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Résumé. Les fonctions quasi-homogènes, en particulier les polynômes, possèdent

des propriétés particulières au voisinage de l’origine qui permettent d’estimer les

exposants dits de  Lojasiewicz d’une manière tout à fait analogue à ceux des fonctions

homogènes. En particulier on généralise un résultat antérieur pour les polynômes à

deux variables concernant l’iné galité du gradient de  Lojasiewicz optimale á l’origine.

Abstract. Quasi-homogeneous functions, and especially polynomials, enjoy some

specific properties around the origin which allow to estimate the so-called  Lojasiewicz

exponents in a way quite similar to homogeneous functions. In particular we gen-

eralize a previous result for polynomials of two variables concerning the optimal

 Lojasiewicz gradient inequality at the origin.
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1. Introduction

In his pioneering papers [8], [9],  Lojasiewicz established that any analytic function

f of n real variables satisfies an inequality of the form

(1.1) ‖∇f(x)‖ ≥ c|f(x) − f(a)|β

for ‖x − a‖ small enough with c > 0, β ∈ (0, 1). This inequality, known as the

 Lojasiewicz gradient inequality, is useful to establish trend to equilibrium of the gen-

eral solutions of gradient systems

(1.2) u′ + ∇f(u) = 0

and can also be used to evaluate the rate of convergence. It is therefore of interest

to know as precisely as possible the connection between f and its gradient and in

paticular to determine the best(smallest) possible value of β in (1.1) when a is a

critical point of f . This value is called the Lojasiewicz exponent at a . In [5] for

instance, it was shown that if f is a homogeneous polynomial with degree d ≥ 2, the

 Lojasiewicz exponent at the origin is exactly 1 − 1
d

when n = 2. This property is no

longer true if n > 2.

On the other hand, Gwoździewicz [4] considered the case of a real analytic function

at an isolated zero and also found, in this case, an interesting relationship between

various  Lojasiewicz exponents, relative to different  Lojasiewicz inequalities . In ad-

dition the case of general polynomials has been thoroughly investigated by D’Acunto

and Kurdyka in [2].

Our paper is concerned to the extension of the result from [5] and several estimates

of  Lojasiewicz exponents at the origin when f is a quasi-homogeneous map (see,

for example, [1]). It is divided in 5 sections. In Section 2, we state and prove some

preliminary results, mainly concerning the local behavior of quasi-homogeneous maps

near the origin. Section 3 contains more information in the specific case where the

origin is an isolated zero of f. Section 4 deals with the  Lojasiewicz gradient exponent

of quasi-homogeneous polynomials, in particular we generalize the main result of [5].

Section 5 contains more precise estimates for quasi-homogeneous polynomials of two

variables. These results are illustrated by typical examples and completed by a few

remarks.

2. Definitions and preliminary results

We first recall the concept of a quasi-homogeneous map. Let K = C or R. We

say that f : K
n → K

k is a (positively) quasi-homogeneous map with weight w :=
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(w1, w2, . . . , wn) ∈ (R+ − {0})n and quasi-degree d := (d1, d2, . . . , dk) ∈ (R+ − {0})k

if

(2.1) fi(t
w1x1, t

w2x2, . . . , t
wnxn) = tdifi(x1, x2, . . . , xn)

for each i = 1, 2, . . . , k, and all t > 0. Note that if wj = 1 for j = 1, 2, . . . , n then the

above definition means that fi are homogeneous functions of degree di. A function

fi satisfying (2.1) is called a (positively) quasi-homogeneous function with weight

w = (w1, w2, . . . , wn) and quasi-degree di. In the sequel we shall drop for simplicity

the word “positively”. Note that any monomial xα := xα1
1 xα2

2 . . . xαn
n is a quasi-

homogeneous function with arbitrary weight w = (w1, w2, . . . , wn) ∈ N − {0})n and

quasi-degree 〈w,α〉 := w1α1 + w2α2 + · · · + wnαn. Moreover, we have

Proposition 2.1. Let f : K
n → K be a polynomial function. Then f is quasi-

homogeneous with weight w ∈ (N − {0})n and quasi-degree m ∈ N − {0} if and only

if all its constitutive monomials are quasi-homogeneous functions with weight w and

quasi-degree m.

Proof. Suppose that f is a quasi-homogeneous polynomial with weight w and quasi-

degree m. We have the following finite expansion

f(x) :=
∑

α

aαxα.

Then ∑

α

aαt〈w,α〉xα = tm
∑

α

aαxα.

This gives ∑

α

aα[t〈w,α〉−m − 1]xα = 0

for all x ∈ K
n and for all t > 0.

By a fundamental theorem of algebra, this identity implies that

〈w,α〉 − m = 0

for all α provided aα 6= 0. In other words, all constitutive monomials of f are quasi-

homogeneous functions with weight w and quasi-degree m. The converse is clear. �

For a fixed weight w := (w1, w2, . . . , wn) ∈ (R+ − {0})n we set

‖x‖w := max
j=1,2,...,n

|xj|
1

wj

for x := (x1, x2, . . . , xn) ∈ K
n. In the special case wj = 1 for all j = 1, 2, . . . , n, let

‖x‖ := ‖x‖w.
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Remark 2.2. (i) It is worth noting that, in general, ‖ · ‖w is not a norm.

(ii) It is easy to see that ‖ · ‖w is a quasi-homogeneous function with weight w and

quasi-degree 1.

The following basic properties will be used throughout the text.

Proposition 2.3. Let

w∗ := min
j=1,2,...,n

wj,

w∗ := max
j=1,2,...,n

wj.

Then the following hold

(i) For all ‖x‖ ≥ 1 we have

‖x‖
1

w∗ ≥ ‖x‖w ≥ ‖x‖
1

w∗ .

In particular, ‖x‖ → ∞ if and only if ‖x‖w → ∞.

(ii) For all ‖x‖ ≤ 1 we have

‖x‖
1

w∗ ≤ ‖x‖w ≤ ‖x‖
1

w∗ ,

In particular, ‖x‖ → 0 if and only if ‖x‖w → 0.

Proof. The proof of the proposition is clear from the definitions. In fact, it follows

from 0 < w∗ ≤ wj ≤ w∗ that

1

w∗

≥
1

wj

≥
1

w∗
> 0.

Hence, for |xj| ≥ 1 we have

|xj|
1

w∗ ≥ |xj|
1

wj ≥ |xj|
1

w∗ ,

and for |xj| ≤ 1 we have

|xj|
1

w∗ ≤ |xj|
1

wj ≤ |xj|
1

w∗ .

The results follow easily. �

In the sequel for t > 0, for any w := (w1, w2, . . . , wn) ∈ (R+ − {0})n and x :=

(x1, x2, . . . , xn) ∈ K
n we denote

t • x := (tw1x1, t
w2x2, . . . , t

wnxn),

and for d := (d1, d2, . . . , dk) ∈ (R+ − {0})k we set

d∗ := min
i=1,2,...,k

di,

d∗ := max
i=1,2,...,k

di.

3



Let f : K
n → K

k be quasi-homogeneous with weight w := (w1, w2, . . . , wn) ∈

(R+ − {0})n and quasi-degree d := (d1, d2, . . . , dk) ∈ (R+ − {0})k. If fi ≡ 0 for

some i ∈ {1, 2, . . . , k}, then di can be replaced by any positive number. In the sequel

we shall assume

(2.2) ∀i ∈ {1, 2, . . . , k}, fi 6≡ 0.

It is easy to check that in this case di is uniquely defined by (2.1) for all i ∈

{1, 2, . . . , k}. Then d∗ and d∗ are well defined.

The next two results summarize some important consequences of the quasi homo-

geneity property.

Proposition 2.4. Let f := (f1, f2, . . . , fk) : K
n → K

k be a quasi-homogeneous map

with weight w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk) satisfying

(2.2). Then the following properties are equivalent.

(i) The origin is an isolated zero of f .

(ii) f−1(0) = {0}.

Proof. It is clear that (ii) implies (i). Conversely if (ii) is not satisfied, let a 6= 0 be

such that f(a) = 0. This implies that f1(a) = f2(a) = · · · = fk(a) = 0. Hence

fi(t • a) = tdifi(a) = 0

for i = 1, 2, . . . , k and all t > 0. Note that ‖t • a‖ → 0 as t → 0. Thus, the origin is

not an isolated zero of f, which is a contradiction. �

Theorem 2.5. Let f : R
n → R be a quasi-homogeneous polynomial with weight w

and quasi-degree m. Suppose that n ≥ 2. Then the following conditions are equivalent

(i) f−1(0) = {0}.

(ii) f has a strict global extremum at the origin.

(iii) For each ǫ ≥ 0 we have {x ∈ R
n | |f(x)| = ǫ} is non-empty compact set.

(iv) min‖x‖=1 |f(x)| > 0.

Proof. (i) ⇒ (ii) If f−1(0) = {0}, then by connectedness f has a constant sign (for

instance f > 0) on the unit euclidian sphere S := {x ∈ R
n | ‖x‖ = 1} of dimension

(n − 1) if n > 1. But for any x 6= 0, there is clearly t > 0 such that y := t • x is in

S. Indeed the euclidian norm of t • x is 0 for t = 0, tends to infinity with t and is

a continuous function of t, hence it must take the value 1 for some finite positive t.

Then f(x) = f(t−1 • y) = t−mf(y) > 0, which proves (ii).

(ii) ⇒ (i) is clear.

(i) ⇒ (iii) By contradiction, assume that the set {x ∈ R
n | |f(x)| = ǫ} is not

compact for some ǫ > 0. This means that there exists a sequence xp ∈ R
n such that
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‖xp‖ → ∞ and |f(xp)| = ǫ. Let tp := 1
‖xp‖w

→ 0. Then the sequence |f(tp • xp)| = tmp ǫ

tends to zero as k → ∞. From the sequence of points tp •xp lying on the compact set

{‖x‖w = 1} one can choose a subsequence convergent to some a, ‖a‖w = 1. Clearly,

f(a) = 0 and a 6= 0, which contradicts the claim (i).

(iii) ⇒ (i) If f(a) = 0 for some a 6= 0, then f(t • a) = 0 for all t > 0. This gives

f−1(0) is non-compact.

(i) ⇒ (iv) Suppose, by contradiction, that min‖x‖=1 |f(x)| = 0. Then there exists a

point a ∈ R
n such that ‖a‖ = 1 and f(a) = 0. This implies that f(t • a) = 0 for all

t > 0, which contradicts (i).

(iv) ⇒ (i) If f(a) = 0 for some a 6= 0, then f(t • a) = 0 for all t > 0. Consequently,

min‖x‖=1 |f(x)| = 0, which contradicts (iv). �

Remark 2.6. (i) Checking that a given polynomial function is lower (or upper)

bounded function is far from trivial (see [11]).

(ii) Checking that a given hypersurface f−1(ǫ) is compact set is far from trivial (see

[12]).

3. The  Lojasiewicz inequality for a quasi-homogeneous map which

vanishes only at the origin

In this section we are interested in the first  Lojasiewicz inequality which relates in

general the size of f(u) and the distance of u to the set f−1(0). However we essentially

restrict our study to the case where this set is reduced to 0.

Proposition 3.1. Let f := (f1, f2, . . . , fk) : K
n → K

k be a continuous quasi homo-

geneous map with weight w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk).

Then the following statements hold.

(i) There exists a positive constant c1 such that1

‖f(x)‖ ≤ c1‖x‖
d∗
w , as ‖x‖ ≪ 1.

(ii) If f−1(0) = {0}, then there exists a positive constant c2 such that

c2‖x‖
d∗

w ≤ ‖f(x)‖, as ‖x‖ ≪ 1.

Proof. Consider the family of topological closed spheres

St := {(x1, x2, . . . , xn) ∈ K
n | ‖x‖w = t}.

Then, by Proposition 2.3(i), for each t > 0 we have that St is a compact set. Let x

be an element of K
n, x 6= 0. Let t := 1

‖x‖w
. Then it is easy to check that t • x ∈ S1.

1ϕ(x) ≪ ψ(x) (when x tends to 0) means that limx→0
ϕ(x)
ψ(x) = 0.

5



(i) Let

c1 := max
i=1,2,...,k

max
x∈S1

|fi(x)|.

We have the estimate

c1 ≥ |fi(t • x)| = |tdifi(x)| for i = 1, 2, . . . , k.

It follows that

c1‖x‖
di
w ≥ |fi(x)| for i = 1, 2, . . . , k.

Consequently,

c1 max
i=1,2,...,k

‖x‖di
w ≥ ‖f(x)‖.

But

‖x‖d∗
w = max

i=1,2,...,k
‖x‖di

w , as ‖x‖ ≪ 1.

Thus

c1‖x‖
d∗
w ≥ ‖f(x)‖, as ‖x‖ ≪ 1,

which proves (i).

(ii) Let c2 := minx∈S1 ‖f(x)‖ > 0. By definition, we have

c2 := min
x∈S1

‖f(x)‖ ≤ ‖f(t • x)‖ = max
i=1,2,...,k

|tdifi(x)|

≤ max
i=1,2,...,k

|tdi| max
i=1,2,...,k

|fi(x)|.

Hence

c2 ≤ |td
∗

|‖f(x)‖

for t := 1
‖x‖w

large enough. Consequently,

c2‖x‖
d∗

w ≤ ‖f(x)‖ for ‖x‖ ≪ 1,

which proves (ii). The proposition is proved. �

Theorem 3.2. Let f := f 0 + f 1 + · · · + f l : K
n → K

k, where f 0, f1, . . . , f l are

continuous quasi-homogeneous maps with weight w = (w1, w2, . . . , wn) and quasi-

degrees d0, d1, . . . , dl respectively such that

(d0)∗ < (d1)∗ ≤ (d2)∗ ≤ · · · ≤ (dl)∗.

If the origin is an isolated zero of f 0 then there exists a positive constant c such that

c‖x‖(d0)∗

w ≤ ‖f(x)‖, as ‖x‖ ≪ 1.
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Proof. By Proposition 3.1(ii), there exists a positive constant c0 such that

c0‖x‖
(d0)∗

w ≤ ‖f 0(x)‖, as ‖x‖ ≪ 1.

On the other hand, from Proposition 3.1(i), there exist positive constants c1, c2, . . . , cl

such that for i = 1, 2, . . . , l,

‖f i(x)‖ ≤ ci‖x‖
(di)∗
w , as ‖x‖ ≪ 1.

We have for ‖x‖ ≪ 1 the next estimate

‖f 1(x) + f 2(x) + · · · + f l(x)‖ ≤ ‖f 1(x)‖ + ‖f 2(x)‖ + · · · + ‖f l(x)‖

≤ c1‖x‖
(d1)∗
w + c2‖x‖

(d2)∗
w + · · · + cl‖x‖

(dl)∗
w .

Thus it follows from (d0)∗ < (d1)∗ ≤ (d2)∗ ≤ · · · ≤ (dl)∗ that

‖f 1(x) + f 2(x) + · · · + f l(x)‖ ≪ ‖x‖(d0)∗

w , as ‖x‖ ≪ 1.

Therefore, we have for ‖x‖ ≪ 1 the next inequality

‖f(x)‖ ≥ ‖f 0(x)‖ − ‖f 1(x) + f 2(x) + · · · + f l(x)‖

≥ c0‖x‖
(d0)∗

w − c′‖x‖(d0)∗

w (0 < c′ ≪ c0).

This gives

‖f(x)‖ ≥ (c0 − c′)‖x‖(d0)∗

w , as ‖x‖ ≪ 1,

which proves the theorem. �

The following is a direct consequence from Proposition 3.1 and Theorem 3.2:

Corollary 3.3. Under the hypothesis of Theorem 3.2, there exists a positive constant

c such that

c‖x‖
(d0)∗

w∗ ≤ ‖f(x)‖, as ‖x‖ ≪ 1.

We define the  Lojasiewicz exponent α0(f) of the map f = the infimum of the set

of all real numbers l > 0 which satisfy the condition: there exists a positive constant

c such that

c‖x‖l ≤ ‖f(x)‖, as ‖x‖ ≪ 1.

If the set of all the exponents is empty we put α0(f) := +∞.

Corollary 3.4. Let f := (f1, f2, . . . , fk) : K
n → K

k be a continuous quasi-homogeneous

map with weight w := (w1, w2, . . . , wn) and quasi-degree d := (d1, d2, . . . , dk). Suppose

that f−1(0) = {0}. Then
d∗

w∗

≤ α0(f) ≤
d∗

w∗

.
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Proof. It follows from Corollary 3.3 that

α0(f) ≤
d∗

w∗

.

In order to prove the left inequality, let i, j be such that di = d∗ and wj = w∗. Take

a ∈ K
n with the property that ajfi(a) 6= 0. Then, asymptotically as t → 0, we have2

‖f(t • a)‖ ≃ td∗ ,

‖t • a‖ ≃ tw∗ .

Consequently,

‖f(t • a)‖ ≃ ‖t • a‖
d∗
w∗ .

By the definition of the  Lojasiewicz exponent α0(f), we find that

d∗

w∗

≤ α0(f).

�

Example 3.5. (i) Let f := (f1 := x2 + y4, f2 := (x2 − y4)2) : R
2 → R

2. It is easy

to check that f is a positive quasi-homogeneous map with weight w := (2, 1) and

quasi-degree d := (4, 8). Moreover, α0(f) = 4 (= d∗
w∗

).

(ii) Let f := (f1 := x2 − y4, f2 := (x2 + y4)2) : R
2 → R

2. Then f is a positive quasi-

homogeneous map with weight w := (2, 1) and quasi-degree d := (4, 8). Moreover,

α0(f) = 8 (= d∗

w∗

).

Corollary 3.6. Let f : K
n → K be a continuous quasi-homogeneous function with

weight w and quasi-degree m. If f−1(0) = {0} then

α0(f) =
m

w∗

.

Proof. The claim comes from d∗ = d∗ = m. �

4. The  Lojasiewicz gradient inequality for quasi-homogeneous

polynomials

We now consider the case k = 1 and let f : K
n → K be a C1 quasi-homogeneous

function with weight w := (w1, w2, . . . , wn) and quasi-degree m :

f(tw1x1, t
w2x2, . . . , t

wnxn) = tmf(x1, x2, . . . , xn).

2Where A ≃ B means that A/B lies between two positive constants.

8



We define the  Lojasiewicz gradient exponent β0(f) of the map f as the infimum of

the set of all real numbers l > 0 which satisfy the condition: there exists a positive

constant c such that

c|f(x)|l ≤ ‖∇f(x)‖ for ‖x‖ ≪ 1.

If the set of all the exponents is empty we put β0(f) := +∞.

We start with a general result valid for C1 functions.

Theorem 4.1. Let f : K
n → K be a C1 quasi-homogeneous function with weight w

and quasi-degree m ≥ w∗. Then

1 −
w∗

m
≤ β0(f) ≤ 1

the inequality on the right being strict if f is analytic.

Proof. Since f is a C1-positive quasi-homogeneous function with weight w and quasi-

degree m ≥ w∗,

mtm−1f(x) =
n∑

j=1

wjt
wj−1xj

∂f

∂xj

(t • x).

In particular, we have the generalized Euler identity

mf(x) =
n∑

j=1

wjxj

∂f

∂xj

(x).(4.1)

As a consequence, there exists a positive constant c1 such that

c1|f(x)| ≤ ‖x‖‖∇f(x)‖ for all ‖x‖ ≪ 1.

This implies that β0(f) < 1, so β0(f) is finite. And hence we can write

c2|f(x)|β0(f) ≤ ‖∇f(x)‖ for all ‖x‖ ≪ 1(4.2)

for some c2 > 0.

We have for all t > 0 the following relation

twj
∂f

∂xj

(t • x) = tm
∂f

∂xj

(x) for j = 1, 2, . . . , n.

This shows that

∂f

∂xj

(t • x) = tm−wj
∂f

∂xj

(x) for j = 1, 2, . . . , n.(4.3)

Then we have for all t > 0 the following equations

f(t • x) = tmf(x),

∂f

∂xj

(t • x) = tm−wj
∂f

∂xj

(x) for j = 1, 2, . . . , n.
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Since f 6≡ 0 there is a ∈ K
n such that 0 6= ∇f 2(a) = 2f(a)∇f(a). This implies

f(a) 6= 0 and ∇f(a) 6= 0. Then, asymptotically as t → +0, we have

|f(t • a)| ≃ tm,

‖∇f(t • a)‖ ≃ tm−wj for some j ∈ {1, 2, . . . , n},

Therefore (4.2) implies the existence of c3 > 0 such that

c3t
mβ0(f) ≤ tm−wj ≤ tm−w∗

as t → +0. This in turn implies that mβ0(f) ≥ m − w∗, which is equivalent to

β0(f) ≥ 1 −
w∗

m
.

�

In the special case where 0 is the only critical point of f we have a more precise

estimation as follows.

Corollary 4.2. Let f : K
n → K be a C1 quasi-homogeneous function with weight w

and quasi-degree m. Suppose that ∇f−1(0) = {0}. Then

1 −
w∗

m
≤ β0(f) ≤ 1 −

w∗

m
.

Proof. One has only to show that

β0(f) ≤ 1 −
w∗

m
.

Indeed, by the generalized Euler identity (4.1), there exists a positive constant c1

such that

|f(x)| ≤ c1‖∇f(x)‖‖x‖.

On the other hand, it follows from (4.3) that the following

∇f(x) : K
n → K

n, x 7→

(
∂f

∂x1

,
∂f

∂x2

, . . . ,
∂f

∂xn

)
,

is a continuous quasi-homogeneous map with weight w and quasi-degree (m−w1, m−

w2, . . . ,m − wn).

Therefore, by Proposition 2.3 and then Proposition 3.1(ii), for all ‖x‖ ≪ 1 we have

|f(x)| ≤ c1‖∇f(x)‖‖x‖w∗

w

≤ c2‖∇f(x)‖‖∇f(x)‖
w∗

m−w∗ = c2‖∇f(x)‖1+ w∗

m−w∗ ,

for some c2 > 0. Hence there exists a positive constant c such that

c|f(x)|1−
w∗

m ≤ ‖∇f(x)‖ for ‖x‖ ≪ 1.
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Consequently, by the definition of the  Lojasiewicz gradient exponent β0(f), we obtain

β0(f) ≤ 1 −
w∗

m
,

which completes the proof. �

Example 4.3. (i) (see [7]). Let f : C
2 → C, (x, y) 7→ x3 + 3xyk, k ≥ 3, be a complex

polynomial. It is clear that f is a quasi-homogeneous polynomial with weight w =

(k, 2) and quasi-degree m = 3k. A direct computation shows that the origin in C
2 is

an isolated critical point of f. Moreover, it follows from the results in [7] and [13] that

α0(∇f) =
3k

2
− 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
= 1 −

2

3k
.

(ii) Let f : C
2 → C, (x, y) 7→ x4 − 4xy, be a complex polynomial. It is clear that f

is a quasi-homogeneous polynomial with weight w = (1, 3) and quasi-degree m = 4.

A direct computation shows that the origin in C
2 is an isolated critical point of f.

Moreover, it follows from the results in [7] and [13] that

α0(∇f) = 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
=

1

2
.

Remark 4.4. Let f : C
n → C be a complex polynomial function with an isolated

singularity at 0. Then from the works of Teissier [13, Corollary 2] we have the following

equation

β0(f) =
α0(∇f)

1 + α0(∇f)
.

Moreover, Gwoździewicz has remarked, [4], that the above relation fails to hold for

some real polynomial functions with an isolated singularity at 0. However, we have

the following.

Corollary 4.5. (see also [4, Theorem 1.3]) Let f : R
n → R be a quasi-homogeneous

polynomial function with weight w and quasi-degree m. If f−1(0) = {0}, then

α0(f) =
m

w∗

,

α0(∇f) = α0(f) − 1 =
m

w∗

− 1,

β0(f) =
α0(∇f)

1 + α0(∇f)
= 1 −

w∗

m
.
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Proof. In fact, by Corollary 3.6, we have

α0(f) =
m

w∗

.

Then the remained relations follow from [4, Theorem 1.3]. We will give below a direct

proof in order to keep our paper self-contained.

We first note that the origin is an isolated critical point of f. Indeed, if ∇f(a) = 0

for some a 6= 0, then it follows easily from the generalized Euler identity (4.1) that

f(a) = 0, which is a contradiction.

Without loss of generality, we may suppose that f(x) ≥ 0 for all x ∈ R
n with

equality if and only if x = 0. For each δ > 0, the restriction of f to the sphere

{x ∈ R
n | ‖x‖ = δ} attains its minimum at at least one point. Let

Γ := {u ∈ R
n | f(u) = min

‖x‖=‖u‖
f(x)}.

It follows from the Tarski-Seidenberg theorem (see, for example, [3, Theorem 2.3.4]),

that Γ is semi-algebraic. Hence the Curve Selection Lemma [10] is applicable. To-

gether with Lagrange’s Multipliers Theorem, this implies that there exists a contin-

uous semi-algebraic map (λ, ϕ) : [0, ǫ) → R × R
n, τ 7→ (λ(τ), ϕ(τ)), such that

(i) ϕ(τ) = 0 if and only if τ = 0;

(ii) the restriction of the map (λ, ϕ) to (0, ǫ) is analytic;

(iii) ϕ(τ) ∈ Γ for all τ ∈ (0, ǫ); and

(iv) ∇f(ϕ(τ)) = λ(τ)ϕ(τ).

Let atp, a > 0, be the leading term of the Taylor expansion of ‖ϕ(τ)‖2, and btq, b 6= 0,

be that of |f(ϕ(τ))|2. Then, asymptotically as t → 0, we have

|f(ϕ(τ))| ≃ ‖ϕ(τ)‖
q

p .

Consequently, be the definition of α0(f), we get

α0(f) ≥
q

p
.

On the other hand, we may assume (taking ǫ > 0 small enough if necessary) that

the function τ 7→ ‖ϕ(τ)‖ is strictly increasing. Together with the condition (i), we

find that for each x ∈ R
n, ‖x‖ ≪ 1, there exists a positive number τ ∈ [0, ǫ) satisfying

the relation ‖ϕ(τ)‖ = ‖x‖. Hence,

|f(x)| = f(x) ≥ min
‖u‖=‖x‖

f(u) = f(ϕ(τ)) ≃ ‖ϕ(τ)‖
q

p = ‖x‖
q

p .

By the definition, thus

α0(f) ≤
q

p
.

12



Therefore,

α0(f) =
q

p
.

Moreover, it follows from the generalized Euler identity (4.1) that

mf(ϕ(τ)) =
n∑

j=1

wjϕj(τ)
∂f

∂xj

(ϕ(τ)).

By the condition (iv), hence

|mf(ϕ(τ))| = |λ(τ)|
n∑

j=1

wj[ϕj(τ)]2

=
‖∇f(ϕ(τ))‖

‖ϕ(τ)‖

n∑

j=1

wj[ϕj(τ)]2

≃ ‖ϕ(τ)‖‖∇f(ϕ(τ))‖.

In particular, we get

‖∇f(ϕ(τ))‖ ≃ ‖ϕ(τ)‖
q

p
−1 ≃ |f(ϕ(τ))|1−

p

q .

By definitions, hence

α0(∇f) ≥
q

p
− 1 = α0(f) − 1 =

m

w∗

− 1,

β0(f) ≥ 1 −
p

q
= 1 −

1

α0(f)
= 1 −

w∗

m
.

Then the corollary follows immediately from Corollaries 3.4 and 4.2. �

The following result is of general interest but we shall only use it to prove Theorem

4.7 below.

Lemma 4.6. Let f : K
n → K be a C1-function. For each k positive integer, consider

the function f̃ : K
n → K, x 7→ [f(x)]k. Suppose that there exist c > 0 and θ ∈ (0, 1]

such that

c|f̃(x)|1−θ ≤ ‖∇f̃(x)‖ for ‖x‖ ≪ 1.

Then
c

k
|f(x)|1−kθ ≤ ‖∇f(x)‖ for ‖x‖ ≪ 1.

Proof. We have

∇f̃(x) = k[f(x)]k−1∇f(x).

Hence

c|[f(x)]k|1−θ ≤ k|[f(x)]k−1|‖∇f(x)‖.

This implies
c

k
|f(x)|1−kθ ≤ ‖∇f(x)‖,

13



concluding the proof of the lemma. �

The following is a generalization of [5, Theorem 2.1].

Theorem 4.7. Let f : R
2 → R be a quasi-homogeneous polynomial function with

weight w := (w1, w2) and quasi-degree m. Then there exists a positive constant c such

that

(4.4) c|f(x, y)|1−
w∗

m ≤ ‖∇f(x, y)‖, as ‖(x, y)‖ ≪ 1.

Proof. Without loss of generality, we may suppose that

1 ≤ w∗ = w1 ≤ w2 ≤ m.

There are two cases to be considered.

Case 1. m is divisible by w1; i.e., q := m
w1

is a positive integer number.

Consider the following function

g(x, y) := f(x, y
w2
w1 ).

Then, by Proposition 2.1, we can see that g is a homogeneous polynomial on R×R+

of degree q = m
w1

. Indeed we can write for some finite set S ⊂ N × N :

f(x, y) =
∑

α:=(α1,α2)∈S

aαxα1yα2

with

w1α1 + w2α2 = m = qw1.

Hence

α2 = (q − α1)
w1

w2

;

and therefore

f(x, y) =
∑

α∈S

aαxα1y
(q−α1)

w1
w2

which provides

g(x, y) =
∑

α∈S

aαxα1yq−α1 .

It now follows from [5, Theorem 2.1] that there exists a positive constant c such that

c|g(x, y)|1−
w1
m ≤ ‖∇g(x, y)‖, as ‖(x, y)‖ ≪ 1 and y ≥ 0.

On the other hand, by the definition

∂g

∂x
(x, y) =

∂f

∂x
(x, y

w2
w1 ),

∂g

∂y
(x, y) =

w2

w1

y
w2
w1

−1∂f

∂y
(x, y

w2
w1 ).
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Therefore, asymptotically as (x, y) → (0, 0) and y ≥ 0,

c|f(x, y
w2
w1 )|1−

w1
m ≤

∥∥∥∥
(

∂f

∂x
(x, y

w2
w1 ),

w2

w1

y
w2
w1

−1∂f

∂y
(x, y

w2
w1 )

)∥∥∥∥ .

≤

∥∥∥∥
(

∂f

∂x
(x, y

w2
w1 ),

∂f

∂y
(x, y

w2
w1 )

)∥∥∥∥ ,

because w2 ≥ w1.

Let u := y
w2
w1 ≥ 0. Then

c|f(x, u)|1−
w1
m ≤

∥∥∥∥
(

∂f

∂x
(x, u),

∂f

∂y
(x, u)

)∥∥∥∥ .

By an entirely analogous argument but replacing g(x, y) = f(x, y
w2
w1 ) by f(x,−y

w2
w1 )

we can show that the above inequality also holds for all u ≤ 0. These prove the

theorem in Case 1.

Case 2. m is not divisible by w1.

Let f̃(x, y) := [f(x, y)]w1 . Then it is clear that f̃(x, y) is a positive quasi-homogeneous

polynomial with weight (w1, w2) and quasi-degree m̃ := mw1. Since em
w1

= m is an in-

teger number, by applying Case 1 for the polynomial f̃ we get

c̃|f̃(x, y)|1−
w1
em ≤ ‖∇f̃(x, y)‖, as ‖(x, y)‖ ≪ 1,

for some c̃ > 0.

By Lemma 4.6, we get

c̃

w1

|f(x, y)|1−
w1
m ≤ ‖∇f(x, y)‖,

which completes the proof of the theorem. �

Remark 4.8. As we see in the next proposition, the result of Theorem 4.7 is no

longer valid in dimensions n > 2.

Proposition 4.9. (Compare with [5, Remark 2.4]) Let f : R
3 → R be given by

f(x, y, z) := x4 + x2z2 − 2xy2z + y4 = x4 + (xz − y2)2.

Then there exists a curve ϕ : [0, ǫ) → R
n, t 7→ ϕ(t), such that

‖∇f [ϕ(t)]‖ ≪ |f [ϕ(t)]|1−
1
4 for 0 < t ≪ 1.

In particular, β0(f) > 1 − w∗

m
= 1 − 1

4
.
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Proof. It is clear that f is a weighted quasi-homogeneous polynomial with weight

w = (1, 1, 1) and quasi-degree m = 4. Moreover, f has non-isolated zero at the origin;

namely, f−1(0) = {(0, 0, t) | t ∈ R}. Define the polynomial curve ϕ : [0, ǫ) → R
3, t 7→

(x(t), y(t), z(t)), by

x(t) := t2,

y(t) := t + t5,

z(t) := 1.

One easily verifies that

f [ϕ(t)] = t8 + 4t12 + 4t16 + t20,

∂f

∂x
[ϕ(t)] = −2t10,

∂f

∂y
[ϕ(t)] = 8t7 + 12t11 + 4t15,

∂f

∂z
[ϕ(t)] = −4t8 − 2t12.

Hence, asymptotically as t → 0,

‖∇f [ϕ(t)]‖ ≃ t7 ≪ t6 ≃ |f [ϕ(t)]|1−
1
4 .

This completes the proof. �

Remark 4.10. The polynomial x4 + x2z2 − 2xy2z + y4 in the above proposition is

the homogenized of x4 + (x− y2)2 by the new variable z. The last one is a polynomial

in the class of polynomials which was considered by János Kollár ([6]).

The following is a direct consequence of Theorem 4.1 and Theorem 4.7.

Corollary 4.11. Let f : R
2 → R be a quasi-homogeneous polynomial function with

weight w := (w1, w2) and quasi-degree m. Then

1 −
w∗

m
≤ β0(f) ≤ 1 −

w∗

m
.

5. Additional results, remarks and examples in dimension 2

In this section we will denote by f : R
2 → R a quasi-homogeneous polynomial with

weight w = (w1, w2) and quasi-degree m such that

w∗ = w1 ≤ w2 = w∗ ≤ m.

We now apply Corollary 4.11 in special cases.
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Corollary 5.1. If the origin is an isolated zero of fy then

β0(f) = 1 −
w2

m
.

Proof. It is well known that fy is quasi-homogeneous polynomial with weight w =

(w1, w2) and quasi-degree m − w2. Since f−1
y (0) = {0}, it follows from Theorem 2.5

that the polynomial fy has a strict global extremum at the origin. Thus we can

assume that fy > 0 on R
n−{0}. By again Theorem 2.5, the set {fy = 1} is nonempty

compact. Hence

∞ > c := max
fy(u,v)=1

|f(u, v)| > 0.

Take any (x, y) ∈ R
2. Let ǫ := [fy(x, y)]

1
m−w2 . Then {(u, v) ∈ R

2 | fy(u, v) = ǫm−w2}

is a non empty compact set. Moreover,

|f(x, y)| ≤ max
fy(u,v)=ǫm−w2

|f(u, v)| = max
fy(ǫ−w1u,ǫ−w2v)=1

|f(u, v)|

= max
fy(ũ,ṽ)=1

|f(ǫw1ũ, ǫw2 ṽ)|

= max
fy(ũ,ṽ)=1

|f(ũ, ṽ)|ǫm

= c[fy(x, y)]
m

m−w2 .

This gives

fy(x, y) ≥ c′|f(x, y)|1−
w2
m ,

here c′ := c1−
w2
m > 0. Therefore

‖∇f(x, y)‖ ≥ |fy(x, y)| ≥ c′|f(x, y)|1−
w2
m .

By the definition of β0(f), we get

β0(f) ≤ 1 −
w2

m
.

Then, by Corollary 4.11, β0(f) = 1 − w2

m
. �

Example 5.2. Let f : R
2 → R, (x, y) 7→ y3 + 3x4y + 2x6 be a real polynomial.

It is clear that f is a quasi-homogeneous polynomial with weight w = (1, 2) and

quasi-degree m = 6. A direct computation shows that f−1
y (0) = {(0, 0)}. Hence

β0(f) = 1 − 2
6
.

Corollary 5.3. Suppose that the origin is not an isolated zero of fy. If there exists

(a, b) ∈ R
2 such that f(a, b) 6= 0, fx(a, b) 6= 0 and fy(a, b) = 0, then

β0(f) = 1 −
w1

m
.
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Proof. By the hypothesis, we have for all t > 0

f(tw1a, tw2b) ≃ tm,

fx(tw1a, tw2b) ≃ tm−w1 ,

fy(tw1a, tw2b) ≡ 0.

Asymptotically as t → 0, hence

|f(tw1a, tw2b)| ≃ tm,

‖∇f(tw1a, tw2b)‖ ≃ tm−w1 .

This implies that

‖∇f(tw1a, tw2b)‖ ≃ |f(tw1a, tw2b)|1−
w1
m .

Then, by the definition of β0(f),

β0(f) ≥ 1 −
w1

m
.

On the other hand, by Corollary 4.11, β0(f) ≤ 1− w1

m
. Therefore β0(f) = 1− w1

m
. �

Example 5.4. Let f : R
2 → R, (x, y) 7→ x2y − y2 be a real polynomial. It is clear

that f is a quasi-homogeneous polynomial with weight w = (1, 2) and quasi-degree

m = 4. A direct computation shows that f−1
y (0) = {x2 − 2y = 0} and the origin in

R
2 is an isolated critical point of f. Moreover, it is easy to see that the conditions of

Corollary 5.3 are satisfied. Hence, β0(f) = 1 − 1
4
.

Remark 5.5. (i) All results in this paper allow to compute the  Lojasiewicz expo-

nents for some functions which are not quasi-homogeneous, for instance, the function

f(x) := P (Ax), where P is a quasi-homogeneous polynomial of two variables and

A a nonsingular 2 × 2 square matrix. As an example the polynomial P (x, y) :=

ax4 + by2 + cx2y is quasi-homogeneous with weight (1, 2) and quasi-degree 4. The

polynomial Q(x, y) = P (x, x + y) is not quasi-homogeneous if bc 6= 0.

(ii) On the other hand, there are of course polynomials of two variables which

cannot be put in the form = P (Ax) with, P, A as above. For instance the polynomial

Q(x, y) := x2(1 +y) is such that no polynomial P = Q◦A with A a nonsingular 2×2

square matrix is quasi-homogeneous.
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