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A STATISTICAL METHODOLOGY
FOR TESTING THE ANISOTROPY OF BROWNIAN TEXTURES
WITH AN APPLICATION TO FULL-FIELD DIGITAL
MAMMOGRAPHY

FREDERIC RICHARD AND HERMINE BIERME

ABSTRACT. In this paper, we propose a new and generic methodology for the
analysis of the texture anisotropy. The methodology is fundamentally based on
the stochastic modeling of textures by Anisotropic Fractional Brownian Fields
(AFBF). It includes some original statistical tests for deciding if a texture mod-
eled by an AFBF is clearly anisotropic. These tests are based on the estimation
of directional parameters of an AFBF by generalized quadratic variations (GQV).
The construction of these tests is inspired from a new theoretical result on the con-
vergence of the GQV estimators, which is proved in the paper. The methodology
is validated and discussed on simulated data. The methodology is also applied to
Full-Field Digital Mammograms (FFDM). On a database composed of 118 FFDM,
we show that about 60 percent of textures can be considered as anisotropic with a
high level of confidence. These empirical results strongly suggest that AFBF are
better-suited than the commonly used isotropic Brownian fields for the modeling
of FFDM textures.
Keywords: Anisotropy, anisotropic fractional Brownian field, Hurst index, generalized

quadratic variations, texture analysis, mammography, density characterization.

1. INTRODUCTION

Texture analysis is an important generic research area of machine vision, which is
being motivated by numerous applications (e.g. biomedical image analysis, analysis
of satellite imagery or content-based retrieval from image databases). There is a wide
variety of texture analysis approaches. Some of these approaches, such as Markov
random field modeling [25] or fractal analysis [51], are based on the description
of image textures with stochastic models. In such approaches, texture features
are derived from the estimation of model parameters. The stochastic model beyond
fractal analysis is the Fractional Brownian Field (FBF'), which is a multi-dimensional
extension of the famous fractional Brownian motion introduced by Mandelbrot and
Van-Ness [46]. FBF is mathematically defined as the unique centered Gaussian field,
null at origin, with stationary increments which is isotropic and self-similar of order
H € (0,1). The variogram (see Section 2.1 for a definition) of a FBF in dimension 2
is of the form v(z) = Cy|z|*,Vx € R?. The parameter H, called the Hurst index,
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FIGURE 1. Some field simulations. Simulation of FBF using the Stein
method for (a) h = 0.3 and (b) h = 0.7. Simulation of AFBF using
the spectral method for (¢) hy = 0.3 and hy = 0.5 and (d) h; = 0.3
and hg =0.7.

is a fundamental parameter of FBF which is an indicator of the texture roughness
and is directly related to the fractal dimension.

The fractal analysis has been largely used in medical applications [9, 17, 21,
23, 45]. In particular, it was used for the characterization and classification of
the mammogram density [21] and for the assessment of a breast cancer risk [21,
35]. The fractal analysis was also used for the radiographic characterization of
the bone architecture and the evaluation of an osteoporotic fracture risk [9]. In
this application, it is now well-established that the anisotropy of the bone is an
important predictor of fracture risk [17, 38]. Hence the fractal analysis with FBF
models, which is isotropic by definition of H, is not completely satisfactory for this
application.

For defining anisotropic field models, Bonami and Estrade considered a generic
class of d-dimensional Gaussian fields (with stationary increments) which are char-
acterized by variograms of the form

(1) Vo e R v(a) = [ [em¢ 1 (Q)dC,

R4
where f is a positive function such that [y, (1 A[¢[*) f(¢)d¢ < oo, which is called
the spectral density. In dimension 2, anisotropic fields can be defined by taking
spectral densities of the form

(2) V(¢ ER? f(Q) = [¢|herelO)=2,

where h is a map taking values in (0, 1) and defined for any orientation [—7, ) of
R2. Such a field will be called Anisotropic Fractional Brownian Fields (AFBF). Due
to directional Hurst indices h, they have orientation-dependant spectral densities.
FBF are particular AFBF characterized by a density of the form (2) with a constant
function h = H.

There are still several open issues concerning AFBF. One of them is the estimation
of the directional Hurst index function h. In [5, 13|, authors constructed estimators
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based on generalized quadratic variations of projected fields and studied theoretically
their asymptotic behavior. The asymptotic properties shown in those papers are
restricted to one direction. In this paper, we present a new result which shows the
convergence of linear combinations of estimators in a couple of directions. Based on
this result, we build an original statistical methodology for assessing the significance
of the difference between several Hurst index estimates and deciding if an observed
field is anisotropic. This methodology is validated and discussed on simulated data.
Finally, we apply this methodology on mammograms and study the relevance of an
anisotropic model for the characterization of the textures of these images.

2. ELEMENTS OF THEORY

2.1. Gaussian fields with stationary increments. Let (£2, A, P) be a probability
space. A d-dimensional random field X is a map from © x R? into R such that
X(-,y) == X(y) is a real random variable on € for all y € RY. When d = 1,
such a field is called a random process. We say that a random field is Gaussian
if any finite linear combination of its associated random variables is a Gaussian
variable. A centered Gaussian field X is characterized by its covariance function:
(y,2) — Cov(X(y), X(2)). A field X has stationary increments if the law governing
the field X (- + z) — X(2) is the same as X(-) — X(0) for all z € R%. A centered
Gaussian field X with stationary increments is characterized by its variogram, which
is defined by

(3) vy € RY, v(y) = E((X(y) — X(0))%).

In what follows, we will consider centered Gaussian fields with stationary increments,
which have a variogram of the form (1). Such fields are referred to as Gaussian Fields
with Spectral Density (GFSD).

2.2. Review of some FBF extensions. Due to its extensive use in fractal anal-
ysis, FBF is the most famous GFSD. The isotropy of FBF is a serious limitation
for the modeling of fields showing different behaviors in several directions. Hence,
several extensions of FBF have been proposed to obtain anisotropic models. In [28],
FBF model was generalized by considering fields with variograms of the form

vy R, w(y) = C (ﬁ) 2,

where C'is a function called the "topothesy function" which is orientation-dependant.
Some of these fields are GFSD with spectral density given by

VCeR?, f(()=c (‘—3) ¢,

In this model, the Hurst exponent H does not depend on the direction. In [39],
Kamont introduced the so-called fractional Brownian sheet. This model has different
Hurst indices in an orthogonal basis of directions. In [44], the Brownian sheet was
constructed by fractional integration with respect to a white noise and used for
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the modeling of bone radiographs and the characterization of the osteoporosis. In
[10, 12], the so-called operator scaling Gaussian random fields were introduced for
the modeling of sedimentary aquifers. As for the Brownian sheet, Hurst indices of
these fields are different on some directions, but those directions are not necessarily
orthogonal. Contrarily to fractional Brownian sheets, these fields have stationary
increments. They are GFSD with spectral density satisfying

Ve e RY, f(cFQ) = ¢ HUE f((),

for a real d x d-matrix £ and H > 0. Such fields generalize FBF, which are obtained
with F = I, (the identity matrix). Let us also mention that sample path properties
of these three kinds of anisotropic random fields, such as modulus of continuity, local
times and Hausdorff dimensions, were studied in [57].

The multi-fractional Brownian motion defined simultaneously in [8] and [50] is
another generalization of FBF. In this model, the Hurst index H of FBF is replaced
by a function depending on the point y € R?. Such models are not necessarily
anisotropic and have non-stationary increments.

In this paper, we will focus on AFBF as introduced in [14] in dimension d = 2.
They are GFSD with spectral density of the form (2) in dimension 2. In dimension
d, the spectral density of a AFBF is more generally defined as

Ve eR?, f(¢) = [¢|72M/KD—d

The function h : S41 — (0,1) characterizes the anisotropy and is called directional
Hurst index.

2.3. Field Ho6lder regularity. The random field regularity is usually defined using
Holder exponents. For 1" > 0, sample paths of X satisfy a uniform Hélder condition
of order a € (0,1) on [T, T]? if there exists a positive random variable A with
P(A < +00) =1 such that

(4) Vy,z € [T, 1), |X(y) — X(2)| < Aly — 2|

This equation gives a lower bound for the Holder regularity of a field. The critical
Holder exponent ( of a field is defined as the supremum of « for which the Hélder
condition (4) holds. From an image point of view, the critical Holder exponent is
related to the roughness of the texture. The texture is as rough as the field regularity
3 is small. As stated in the next theorem proved in [14], the Holder regularity of
a GFSD can either be deduced from the local behavior of the variogram around 0
(condition (iii)) or from the asymptotic behavior of the spectral density at high-
frequencies (conditions (i) and (ii)).

Theorem 2.1. Let X be a GFSD and 5 € (0,1).

(a) If, for any 0 < o < H <~y < 1, there exist A, By, Bs > 0 and a positive-measure
subset E of the unit sphere S' of R? such that for almost all £ € R,

(0): €] = A= [f(O] < B¢,

(i0): €] > A and § € E = |f(€)] > Baf¢| 7.



Then, there exists 6 > 0 and Cy,Cy > 0 such that
(itd): Vly| < 6, Calyl*" < v(y) < Coly|™.
(b) Condition (iii) implies that X admits H as critical Hélder exponent.

2.4. Process Holder regularity. For random processes (d = 1), we will use an
extended definition of the Holder regularity which has a meaning when g > 1 [14].
Let Y = {Y(¢);t € R} be a centered Gaussian random process with stationary

increments and variogram v. Let ¢ € R. If the sequence (M) admits a limit

in L?(Q, A,P) as h — 0, we say that Y is mean-square differentiable at point ¢. We
denote by Y’(t) the corresponding limit, which is a centered Gaussian variable (see
for instance page 27 of [3]). When this holds for any ¢ € R?, the variogram v of Y
is two times differentiable, the process Y’ is stationary and its variogram satisfies

(5) vy (t) = = (v"(t) =0"(0)) = lim h2RE (Y (t+h) = Y(t) = Y (h) + Y (0))*.

Recursively, we can further define the n-time mean square differentiable of a
process Y as the mean square derivative of the Y "=V (if it exists). We then define
the extended Holder regularity. Let 5 = n+s, withn € Nand s € (0,1). We say that
Y admits (3 as critical Holder exponent, if Y is (a) n-time mean square differentiable
and (b) its n' mean square derivative admits s = 3 —n € (0,1) as critical Holder
exponent. As stated in the following theorem, the extended Holder regularity of a
process can also be deduced from the behavior of its variogram behavior around 0
and asymptotic properties of the spectral density.

Theorem 2.2. Let Y = {Y(t);t € R} be a Gaussian random process with spectral
density. Let B =n+s, withn € N and s € (0,1).

(a) If, for any 0 < a < s <y < 1, there exist A, By, By > 0 such that for almost all
f E R?

(i) |E] > A= B[220 < fy(€) < By|€| 727", Then,

(ii) the variogram vy is of class C*" in a neighborhood of 0

(ii1) there exists 6 > 0 and Cy,Cy > 0 such that

VIt < 8, CHltPY < [Uln(E) — o (0)] < CltPe,

(b) Conditions (ii) and (iii) imply that the process Y admits B as critical Holder
exponent.

2.5. Regularity of an AFBF. A direct application of Theorem 2.1 shows that the
critical Holder exponent of an AFBF (in dimension d = 2) is equal to the minimal
value H of the Hurst index function h on [—m, 7):

(6) H = essinf[_, 1 (h).

The critical Holder exponent H of an AFBF will be called the minimal Hurst index.
In the particular FBF case, the minimal Hurst index is the usual Hurst index.
The minimal Hurst index can be considered as a fundamental parameter which
characterizes the AFBF texture roughness by giving the Holder regularity. Note
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also that the minimal Hurst index of an AFBF is related to the Hausdorff and
Box-counting fractal dimensions of its graph G(X) = {(y, X(v)) ; y € [T, T)*}

(7) dimyG(X) = dimgG(X)=2+1—H =3 — H,

almost surely, for any 7" > 0 (refer to [31] for the dimension definitions). The
minimal Hurst index, being direction-independent, does not capture any anisotropic
feature of an AFBF.

2.6. Regularity on oriented lines. In attempt to characterize the anisotropy of
an AFBF, one could propose to study the field along oriented straight lines. Then,
the question arises to know whether or not the Holder regularity of an AFBF along
a line is somehow related to the Hurst index in the direction of the line.

In the general setting of dimension d, let us parametrize any line A of R? with
(tg,0) € RY x S ! and define Xa = {X(to +t0);t € R} the restriction of a field
X on the line A. If X is a GFSD, any restriction X is a Gaussian process with
spectral density given by

©) WER fs)= [ sEr s

where f is the spectral density of X and (§)* denotes the hyperplane of R¢ orthogo-
nal to the direction §. When X is an AFBF and d = 2, it can be shown that for any
line A, conditions (i) and (ii) of the Theorem 2.1 hold for the spectral density of X
with H = essinf|_; (k). In other words, for any chosen line A, the critical Hélder
exponent of X is constant and equal to the minimal Hurst index. Therefore, it is
not possible to study directional Hurst indices of an AFBF using line-restrictions.

2.7. Projection regularity. As an alternative to line-restrictions, Bonami and
Estrade proposed to study windowed Radon transforms of fields [14]. These trans-
forms are defined in the general setting of dimension d, by projecting a field X along
hyperplanes (6)1 of R¢:

(9) V(0,t) € ST xR, R,X(0,t) = / X (s+t0)p(s)ds,
(0)+

where p is a window function of the Schwartz class such that [, p(7)dy = 1. Then,
the question arises to know if the regularity of the process R,X (0, 1) is related to the
Hurst index of X in the direction #. For any direction § € S%~!, the obtained process
RyX ={R,X(0,t),t € R} is a Gaussian process with a spectral density given by

(10) WER Rofp)= [ f(e+r0) PO de

where f is the spectral density of X. For an AFBF, it was shown that the spectral
density of RyX checks condition (i) of Theorem 2.2 for 5(0) = h(f) + 1/2. In other
words, the Holder regularity of the projected field RyX is equal to h(f) + 1/2 and
depends on the direction # along which the projection is performed. The parameter
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% corresponds to the smoothing effect of the projection which is equal to % (d=2).
By estimating the regularity of the process Ry X, it is thus possible to estimate the
value h(6) and study the anisotropy of an AFBF.

3. ESTIMATION METHOD

As mentioned above, the directional Hurst index h(f) of an AFBF can be deduced
from the critical Hélder exponent of the projected field R, X (6, -) along the direction
0. Since this projected field is a one-dimensional fractional Brownian motion (fBm),
it is possible to use estimation techniques which have been developed for such pro-
cesses. Up to now, many estimators of the Hurst index of a fBm have been proposed
(see |24] and [7| and references therein for a review). The maximum likelihood esti-
mator, the related Whittle estimator 11|, and the wavelet-based estimators [1] are
often used for analyzing fBm with long-range dependence (H € (1/2,1)). These
estimators are consistent and have an asymptotic normality. Some other estimators
are defined by a filtering of discrete observations of a fBm sample path. This is
the case with Generalized Quadratic Variations (GQV) studied in [37, 42]. Such
estimators are particularly interesting: (i) they can be used for the estimation of the
regularity of a large class of Gaussian fields which includes fBm, (ii) they are also
consistent and have asymptotic normality. Due to the good properties of GQV, we
chose the GQV for the estimation of directional Hurst indices in this study.

3.1. Generalized Quadratic Variations. Let Yj be the projected field R,X (0, )
of an AFBF X, as defined by Equation (9). Let M = 2™, for an integer m > 1. For
any v € N, v < m, u € N\{0}, we define second-order increments Zj, of Yy

t+ 2u t+u t
11 7V (1) =Y, oy, [ )+, .
(11) pull) 9(2VM) G(QVM)Jr G(QVM)

The value 1/277 M can be seen as a precision at which Yj is considered and u /27" M
as an increment step. Due to assumptions on Yj, the process Zg . 1s stationary. The
generalized quadratic variations of Yj of order 2 are defined as

27V M —2u
1

v v 2

p=0

By ergodicity, one can prove that Vj, N E(Vy,). Moreover,

0 = 2300 =5 (1 (B 20) o (52 i)

Comparing this equation to Equation (5), we can interpret E(V},) as a second order
discrete derivative of the variogram around 0. Due to application of Theorem 2.2 to
Yy, the critical Hélder exponent of Zg, is h(0) + 1/2 and the asymptotic behavior
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of the variogram of Zy, is known (condition (ii)). As a result, one can show that

(13) E(VE) ~  C277M) 201,20+
’ 2=V M —+o0

From this asymptotic property of GQV, we can heuristically derive an estimator of
h(0) based on GQV of Yy, namely

. 1 Vs 1
14 H”(0) = 1 = -
" 9= 200 Og(%ﬁ) 2

The proof and theoretical conditions for this estimator to converge to h(6) as 27V M
tends to +o0o can be found in [13].

3.2. Anisotropy test. Let us consider the case of an AFBM X with spectral den-
sity f satisfying

_ L1 ] < el
f(&) = { |€|7Ch2t2)if [&] < eyl€d],

with 0 < ¢; < 7', Let us denote HY = H”(0,1) and HY = H"(1,0) the estimators
of the directional Hurst exponent in vertical and horizontal directions.

(15)

Theorem 3.1. Let X be an AFBM with spectral density f satisfying (15). Then,
almost surely
HY'—HY —  hi—hy
2=V M—+o0
with, for some vy > 0,
o= (H; Y~ (hy — hg)) Q_M%M N (0,7%) .

This theorem is proved in appendix A. It is the theoretical contribution of the
paper to the study of estimator asymptotics for AFBF models.

In addition to its theoretical interest, Theorem 3.1 can be used heuristically for
testing the isotropy of an AFBF. Let us consider the statistical asymptotic hypoth-
esis test for testing the assumption Hy: hy = hy (isotropy) against Hy: hy # ho
(anisotropy). Our test statistic is naturally defined by

(16) DY = V2 M )ﬁf — .
By Theorem 3.1, under the assumption Hy we have DY, Mi> N (0,~?) | while
27V M—4o0
DY, —  + oo under the assumption H;. Hence, we define the form of an
2=V M—+o0
hypothesis rejection interval (of confidence level ) as
(17) RY ={D7; > vta},

where ¢, stands for (1 — «/2)-quantile of the centered and normalized Gaussian
distribution.
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3.3. Implementation. Assume we observe a 2-dimensional realization of a field x
on the uniform grid {(&, L) ,0 < k,I < M} of [0, 1]? at resolution 1/M. We denote

MM
by x(k,l) the value of the observed field at position (ﬁ, ﬁ) We first compute
discrete row- and column-wise averages (y; and o) of x:

M M
1 l

<kl< == = -y '

(18) VO<kI<M, y(l) M 2 x(k,l) and yo(k) P x(k, 1)

We then compute discrete quadratic variations v, in both directions (e = 1,2) for
dilation parameters u = 1,2 and different values of v (such that 2" ™u < M)

(19) vy, = %HZ(ye(sp) —2y.(s(p+u)) +ye(s(p + 2u)))?,

p=

with s = 2 and M = M /2 — 2u. Finally, we define the discrete projection-based
estimator h” of the index h, of X in directions e = 1,2

7 1 Ueo 1
20 hY = — 1 ’ ——.
(20) ‘= Tlog(®) g() 2

The effect of discretizations on the estimation is one of the main theoretical issue
which was investigated in [13]. We have shown that the estimation error due to the
approximation of V', by vy, is controlled by the inequality

[log (v7 o/ V)| < C"M™(M/2")" 012,

for any a < H, where H is the minimal Hurst index. We then established the

convergence of hY to h(f) as M = 2™ tends to +oo under condition that v >
h(0)—H~+1/2
h(0)+1/2
We rely on a numerical study to fix an optimal value of v (see Section 5).
For the estimation of the minimal Hurst index H (see Equation (6)), we also use
a line-based estimator. We define discrete line-restrictions 2" of z in the row and

column direction e = 1, 2.

. This condition is purely theoretical and cannot be used in practice.

(21) VO<kI<M, 28()=a(kl) and z5(k) = 2(k,1).
We then compute the discrete quadratic variations w? of these restrictions
1 M—2u

(22) wl,= = 3 () — 2+ ) + 2+ 20)),
p=0
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foru = 1,2 and 0 < 57 < M. Next, we compute estimates hoe of Hurst indices in
row and column directions e = 1,2 as

M
1 %wéz

23 hoe = ———log | 1=

(23) %7 210g(2) el |

ng,l
0

=

We finally consider the estimate of the minimal Hurst index given by
(24) H = min(iLOl, ilog).

The convergence of these line-based estimators to the minimal Hurst index as M
tends to +o0o can be established using theorems shown in [13].

Besides, using the discrete projection-based estimators in both directions, we can
define an empirical statistical test for testing the assumption Hy: hy = hy (isotropy)
against Hy: hy # hy (anisotropy). Let d” = |h¥ —hj| be the empirical approximation
of the statistic \/f_u”ijM in Equation (16), with A% and h% given by (20). The rejection
interval of confidence level a = 0.05 for the above test is defined as

(25) R’ = {d" > 1.960},

where 1.96 is the 0.975-quantile of the centered and normalized Gaussian distribution
and o = \/Q_VTM is the standard deviation of d”. This empirical test will be referred
to as the first anisotropy test. Theorem 3.1 does not however give an explicit value
of 7, nor the optimal choice for v. These two parameters will be set empirically in
Section 5.

This test evaluates the anisotropy between vertical and horizontal directions.
Hence it cannot detect anisotropic fields which have the same vertical and hori-
zontal directional Hurst indices. In order to fix this drawback, we set a second
anisotropy test which takes into account the other directions using an estimation of
the minimal directional Hurst index H: we test the assumption Hy: H = hy = ho
(isotropy) against Hy: H # hy or H # hy (anisotropy). We consider the empirical
statistic 67 = | max(hY, hy) — H|, with kY, h% given by (20) and H by (24). The
rejection interval of the test is then defined by

(26) R = {&" > ¢},

where c is a positive constant which will be fixed empirically in Section 5.

4. FIELD SYNTHESIS

A lot of numerical methods have been recently proposed to simulate 1-dimensional
fractional Brownian motion (fBm) [6]. Most of them are approximation methods.
This is the case of the midpoint displacement method [48] and the wavelet based
decomposition [2, 47, 53]. A few of them can be generalized to the simulation
of 2-dimensional (anisotropic) fractional Brownian fields. Methods based on the
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Choleski decomposition of the covariance function generate exact synthesis but also
cause numerical problems due to the size of the matrix. In order to have a fast
synthesis one can use the stationarity of the increments by applying the embedding
circulant matrix method [29]. By this way, we easily obtain fast and exact synthesis
of 1-dimensional fBm [52|. Some authors apply this method for higher dimension
but this does not produce exact synthesis in general [22, 40].

4.1. The Stein method. The embedding circulant matrix method is a famous
and efficient algorithm for the synthesis of a stationary Gaussian random field. It
is based on the fact that the covariance matrix of a stationary field is Toeplitz. It
consists of embedding this matrix in a larger symmetric matrix which is circulant
and thus diagonalizable by discrete Fourier transform. This yields to a fast and exact
algorithm as soon as the eigenvalues of the embedding circulant matrix are positive.
This method is well-suited for the generation of increments of a fractional Brownian
motion (dimension 1). However it cannot be applied in dimension 2 because the
eigenvalues of the minimal embedding circulant matrix of FBF increments are not
positive. To fix this problem, Stein proposed a method which consists of two steps:
(1) The generation of an isotropic stationary Gaussian random field which have a
minimal positive embedding circulant covariance matrix and is “close” to a FBF
increment, (2) the transformation of this initial field into an exact simulation of a
FBF [54].
Let By be a FBF with Hurst index H € (0,1) and recall that
Var (By(x) — By(y)) = |v — y|* ,V 2,y € R%.
Let us define a covariance K as:
-z —yP telr—y? H0<|z—y| <1
Kz —y) = { 0 otherwise

with constants ¢g = 1 — H and ¢, = H. The additional term cy|z — y|? ensures the
positiveness of the minimal embedding circulant matrix of K. We can thus simulate
a random field Z with covariance K. Whenever |z — y| < 1, we have

Var(Z(z) — Z(y)) = Var(Bu(2) — Bu(y)) — 2c2l — y[*
Independently of Z, we generate two independent random variables X; and X, with
the same Gaussian law N (0, 2¢5). We define the random field

Z*(.ZIZ‘) = Z(.ZI?) -+ xle -+ JZ'QXQ — Z(O),
with z = (71, 22) € R?%. When |z| <1, |y| < 1 and |z —y| < 1,
E(Z*(x)Z"(y)) = E(Bu(x)Bu(y)).
Therefore, the random field Z* = {Z*(x);|z| <1} is a standard FBF of Hurst
parameter H. Stein proved that this choice of K leads to an exact simulation when
H € (0,0.75). Some simulation examples are shown on Figures 1 (a) and (b). Let us

point out that the main difficulty of this method is to prove that K is well-defined
as a covariance function. For this reason, the method can not be easily generalized.

Y
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4.2. The spectral method. The Stein method cannot be generalized to simulate
anisotropic fields. We thus propose another simulation method based on a discretiza-
tion of the spectral representation of an AFBF [14]. The directional Hurst indices
of 2-dimensional AFBF we generate differs in both row and column directions. The
spectral densities of these fields are of the form

(27) 1O ={ [t il

|€|~(h2F2) - otherwise.

for all £ = (&,&) € R? < {(0,0)}. In this expression, h; and hy form a pair
of parameters in (0, 1) which characterize the anisotropy of generated fields. The
minimal Hurst index of the generated field is H = min(hy, hy) (see Section 2.5).
Define g(z,y) = f/%(x,y) for all (x,y) € [-M, M]?> ~ {(0,0)} and ¢(0,0) = 0.
Let {2(n1,n2),0 < ny,ng < M} be (2M + 1)? independent realizations of complex
random variables whose real and imaginary components are two uncorrelated zero-
mean standard Gaussian variables.We generate a random field y using a discrete

spectral representation. For 0 < ny,n, < M, values y(%, k—]\j) are given by
M .
(28) T Z z(n1,ng) g(mny, an)e_%(mkﬁmkg)‘

ni,no=—M+41

We then define an approximated AFBF as z(£ k2) = R(y(& k2) _ 4(0,0)), for
0 < ki,ky < M. From a practical view point, the sum in previous Equation is a
filtering in the Fourier domain of a white noise z by a low-pass linear filter with
transfer function g. Based on this method, AFBF approximations can be easily and
quickly simulated using a fast Fourier transform. Some simulation examples are

shown on Figures 1 (c¢) and (d).

5. NUMERICAL STUDY

We used the simulation methods presented in Section 4 for generating a dataset
of synthetic textures. This dataset has two parts. The first part contains 8 subsets
of 1000 FBF of size 512 x 512 generated using Stein method eight different Hurst
index values. The second part contains six subsets of 1000 fields of size 512 x 512
simulated using the spectral method with various pairs of parameter values (hy, hs).
We applied projection-based estimators iLZ (Equation (20)) with different sampling
factors v for the estimation of Hurst indices of each simulated field in two directions
(e = 1: row direction, e = 2: column direction).

5.1. Estimator precision. We evaluated the accuracy and the precision of each
estimator on the different sets. The accuracy of an estimator on a given set was
obtained by averaging parameter estimates over the set and subtracting the true
parameter value; it is the empirical bias of the estimator. The precision of an
estimator on a given set was defined as the standard deviation of parameter estimates
over the set. Accuracy and precision are both reported in Figures 2.
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Accuracy
Precision

FIGURE 2. Projection-based estimation of global Hurst index on
isotropic fields simulated using the Stein method. The accuracy and
precision of the projection-based estimators Bg (e = 1,2) are com-
puted for different global Hurst index values of fields and different
estimator sampling factors.

(a) Sampling factor v = 0. (b) Sampling factor v = 1.

Accuracy

Value of the estimated directional index (h2) Value of the estimated directional index (h2) Value of the estimated directional index (h2) Value of the estimated directional index (h2)

(c) Sampling factor v = 2. (d) Sampling factor v = 3.

0.8

H

N

A {\:cuva;y
/ |
Precision
g 8
Accuracy
| Fression

Value of the estimated directional index (n2) Value of the estimated directional index (n2) Value of the estimated directional index (n2) Value of the estimated directional index (n2)

FIGURE 3. Projection-based estimation of the directional Hurst in-
dex hs on fields simulated using the spectral method. The accuracy
and precision of vertical projection-based estimators h% are computed

for different couples of vertical and horizontal Hurst index values of
simulated fields and different sampling factors.

Figure 2 shows that accuracy and precision both depends on the estimator sam-
pling factor. The precision becomes worse and worse as the sampling factor in-
creases: when the sampling factor is increased, the size of the increment process
becomes smaller, reducing the number of points used for the variation-based esti-
mation and the reliability of the estimator. However, when the sub-sampling factor
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is fixed, the precision does not vary significantly when values of the estimated in-
dex are changed. For any fixed sampling factor below 4, the precision variations
are of order 0.05. For comparison, the precision of the line-based estimator of the
Hurst index is about 0.02 for any index value and its bias is 0. Hence, even when
v = 0, projection-based estimators are less reliable for the estimation of the Hurst
index than line-based estimators. This is an effect of the projection on the esti-
mation. Concerning the accuracy, estimators tend to underestimate the real index
value. The underestimation bias increases as the index value decreases. For any
estimated index value h, the accuracy further varies as a function of the sampling
factor and reaches an optimum for a sampling factor value v,y (h). The accuracy
optima are almost the same for the different index values. However, the optimal
sampling values v, (h) are different: it is higher for low index values than for high
index values. Considering index values altogether, the best accuracy seems to be
reached for v = 2. In this case, the estimation error is below 0.05 for all index
values varying between 0.2 and 0.8 and around 0.13 for the index value 0.1. The
precision achieved for the same sampling factor » = 2 is about 0.1. The sampling
factor v = 2 gives a good compromise between accuracy and precision and will be
used to measure directional indices in applications.

On Figure 3, we notice that the accuracy results obtained for isotropic fields
(h1 = hg) simulated with the spectral method are not consistent with the previous
discussion on Figure 2. Indeed, curves on Figure 3 shows that estimators overes-
timate index values. This difference between both results is probably due to the
simulation methods. The spectral simulation method is likely to generate fields
which are smoother than what they should be whereas the Stein method is exact.
However, we can rely on results of Figure 3 to get a sense of the estimator proper-
ties when fields are anisotropic. When the sampling factor is fixed, precisions are
about the same for isotropic and anisotropic simulations. Accuracies still vary when
estimated parameter values are changed. However, the accuracy of the Hurst index
estimator izl does not depend on the index value hy in the other direction.

5.2. Anisotropy test. We evaluated the accuracy and precision of the estimation
of the Hurst index difference d = |h; — hy| by the estimators d¥ = |h% — hy|, for
v =0, 2. Results are reported in Tables 1 and 2. As expected the accuracy depends
on the pair of Hurst indices which is estimated. The precision is however quite stable:
it is around 0.08 when v = 0 and 0.15 when v = 2 (Table 1). We used these precision
values as estimates of the standard deviation v of the test statistic d” (see Section
3.2). This enables to set two rejection intervals for the anisotropy test described in
Section 3.3: one interval for v = 0 which is R® = {|d°| > 0.16} and another for v = 2
which is R2 = {|d?| > 0.3}. We applied these tests to Stein and spectral simulations
and reported results in Tables 1 and 2. On isotropic simulations, tests produce
few errors, whatever the value of the minimal Hurst index, but results are slightly
better when the Hurst index is high. Results of tests with v = 0 and v = 2 are not
significantly different on isotropic fields. On anisotropic fields, the test for v = 0 is
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v=20 V=2

h d’+o P d’+o P
0.11]/-0.02£0.1 |89 0.£0.17 | 91
0.2 0.£0.08 | 95 || 0.01+0.16 | 94
0.3 ]/-0.01£0.09 | 93 0.£0.16 | 94
0.4 0.£0.08 | 96 0.£0.16 | 94
0.5 0.£0.08 | 97 || 0.01+0.14 | 98
0.6 0.£0.07 | 98 || 0.01+0.14 | 97
0.7 0.£0.06 | 99 0.£0.13 |99
T 0.£0.08 | 95 0.£0.15| 95
TABLE 1. Estimation of the directional Hurst index differences hy— ho
on FBF simulated with Stein simulation technique. The value p is the
percentage of simulations classified into isotropic using the anisotropy
test on statistics d.

however more powerful than for v = 2. When v = 2, the test does not detect the
anisotropy when Hurst index differences |h; — hs| are below 0.2 (between 74 and 84
% of detection errors). However, the efficiency of the test is improved as differences
increase. Similarly, when v = 0, the test is not efficient when Hurst index differences
are below 0.2 (between 32 and 43 % of errors). However, it becomes reliable when
differences are above 0.3 (0 % of errors). As mentioned previously, the statistic d°
used in the test with v = 0 is more biased than the one with v = 2. However, the
test with v = 0 has better results than with v = 2 because the statistic d° is more
precised than d?.

In Tables 3 and 4, we present the mean values and standard deviations of the
statistic 6” used in the second anisotropy test (see Section 3.3). On isotropic cases
(Table 3), the mean value of the statistic 6 obtained for v = 0 increases as the value
of h decreases, while, for v = 2, it remains constant around 0.8. This is due to the
bias of the estimators iz’f and izg The standard deviation does not vary significantly
according to h. However, we observe that they are slightly lower than the standard
deviations of the previous statistics o,

We set two rejection intervals for the second anisotropy test, by estimating the
0.95-quantile of the statistics 6” on isotropic data. We obtain R® = {|6°] > 0.32}
for v = 0 and R2 = {|§%| > 0.2} for v = 2. The evaluation of the test is reported
in Tables 3 and 4. On isotropic fields (Table 3), the test defined for v = 0 failed
detecting the isotropic fields with small Hurst index h whereas for v = 2, the second
test has performances which are as good as the first test for all values of h.

On anisotropic fields (Table 4), results of the second test for v = 0 are worse than
those of the first test for » = 0. This is due to the bias of the estimators ﬁ’f and izg
which produces errors in the evaluation of 5¥. For the second test, results obtained
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v=20 v=2
\hy — ho| | hy | ho d+o P P+o D
0 0.9 0.9 [[0.04£0.03 | 100 || 0.0840.07 | 99
0 0.710.7 0.40.06 | 100 || 0.01£0.12 | 99
0 0.5]0.5 0.40.07 | 97 || 0.01£0.14 | 95
0 0.3 0.3/ 0.0540.04 | 98 || 0.1240.09 | 93
0.2 0.910.71[0.18£0.05 | 32 || 0.240.06 | 79
0.3 0.910.51/0.35+0.06 | 0 || 0.384+0.1 |22
0.6 0.9]0.31/0.45+0.06| 0 || 0.524+0.14 | 6
0.2 0.710.5 |1 0.1740.06 | 43 || 0.19+0.13 | 84
0.4 0.7]10.3 |1 0.354+0.05 | 0 || 0.43£0.13 | 21
0.2 0.5[0.3[0.17£0.07 | 41 |[ 0.224+0.13 | 74

TABLE 2. Estimation of the directional Hurst index differences ob-
tained on fields simulated with spectral simulation techniques. The
value p is the percentage of simulations classified into isotropic cases
using the anisotropy test.

v=>0

h +o P

0.1] 0.3%0.05| 69
0.2 0.20.05| 99
0.3]0.14+0.05 | 100
0.4 0.09+0.04 | 100
0.5 0.06+0.03 | 100
0.6 | 0.04+0.03 | 100
0.7 0.03+0.03 | 100 || 0.0740.05 | 99
T |0.12+£0.1 | 95 || 0.0840.06 | 95
TABLE 3. Estimation of the directional Hurst index differences hy — ho
on FBF simulated with Stein simulation technique. The estimators
of hy — hy are 6" = |max(h?, h%) — min(ho1, hoo)|, for v = 0,2. The
value p is the percentage of simulations classified into isotropic using
the anisotropy test on statistics o,

v=2

+o P
0.094+0.07 | 91
0.084+0.06 | 93
0.084+0.06 | 96
0.084+0.06 | 93
0.07+0.05 | 97
0.08+0.05 | 97

with v = 2 are better than with v = 0. They are even equivalent to those of the
first test with v = 2.

6. APPLICATION

6.1. Material and methods. Our database has a total of 58 cases, each case
being composed of Full-Field Digital Mammograms (FFDM) of the left and right



v=20

V=2

O+

p

240

4

0.07+0.03
0.04=£0.04
0.04£0.03
0.07£0.03

100
100
100
100

0.05£0.04
0.07x0.05
0.01£0.08
0.18£0.08

100
96
89
56

0.18=+0.03
0.33+0.04
0.424+0.03

100
42
0

0.13+0.07
0.27+0.07
0.34+0.09

78
17
17

7oy — ha] | By | Ba
0 [09]09
0 |0.7]07
0 |05[05
0 ]03]03
02 (0907
03 [09[05
06 [0.9]03
02 [07]05
04 |0.7]03
02 |05]03

0.15+0.05
0.3%0.03

100
73

0.1£0.07
0.23£0.09

86
36

TABLE 4. Estimation of the directional Hurst index differences ob-
tained on fields simulated with spectral simulation techniques. The es-
timators of hy — hy are 0¥ = | max(h?, h%) —min(hgy, hoy)|, for v = 0, 2.
The value p is the percentage of simulations classified into isotropic

0.12£0.04

100

0.07+0.06

93

cases using the anisotropy test.

FIGURE 4. A ROI extracted from a FFDM and its vertical and hori-

zontal projections (case id. 83, feb05, rm).
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breasts of a woman. Images were acquired in MLO position using a Senographe
2000D (General Electric Medical Systems, Milwaukee, WI), with a spatial resolution
of 0.1mm? per pixel (image size: 1914x2294 pixels). Images are courtesy of the
Department of Radiology of the University of Pennsylvania. In each image of the
database, we extracted manually a region of interest (ROI) of size 512 x 512 within
As illustrated on Figure 4, we then computed
the discrete row- and column-wise projections of each ROI (Equation (18)) and

the densest region of the breast.
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the estimates of the directional Hurst indices in both directions (Equation (20), for
v =0,2). We also estimated the minimal Hurst index using the line-based estimators
given in Equation (23). Note that in mammograms, vertical (row) and horizontal
(column) directions (labeled 1 and 2) correspond to directions perpendicular and
parallel to the chest wall, respectively.

6.2. Mammogram regularity. The estimates of the minimal Hurst index we ob-
tained using line-based estimators on the extracted ROI are in the interval [0.18; 0.42],
with an average of 0.31 and a standard deviation of 0.05. On Figure 5 (a) and (b),
we see that the line-based estimates of the minimal Hurst in both directions have
equivalent empirical distributions and are approximately equal on each image. This
observation is consistent with the theoretical result showing that line-based restric-
tions of AFBF have same Hurst indices in all directions (see Section 3.3). This gives
an indirect evidence of the adequacy of the AFBF model to mammogram textures.

Distribution of the minimal Hurst index Comparison of HO1 and H02 values

H 05]
B 0
5
03]
02] /’
I" ol
0, 045 05 055

02 025 03 035 4 0 01 02 03 04 05 06 07 08 08 1
Minimal Hurst index Hurst index HO1

()

Distribution of directional Hurst indices

Hurst index HO2

Number of cases

10

[
6
.
nl 1 II
01 02 03 04 05 06 o7 08 09

Index value

(c) (d)

FIGURE 5. (a) Histograms of the minimal Hurst indices of mammo-
grams, estimated using horizontal and vertical line-based estimators
(hor and hgy). (b) Horizontal and vertical line-based estimates of
the minimal Hurst index on all mammograms. (c¢) Histograms of the
horizontal and vertical Hurst indices of mammograms estimated us-
ing horizontal and vertical projection-based estimators (h? and h2).
(d) Horizontal and vertical projection-based estimates of the minimal
Hurst index on all mammograms.

Directional Hurst index H2

Number of cases
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6.3. Mammogram anisotropy. On Figure 5 (c), we observe that horizontal and
vertical Hurst index estimates have similar distributions. Standard deviations of
horizontal and vertical Hurst indices are about 0.15 and their averages are 0.45 and
0.55, respectively. On average, the mammograms seems slightly smoother in the
direction parallel to the chest wall than in the perpendicular one. Besides, ranges
of minimal and directional Hurst indices are not the same. This is partly due to
differences in precision of index estimators. However, since the range difference is
above the precision, this also indicates a texture anisotropy.

The mammogram anisotropy is further confirmed by results shown on Figures 6
(a), (b) and (c¢). On these figures, we plotted histograms of estimators which are
used in the different anisotropy tests, and represented the rejection bounds of these
tests by red dash lines. On Figure 6 (a), there is about 14 % of the mammograms
for which the difference estimate d* is above the rejection bound. In other words,
the first anisotropy test defined for v = 2 detects very few anisotropic textures in
the database. This is due to the lack of precision of the estimator d” when the
sampling factor v = 2. On Figure 6 (b), we see that the first anisotropy test for
v = 0 detects more anisotropic textures than for v = 2: there is about 43 % of
detected anisotropic cases. Recall however that anisotropic cases having different
vertical and horizontal Hurst indices cannot be detected by the first test. Such cases
are rather detected by the second test. Indeed, on Figure 6 (c), we observe that the
second test (defined for v = 2) detects about 60 % of anisotropic cases. All of these
results have to be interpreted carefully. They do not lead to the conclusion that in
our database, there are 60 % of anisotropic cases and 40 % of isotropic cases. They
only mean that there is at least 60 % of cases which, according to the AFBF model,
can be considered as anisotropic with a confidence level of 95 %.

18 18

1
14

Number of cases
Number of cases

Number of cases

0 0
0 005 01 015 02 025 03 035 04 045 05 0 01 02 03
Index value

(a) (b) (c)

04 05 08 o7 08 09 02 03 04
Index value Index value

FIGURE 6. Histograms of estimators (a) d> = |[h% — h2|, (b) d° =
W0 — RY|, and (c) 62 = | max(h2, h2) — min(hgy, hes)|. The red dash
lines represent the rejection bounds of isotropy tests corresponding to
each estimator.

On Figure 7, we show some examples of extracted ROI, with their corresponding
estimator values and test decisions. Notice that in some cases (e.g. image (a)),
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the decision of the first test (with v = 0) is “anisotropy” whereas the one of the
second test is “isotropy”. This is due to the lack of precision of the estimator 62 of
the second test. Also mention that in some cases (e.g. image (i)), the decision of
the first test with v = 2 is “anisotropy” whereas it is “isotropy” with v = 0. Such
decision difference can be an effect of the lack of accuracy of the estimator d° of the
first test.

7. DISCUSSION AND CONCLUSION

The radiographic appearance of a breast mainly depends on the distribution and
relative amount of adipose and fibroglandular tissues it contains. Whereas the adi-
pose tissues are radiologically translucent and tend to produce dark images, the
fibroglandular tissues attenuate X-ray and increase the image brightness. The den-
sity of a mammogram refers to the bright image aspect caused by the presence of
fibroglandular tissues in the breast. At the end of the 60’s, Wolfe put forth the
idea that the breast cancer risk could be assessed from the observation of mammo-
gram appearance and patterns [56, 55]. This pioneer work gave rise to an important
medical debate. Later on, some investigators started focusing on the relationship
between the breast density and the breast cancer risk [15, 16]. They provided first
evidences that an increased breast density is associated to an increased cancer risk.
These evidences were further confirmed by many subsequent epidemiological stud-
ies (see |34, 35| for an exhaustive review). These studies have shown the medical
importance of the mammogram density.

In many epidemiological studies, the evaluation of the density is done qualita-
tively by radiologists and is thus subject to inter-observer variability. Hence, early
in the 90’s, some investigators attempted to define quantitative and automated
measurements of the density using mathematical tools; see the numerous refer-
ences in the proceedings of the International Workshops on Digital Mammography
[4, 30, 32, 41, 49, 58|. In particular, some of these investigators used the fractal
dimension as an indicator of the mammogram density [19, 20, 21]. More recently,
some authors studied more deeply the stochastic nature of the mammogram density
by using FBF-related stochastic models such as 1/f noise models [18, 33, 36, 43|. As
in the work presented here, these authors put many efforts into the measurement of
model parameters on mammograms and the empirical validation of models.

Measurements of Hurst-related parameters on FFDM and film mammograms have
been reported independently in several papers [18, 19, 21, 33, 36, 43|. Caldwell et
al. |21] and Byng et al. |19, 20| used the Box counting technique to estimate the
fractal dimension on the whole image. They reported estimations obtained on 70 film
mammograms. Values are between 2.2 and 2.5 (with an estimated precision of 0.02),
which corresponds to a minimal Hurst index between 0.46 and 0.77. Kestener et al.
computed the Hurst index on small regions of size 512 x 512 of film mammograms
taken from the DDSM database [43|. The values of the minimal Hurst index are
in [0.20;0.35] and [0.55;0.75] for ROI with predominant adipose and dense tissues,
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(8) (h) (1)

image | case id. Bomin B3 R3 | |d?] IR| |d°| IR| |0% IR
(a) [95,jun03,1lm |0.32 0.33 0.25[0.07 I |0.19 A |0.01 I
(b) |76, 0ct03,Im |0.36 0.38 0.43]0.056 I |0.056 I |0.07 I
(c) |74, decO4,lm | 0.39 0.50 032|018 I 001 T |0.11 I
(d) |86, mar05, Im | 0.33 0.35 0.44]0.05 I |0.28 A [0.11 I
(e) |83, feb05, Im | 0.37 0.52 0.45|0.08 I |0.17 A |0.15 I
(f) |85, mar05, Im | 0.26 0.48 0.45]0.03 I |0.15 A |0.22 I
(g) |73,dec04,lm |0.35 0.72 0.55]0.17 I [0.22 A |037 A
(h) |83, feb05, rm | 0.32 0.73 0.47{0.26 A |0.01 I | 041 A
(i) |85 mar03, rm | 0.26 0.39 075|036 A |0.14 1 |049 A

FIGURE 7. Some ROI extracted from FFDM with their estimated
indices. Columns IR give decisions of the anisotropy tests based on

the estimators |d°|, |d2] and |6?| (A=anisotropic, [=isotropic).

respectively. In [36], authors used a spectral method for the estimation of the

regularity coefficient 3 of the 1/f noise model.

On 104 ROI extracted from 26

FFDM mammograms, 5 € [1.32;1.44], which correspond to H € [0.33;0.42]. In
another study, same authors reported values § = [1.42,1.51], i.e. H = [0.42;0.51]
on extracted ROI of 60 film mammograms [33]. These values are in accordance with
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those obtained independently in [18]. The values we obtained using the line-based
estimators are close to those obtained by Heine et al. [36] on FFDM mammograms:
they are slightly lower due probably to (a) the estimation technique difference and
(b) to the selection of the ROI which in our study can be of low density.

Similarly to [18, 33, 36|, our experiments confirm the relevance of fractional Brow-
nian models for the characterization of the mammogram density. However, they also
reveal that the isotropy assumption which is behind the mammogram modeling of
[18, 33, 36] is not valid in many cases: around 60 percents of the mammogram
textures we studied could be considered as anisotropic with a high level of confi-
dence. Hence, we conclude that AFBF model is more realistic and relevant than the
isotropic FBF model for the description of FFDM textures.

From a medical point of view, this conclusion suggests taking into account the
anisotropy for the analysis of the mammogram density and the evaluation of a breast
cancer risk. However, the establishment of a relationship between the anisotropy
and the breast cancer risk is beyond the scope of this paper. The conclusion of
this paper can be seen as an encouraging starting point for future medical investi-
gations. Up to now, we have shown that the AFBF model enables to extract some
significant density features which are not captured by the usual FBF. We have also
constructed a mathematical methodology for analysing those features. In collabo-
ration with radiologists, we plan to further evaluate the medical relevance of the
density anisotropy for the assessment of the breast cancer risk.

The interest of this paper is not restricted to results concerning the mammo-
gram application. The methodology we proposed for characterizing and testing
the anisotropy of Brownian textures is generic. We believe that this methodology
could be useful in many medical applications, such as the analysis of osteoporosis
from bone radiographs. The methodology includes some original statistical tests of
anisotropy, based on estimates of directional Hurst indices. We showed a new theo-
retical result about the estimator convergence, which gives a mathematical founda-
tion to the construction of those tests. The statistical tests were also validated on
simulated data. The discussion which comes with experiments gives some helpful
information on how to correctly use and interpret the anisotropy tests in practice.

APPENDIX A. PROOF OF THEOREM 3.1

Proof. The key point of the proof relies on the introduction of an auxiliary es-
tirnator Let us denote Z1 s respectively Z3 s the second order increments of

= [ X s)ds, respectively Ys(t fn s)ds, as defined by (11).
We cons1der est1mat0rs deﬁned from generahzed quadramc var1at1ons VY, and Vy,

of Z{, and Zj,,, according to (12), by

2,u)

Ty, =Vi/E (V) and Ty, = Vy, /E (Vy,) -
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Without loss of generality we can also assume that h; < hy. Usual computations on
generalized quadratic variations lead to

TV, — la.s. with V2*M (T/,—1) —  N(0,0%,),

2=V M —+o0 2=V M ——+o00

for e,u € {1,2}, where for v € {1,2}

1 1\ 2
29 Pen = Cl (he * 5) (o) B (he + 5) ,
with C(H) = 435 (fre™(1 — e76)2(1 — ¢7)2¢[~211dg)” and
PEZ
= Jr ’ (e — } |€]727~1d¢, which are finite positive constants for H < 2

(see Theorem 2.3 of [13| for instance). It is straightforward to see that the vector
(T” >1<e ucy Converges to (1)1<cu<o almost surely as 27VM — +oo. Let us prove

the asymptotic normality. Let us remark that for any (ac . )i1<cu<2 positive numbers
one can write

S e (T2, 1) Z aeu B ,,g(Veu E (V)

1<e,u<2 1,1) 1<e ul2

From Proposition 1. 1 of [13] we get

E (V¥
Ae u ( : 1) = be,u(z_VM)_2(hl_h6) (]- + 0 (QVM_I)) ;
( ) 2=V M—+o0
with b, (hﬁz)u*%e*l. Let us write

= G, Y E(het3)

Do ben@ M) (VB (VY iZAkM (Fw = 1).
1<e,u<2

where n = 27V "2M — 8, (€k,0)1<p<,, is a sequence of independent standard Gaussian
variables and (A ar),.,-, are the eigenvalues of the covariance matrix of

ZV
{ () 1<eu<2 0<p<27"M — Qu}
V2VM —2u+1’

Let s2 = Var (219%2 e (277 M) =2 =he) (Vv (V2 ))). Following a Linde-
berg condition [26] we obtain that

(30) st > beu(27VM)TTR (VY —E(VY,)  —  N(0,1),

e 2=V M —+o00
1<e,u<2
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as soon as ml?x\)\k,n] = 0o (Sp). On the one hand, an upper bound for
2=V M—+o0

mkax|)\k7n| is given by

27V M —2u’

vasr—1 v —v —2(h1—hgr) v /
C2°M 1;2%)22 ngégl—%)&ﬂu 1<;<2 pZ% ’COV (Z&u(p)’ (2 M) ' Ze/,u’(p >)’ :

According to Proposition 1.2 of [13], one can find C,, > 0 such that
27V M—2u’
ST [Cov (22, (p), (27 M) 2R 20 ()| < G2 M) M og(27 M),
p'=0
for any 0 < p < 27¥M — 2u. It remains to consider the covariance terms between
Zy, and Zy . Using the spectral representation of the random field X we get
2V péoy - 2Y ,51 2V 2Y¢

Cov (Z4,(0). Z3u(@)) = [ | (e 20502 e N,

where p(&.) = f e’ p(s)ds is the Fourier transform of the window function. There-
fore

|Cov (2} J(p), Z5 (1)) ]| < C(27" M),
with
(uu) / EE2£(Op&)p (fg)dé‘ < 400.

Then m]?X])\km] = 0 27V M)2m= 2lo,g_>;(2_”]\/[)). On the other hand, since
2=V Moo

(Gew)1<eu<a are positive numbers, using the fact that
Cov (7, (p)%, (27 M) 2= 7 (5)?) = 2Cov (22, (p), (27 M) 2= 72, (5))7 > 0,

we get
snZ D bl (2 M)V (V) > (27 M)

1<e,u<2
from Proposition 1.2 of [13], for some ¢ > 0. Then (30) holds. Let us remark that
E(Vu \/2 v M (\/afat . VMQ+M(2VM1)) with a = ( ay1 Qr2 G21 (22 )
and
‘7% 1 Uil 0 0
‘7% 1 U% 2 0 0
I'= ' 1 2
0 0 031 031
0 0 ag,l 032

We therefore get an asymptotic normality for Z Qe (Té’u — 1), for any (ae.u)1<eu<2

1<e,u<2
positive numbers. Using tightness criterion and uniqueness of the limit law we can
claim that v2-M (7, — 1) —  N(0,T).

1<e,u<2 2—¥ M—+o00
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By Taylor Formula for the function g(z11, 212,221, %22) = log (ii) — log <%>

(see Theorem 3.3.11 in [27] for instance) we get that almost surely log <;1ZQ _
V U d s t
10g< v 1) v 0 with v2~ <log< ) log <T2,,1)) N N (0,al'a")

fora_vg(1 L1L,1)=(-1 11 —1).
From (14), 2log(2 <H HQV) is equal to

E (VY E (VY E (17 E(TY
log 7(‘/12) — log 7(‘/22) + log 7( 1’2) — log 7( 2’2) ,
E (Vi) E(V31) E(T1,) E(73,)
with for e € {1, 2}, by Proposition 1.1 of [13],

E (Ve??) _ 02he+1 /60—
m =2 <1 + 271}]\/10_)4_oo <1/ 2 M)) .

Then,

o 1 E (17,) E (T3,) Vo
Hl —H2 = hl—hz—i-m <10g <m — lOg m +2_UM0*>+OO (1/ 2 M) ,

such that, with v = %’

]fll”—ﬁé’ —  hy—hs as., with V2=V M <]:[1” — 1212” — (b1 — h2)) - (0,7

2=V M —+oo 2=V M —+oo

4
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