability of Γc as

PS(Γ
c) ≤

n∑
k=1

PS(τk > T ) .

By the definition of τk in (2.6) one has

PS(τk > T ) = PS

(∫ T

t0

ψh,k(yt) dt < (T − t0)(2q̃T (xk)− ε2
T
)

)
,

where

ψh,k(y) =
1

h
Q

(
y − xk
h

)
.

It is easy to see that this function satisfies condition (A.1) with c = 2.

Moreover, notice now that we can represent the integral
∫ T
t0
ψh,k(yt) dt as

follows : ∫ T

t0

ψh,k(yt) dt = (T − t0)MS(ψh,k) +
√
T ∆t0,T

(ψh,k) ,

where

MS(ψh,k) =

∫ +∞

−∞
ψh,k(y) qS(y) dy =

∫ 1

−1

qS(xk + hz) dz .

Taking into account that

2q̂T (xk) − MS(ψh,k) =
1√
t0

∆t0
(ψh,k) (A.4)

we obtain

PS(τk > T ) ≤ PS(q̂(xk) < εT )

+ PS

(
∆t0,T

(ψh,k) <
T − t0√

T

(
1√
t0

∆t0
(ψh,k) − ε2

T

))
.
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Moreover, thanks to the conditions (2.10), the last probability can be esti-

mated as follows :

PS(|∆t0
(ψh,k)| ≥ t

1/4
0 ) + PS

(
|∆t0,T

(ψh,k)| ≥ t
1/4
0 /

√
2
)
.

Finally we obtain that

PS(τk > T ) ≤ PS(q̂(xk) < εT ) + PS(|∆t0
(ψh,k)| ≥ t

1/4
0 )

+ PS

(
|∆t0,T

(ψh,k)| ≥ t
1/4
0 /

√
2
)
. (A.5)

Let us estimate now the first probability in the left hand of this inequality.

Taking into account that MS(ψh,k) ≥ 2q∗ we get

PS(q̂(xk) < εT ) = PS

(
1

t0

∫ t0

0

ψh,k(yt) dt < 2εT

)
= PS

(
∆t0

(ψh,k) < (2εT −MS(ψh,k))
√
t0
)

≤ PS

(
∆t0

(ψh,k) < 2 (εT − q∗)
√
t0
)

Therefore if εT ≤ q∗/2 then the inequality (A.2) implies

PS(q̂(xk) < εT ) ≤ PS

(
|∆t0

(ψh,k)| > q∗
√
t0
)
≤ 4e−γq

2
∗t0 . (A.6)

Now, by applying in (A.5) the inequalities (A.3) and (A.6) we obtain that

for εT ≤ q∗/2

PS(τk > T ) ≤ 16 e−γ1
√
t0 ,

where γ1 is defined in (2.16). Therefore taking into account that n ≤ T we

obtain the following upper bound

PS(Γ
c) ≤

n∑
k=1

PS(τk > T ) ≤ T1{εT≥q∗/2} + 24T e−2γ1
√
t01{εT<q∗/2} .

Hence the condition (2.11) implies Proposition 2.1.
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A.2 Proof of Inequality (4.9)

By putting αl =
∑n

j=1
λ(j)uj,l and taking into account that the random

variables (ξk)1≤k≤n are independent of (σk)1≤k≤n we obtain that

ES

(
N2

1
(λ) |σk , 1 ≤ k ≤ n

)
= 1{sn>0}

(b− a)2

sn

n∑
l=1

α̂l , (A.7)

where

α̂l = E(α2
l
|σk , 1 ≤ k ≤ n) =

σ2
l

n2

l−1∑
r=1

σ2
r

 n∑
j=1

λ(j)φj(xl)φj(xr)

2

.

Therefore the orthonormality of the functions (φj) implies that

α̂l ≤ ςn
σ2
l

n2

n∑
r=1

 n∑
j=1

λ(j)φj(xl)φj(xr)

2

= ςn
σ2
l

n(b− a)

n∑
j=1

λ
2
(j)φ2

j
(xl) ≤

2ςn
n(b− a)2

σ2
l
.

Now by making use of this inequality in (A.7) we get (4.9).

A.3 Technical lemma

Lemma A.1. For any n ≥ 1 and 0 < ε < 1

ESPn(λ)1Γ ≤
1

1− ε
ES Errn(λ)1Γ +

ε(b− a)ςnλ∗ + χ∗δ
∗
n

(1− ε)εn

+

√
3µ∗

n
+ 2‖S‖n

√
µ∗
n

1− ε

√
PS(Γ

c) ,

where µ∗
n

is defined in (3.22).

Proof. Indeed, by the definition of Errn(λ) on the set Γ we have

Errn(λ) =
n∑
j=1

(
(λ(j)− 1)θj,n + λ(j)ζj,n

)2
=

n∑
j=1

(
(λ(j)− 1)θj,n + λ(j)δj,n + λ(j)

√
b− a

n
ξj,n

)2

.
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Therefore, putting

I1 =
n∑
j=1

λ(j)(λ(j)− 1)θj,nξj,n and I2 =
n∑
j=1

λ2(j)δj,nξj,n

we get on the set Γ the following lower bound for the impirical risk

Errn(λ) ≥ b− a

n

n∑
j=1

λ2(j) ξ2
j,n

+ 2

√
b− a

n
I1 + 2

√
b− a

n
I2 . (A.8)

Notice that the random variable ξj,n ∼ N (0, sj,n) (conditionally with respect

to σ1, . . . , σn) with

sj,n =
b− a

n

n∑
l=1

σ2
l
φ2
j
(xl) ≤ ςn .

Thus

ESξ
4
j,n
≤ 3σ2

∗ . (A.9)

Let us consider the first term in (A.8). We have

ES1Γ

n∑
j=1

λ2(j) ξ2
j,n

= ES

n∑
j=1

λ2(j) sj,n − ES1Γc

n∑
j=1

λ2(j) ξ2
j,n
.

Therefore, by inequalities (4.4) and (A.9) we get that

ES1Γ

n∑
j=1

λ2(j) ξ2
j,n
≥ |λ|2 ESsn1Γ − ςnλ∗ −

√
3ςnχ∗

√
PS(Γ

c) . (A.10)

Moreover, taking into account that ESI1 = 0 we estimate ESI11Γ as

|ES I11Γ| = |ES I11Γc|

≤ ‖S‖n

 n∑
j=1

λ2(j)ESsj,n

1/2 √
PS(Γ

c)

≤ ‖S‖n
√
ςnχ∗

√
PS(Γ

c) . (A.11)
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Let us estimate the last term in (A.8). For this we make use of inequality

(4.3), i.e. for 0 < ε < 1

2

√
b− a

n
|I2| ≤ ε

b− a

n

n∑
j=1

λ2(j)ξ2
j,n

+
1

nε
χ∗δ

∗
n
.

Therefore from (A.8) we get that

Errn(λ) ≥ (1− ε)
b− a

n

n∑
j=1

λ2(j) ξ2
j,n

+ 2

√
b− a

n
I1 −

χ∗δ
∗
n

nε
.
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