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ABSTRACT

We present a new code aimed at the simulation of diffusive shock acceleration (DSA),
and discuss various test cases which demonstrate its ability to study DSA in its full
time-dependent and non-linear developments. We present the numerical methods im-
plemented, coupling the hydrodynamical evolution of a parallel shock (in one space
dimension) and the kinetic transport of the cosmic-rays (CR) distribution function
(in one momentum dimension), as first done by Falle. Following Kang and Jones and
collaborators, we show how the adaptive mesh refinement technique (AMR) greatly
helps accommodating the extremely demanding numerical resolution requirements of
realistic (Bohm-like) CR diffusion coefficients. We also present the parallelization of
the code, which allows us to run many successive shocks at the cost of a single shock,
and thus to present the first direct numerical simulations of linear and non-linear
multiple DSA, a mechanism of interest in various astrophysical environments such as
superbubbles, galaxy clusters and early cosmological flows.
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1 INTRODUCTION

Diffusive Shock Acceleration (DSA) at supernova remnant
blast waves is the favoured production mechanism for the
production of the galactic cosmic-rays (CR). This theory,
developed since the late 70s (see Drury 1983 for a review),
has now both strong theoretical and observational supports.
The theoretical grounds of the model lie in the early ideas
of Fermi (1949, 1954): the regular Fermi acceleration mech-
anism (known as Fermi I, the stochastic one being known
as Fermi II) can naturally explain the formation of a power-
law spectrum by a shock wave – with a remarkable universal
slope whose value s depends solely on the shock compres-
sion ratio r (which is always 4 for strong non-relativistic
shocks). However, the acceleration process can easily be so
efficient that the CR may back-react on the shock dynamics,
modifying the acceleration process in a fully non-linear way,
and requiring a much more detailed analysis (see Malkov &
Drury 2001 for a review).

Thus the DSA mechanism has still received a lot of at-
tention in the last 20 years, from both a theoretical and a
numerical perspective. Analytical works have been mostly
limited to the test-particle (linear) regime. The full non-
linear time-dependent problem has been mostly investigated
through numerical simulations, using several different ap-
proaches (see Jones 2001 for a short review). A first class

is based on particle methods, from the early Monte-Carlo
simulations developed by Ellison & Eichler (1984) to the re-
cent Particle-In-Cells codes (eg Dieckmann et al. 2000). An
alternate approach consists of solving the (Fokker-Planck)
transport equation. This has first been done in the ”two
fluid” model (eg Jones & Kang 1990), then dealing with the
complete particle distribution function (Falle & Giddings
1987, Bell 1987, Kang & Jones 1991, Duffy 1992).

Most of this work has been aimed at understanding the
role of single (isolated) supernovae remnants, although in
many contexts CR are likely to experience many shocks,
most notably inside superbubbles (Parizot et al. 2004).

In this paper we present a new code for the study of
DSA, named Marcos for Machine à Accélérer les Rayons

COSmiques1. In section 2 we present the basics of the nu-
merical methods implemented in our code, which couples the
hydrodynamical evolution of a fluid with the kinetic trans-
port of the CR. In section 3 we present the Adaptive Mesh
Refinement (AMR) technique which allows us to resolve the
(very) different scales induced by CR diffusion. In section 4
we present parallelization of the code, to be able to study in
reasonable wall-clock time the effects of multiple shocks.

1 the French for COSmic-Rays Acceleration Machine
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2 Ferrand Downes Marcowith

2 ACCELERATING PARTICLES: COUPLING

HYDRODYNAMIC AND KINETIC

TRANSPORTS

In the DSA mechanism particles can be accelerated up to
very high energies because they are interacting a large num-
ber of times with a macroscopic structure, namely a shock
wave (as the forward shock of a supernova remnant). In our
approach the thermal (fluid being shocked) and non-thermal
(CR) particles, although intimately coupled, are handled as
two different populations. The fluid, described by its mo-
ments ρ, u, P , obeys the Euler equations, while the CR, de-
scribed by their distribution function f(x, p), follow a more
general transport equation.

2.1 Hydrodynamics

The hydrodynamics are described by the (non-relativistic)
Euler equations, which express the conservation of the fluid
mass density ρ, momentum ρ~u and total energy density e
and can be written in the general form:

∂ ~X

∂t
+ ~∇ · ~F

(

~X
)

= 0 (1)

where (from now on in 1D slab geometry2) the conservative
variables are

~X =

(

ρ
ρu
e

)

(2)

and their flux

~F
(

~X
)

=

(

ρu
ρu2 + P
(e + P )u

)

. (3)

To close this system we consider the usual polytropic
equation of state of ”adiabatic index” γ:

P ∝ ργ (4)

so that the total energy is

e =
P

γ − 1
+

1

2
ρu2. (5)

2.1.1 Hydrodynamic scheme

Our hydrodynamic scheme is adapted from the one used
in Downes & Ray (1998). It uses an Eulerian finite-volume
approach, which allows us to take advantage of the conserva-
tive (hyperbolic) form of the Euler system (see eg LeVeque
1998). In this approach the functions X(x) (where X denotes

2 For the sake of simplicity the code is presented here in 1D slab
geometry, but it works in 1D symmetrical spherical geometry too,
provided we take into account the correct geometry of the finite-
volume cells, which are now shells. The formalism of section 2.1
still holds with u being the radial velocity in equations (2) and
(3) and with a source term

~Q =

(

0
2P/x

0

)

added to equation (1).

any of the three components of ~X and x is the space vari-
able) are replaced by piece-wise approximations Xi (where
i denotes the cell index). To update the X values from time
n to time n + 1 we readily discretize equation (1) as

ViX
n+1
i − ViX

n
i

δt
= +Si− 1

2
F

n+ 1
2

i− 1
2

− Si+ 1
2
F

n+ 1
2

i+ 1
2

(6)

where Vi is the volume of cell i, Si−1/2 (Si+1/2) is the sur-

face at the left (right) of cell i and F
n+1/2

i−1/2
(F

n+1/2

i+1/2
) is the

flux of X through this surface during the time-step δt. As
F

n+1/2

i+1/2 = F
n+1/2

(i+1)−1/2 this scheme has the interesting prop-

erty that (but for boundary effects) the X quantities are
numerically conserved3, which is critical for computing the
correct velocity of shock discontinuity. Following Godunov
(1959) the fluxes F

n+1/2

i±1/2
are computed using the values of X

at the interfaces computed by a Riemann solver (we use an
exact Riemann solver with a linear approximation in smooth
regions).

The code is made second order in time by using a leap-
frog scheme, and is made second order in space by extrapo-
lating the X quantities at the cell interfaces before running
the Riemann solver (doing slope reconstructions, which re-
quires ”slope limiters” to preserve monotonicity, see van Leer
1977).

We recall that this scheme is subject to the usual
Courant condition

δtadv,x <
δx

umax
(7)

where umax = (|u| + cs)max is the maximum physical signal
speed at the time considered.

2.2 Particle Acceleration

Particles that are energetic enough to be scattered off mag-
netic irregularities decouple from the thermal plasma (and
are called CR). It is assumed that this scattering is strong
enough that the CR are isotropised in both the upstream
and downstream reference frame. We then describe CR
through their isotropic distribution function f(~x, p, t) de-
fined so that the CR density is

n(~x, t) =

∫

p

f(~x, p, t)4πp2dp (8)

and which obeys the following Fokker-Plank equation:

∂f

∂t
+

∂uf

∂x
=

∂

∂x

(

D
∂f

∂x

)

+
1

3p2

∂p3f

∂p

∂u

∂x
. (9)

3 We note that the Godunov scheme works with the conser-

vative variables ρ, ρu, e, whereas the Riemann solver works
with the primitive variables ρ, u, P . The pressure is computed
as the difference between the total and kinetic energy of the
fluid: P = (γ − 1)

(

e − 0.5ρu2
)

so that in strong shocks where

0.5ρu2 ≫ P and e ∼ 0.5ρu2 its evaluation might become rather
imprecise. Actually such a scheme can produce some fake ”neg-
ative pressures” which have to be corrected to some fixed conve-
nient Pmin (see eg LeVeque 1998). To prevent that problem Kang
et al. (2002) decided to add another equation specifically for the
pressure, the equation of conservation of the ”modified entropy”
S = P/ργ−1 (note that this equation is not valid at the shock, so
that they need to combine it appropriately with the usual energy
equation).

c© 2007 RAS, MNRAS 000, 1–17



The MARCOS tool for DSA 3

The second l.h.s. term represents convection : CR are ad-
vected in space as they are bound to the fluid by scattering
off the magnetic waves present in it. Note that we neglect
here the movements of the scattering centres (the waves)
with respect to the fluid (we suppose VA ≪ u, where VA

is the Alfven speed), so that we don’t consider diffusion
in momentum (known as Fermi II acceleration). The first
r.h.s. term represents space diffusion of the CR resulting
from their scattering off the magnetic waves, conveniently
described by a diffusion coefficient D(x, p) (on which we
shall focus in section 3). The second r.h.s term represents
adiabatic compression of the fluid, the velocity divergence
∂u
∂x

being the engine of the particles acceleration.

2.2.1 Kinetic scheme

From now on we consider that CR are protons (of mass mp),
and we express CR momenta in mpc units (and CR velocities
in c units, CR energy and pressure in mpc2 units).

Following Falle & Giddings (1987) we work with g =
p4f and y = ln(p) for numerical convenience. We then
rewrite equation (9) as

∂g

∂t
+

∂ug

∂x
=

∂

∂x

(

D
∂g

∂x

)

− uy
∂g

∂y
+ uyg (10)

where uy = − 1
3

∂u
∂x

appears as a y-advection velocity (note
also the new source term uyg). Our kinetic scheme follows
the one presented by Falle & Giddings (1987), but for the
fact that we use here a Eulerian code so that we have to
deal with space advection. In fact the particle transport is
done in two steps using the operator splitting technique.
Space transport (l.h.s of equation (9)) is embedded into the
hydrodynamic Godunov module: CR are transported with
the fluid as a passive tracer during each hydrodynamic step.
Then diffusive acceleration (r.h.s. of equation (9)) is solved
using a separate finite-difference module. The momentum
variable y = ln(p) is linearly discretized with step δy, so
that in each space cell (indexed by i) we have the full piece-
wise spectrum of the particles (indexed by j). Ignoring the
space transport terms, equation (10) is discretized as

gn+1
i,j − gn

i,j

δt
= ωndiffn

i + ωn+1diffn+1
i

− uy
n
i

gn
i,j+ − gn

i,j−

δy
+ uy

n
i gn

i,j (11)

with

diffn
i =

Di+ 1
2
(gn

i+1,j − gn
i,j) − Di− 1

2
(gn

i,j − gn
i−1,j)

δx2
(12)

where we have allowed for a space-dependent diffusion co-
efficient D to be evaluated at the cells interfaces i ± 1/2,
and where ωn are coefficients which define the particular
numerical scheme (see below).

We first comment on the last two r.h.s terms, repre-
senting CR energy gain. Y-advection is discretized using an
upwind scheme, so that j+ = j and j− = j−1 when uy > 0.
This leads to a Courant condition

δtadv,y <
δy

uymax

(13)

usually slightly more restrictive than the hydrodynamic con-

dition (13): in that case we just sub-cycle DSA according to
the hydrodynamic time-step δtadv,x.

The Courant condition for the diffusive terms with a
fully explicit schemes now reads

δtdiff,x <
δx2

2Dmax
(14)

which is much more restrictive than the advection condi-
tion, because of its quadratic dependence on the space res-
olution, and because D is an increasing function of p (see
section 3.1.1). Hence exploring acceleration to higher max-
imum momenta requires lowering δtdiff,x. To overcome this
limitation we use implicit schemes which are not limited
by the Courant condition4 (at the cost of more involved
computations, and with the risk of loosing accuracy con-
trol). As seen from equation (11) our scheme can be explicit
(ωn = 1, ωn+1 = 0), implicit (ωn = 0, ωn+1 = 1), or both,
the special case ωn = 1/2, ωn+1 = 1/2 being known as the
Crank-Nicholson scheme. This scheme is of particular inter-
est as it is the only one to be second order in both space
and time. However it has some drawbacks too, as it may
give unphysical negative values for small values of δt (Park
& Petrosian 1996). In that respect the fully implicit scheme
is more robust, but it is less accurate.

Finally we need to define boundary conditions for space
diffusion (for space advection CR share the fluid density
space boundary conditions) : they can be either no flux (re-
flecting boundaries) or no particle (absorbent boundaries).
Regarding momentum boundary conditions we simply im-
pose that g(pmin) = g(pmax) = 0.

2.2.2 Injection process

We also need to address the problem of the injection of CR
from the fluid. As said before the CR are initially noth-
ing but the high energy particles of the thermal distribu-
tion. However the problem arising in our two populations
approach of filling the gap between the fluid and the kinetic
regimes of the particles is a rather delicate one.

Injection has usually been parametrized by two quan-
tities (see eg Falle & Giddings 1987, Kang & Jones 1991):
the fraction, η, of the particles crossing the shock becom-
ing CR, and the momentum pinj at which they are in-
jected. The latter can be fixed or defined by pinj = ξpth,2

where pth,2 =
√

2mpkBT2 is the mean downstream ther-
mal momentum (or alternatively by vinj = ξ′cs,2 where v

is the particle speed and cs,2 =
√

γkBT2/mp is the down-
stream sound speed). ξ is expected to be in the range 2 − 4

(ξ′/ξ =
√

2/γ ≃ 1.1 for γ = 5/3). The parameter η is less
constrained, with a typical order of magnitude of η = 10−3.

However Malkov & Völk (1998) have developed a self-
consistent analytical model of injection of suprathermal par-
ticles, known as the “thermal leakage” mechanism. Gieseler
et al. (2000) have implemented it in the CRASH code
through the use of a “transparency function” which con-
nects the thermal and supra-thermal distributions. They

4 We have also investigated the Super-Time-Stepping (STS)
method which allows explicit schemes to overcome the Courant
condition (see eg Alexiades et al. 1996). However, this didn’t prove
as time-saving as implicit schemes.

c© 2007 RAS, MNRAS 000, 1–17



4 Ferrand Downes Marcowith

have then only one remaining free parameter (the “wave
amplitude”), which is rather well constrained – at least for
strong shocks for which the self-consistent injection rate of-
ten produces quickly and strongly modified shocks which are
difficult to handle numerically (see Kang et al. 2002). We
adopt in our code a simplified recipe based on this thermal
leakage mechanism, proposed by Blasi et al. (2005): given a
value of ξ we compute η as

ηB(ξ) =
4

3
√

π
(r − 1)ξ3 exp(−ξ2). (15)

We note that there is also only one remaining parameter, ξ,
which is also well constrained – but η has a strong depen-
dence on it. Although very simple to implement, this recipe
allows a self-consistent description of the leakage of high en-
ergy thermal particles to the suprathermal population. Note
that η is a function of the shock compression ratio r and
thus a function of time in the case of a modified shock (see
section 2.2.4): the r−1 factor acts as an injection regulator.

We thus add a source term to the r.h.s of equation (9):

Qinj(x, p, t) = η (ξ(t))
∂F (xS, t)

∂x
G(x − xS)δ(p − pinj) (16)

where xS is the shock location, F (xS) = (ρu)S/mp is the
particles flux through the shock (evaluated by the code in

the shock frame), G(x) = 1√
2πǫ

exp
(

− x2

2ǫ2

)

is a Gaussian

distribution which spreads the injection around the shock
location and δ is the Dirac distribution. Moreover we have
to take account of the fact that these particles are extracted
from the thermal population. As usual we neglect the iner-
tia of the fresh CR, but we remove their energy from the
fluid: we add a corresponding sink term to the fluid energy
equation:

S(x, t) = η (ξ(t))
∂F (xS, t)

∂x
G(x − xS)

mpu2
inj

2
. (17)

2.2.3 Test-particle acceleration

In the linear test-particle regime the DSA mechanism is well
known: theory provides various results we have used to val-
idate our code and we summarize here.

Particles injected at constant momentum pinj build a
power-law spectrum

f(p) = f0p
−s (18)

of slope

s =
3r

r − 1
. (19)

where r is the shock compression ratio (taken as 4 for strong
shocks). For a strong shock, then, s = 4, for weaker shocks
s > 4 (that is, f ∝ p−4 is the hardest spectrum achieved
by linear acceleration by a single shock – without losses). If
the injection rate, η, is constant and the upstream medium
is homogeneous then the spectrum normalisation is

f0 = s
ηρ1

4πmpp3
inj

. (20)

This spectrum extends from pinj to a maximum momen-
tum pmax controlled by the scattering of the CR and thus
in our model by the diffusion coefficient D. If we assume for
the sake of simplicity that D is constant in space and has

a simple power-law dependence on p: D(p) = D0p
α then p

grows in time as

ln

(

p(t)

pinj

)

=

∣

∣

∣

∣

∣

∣

∣

1

α
ln

(

1 + α
t

tacc(pinj)

)

α 6= 0

t

tacc(pinj)
α = 0

(21)

where

tacc(p) =
3

u1 − u2

(

1

u1
+

1

u2

)

D(p) (22)

is the characteristic acceleration time-scale at momentum p
(see Drury 1983).

2.2.4 The non-linear problem: Particle back-reaction and

shock modification

It has been noted since the early developements of the DSA
theory that the CR pressure, defined as

Pcr =

∫

p

pv

3
f(p)4πp2dp =

4π

3

∫

y

p2

√

1 + p2
g(y)dy (23)

grows without limit in the linear regime, which implies that
some backreaction process occurs. In fact as the CR dif-
fuse upstream of the shock their pressure gradient induces
a force which pre-accelerates the fluid (see eg Kirk 1994
and Berezhko & Ellison 1999): there is formation of a so-
called “precursor”, a smooth and spatially extended ramp
in the hydrodynamical profiles upstream of the shock. The
shock itself is thus progressively reduced to a so-called “sub-
shock”, whose compression ratio is rsub < 4 (however, the
overall compression ratio rtot from far upstream to far down-
stream can now be > 4). Particle acceleration is then fully
coupled with the shock evolution: CR accelerated by the
shock modify its hydrodynamical structure, modifying in
turn the acceleration process itself and thus their spectrum
(which is no longer a perfect power-law, but becomes con-
cave in shape as particles of different momenta explore dif-
ferent scales upstream of the shock and thus feel different
compression ratios).

Thus we must add the CR pressure contribution in the
fluid momentum equation as well as in the fluid total en-
ergy equation (we still neglect the CR inertia, this will be
discussed at the very end of the article): we add a source
term

~Q
(

~X
)

=





0

−~∇Pcr

−u~∇Pcr



 (24)

on the r.h.s. of equation (1).
Numerically Pcr is evaluated as

Pcr
n
i =

4π

3
δy
∑

j

p2
i,j

√

1 + p2
i,j

gn
i,j . (25)

and its space gradient is computed using centred differences.
The particle back-reaction is done at each hydrodynamical
step. If the hydrodynamical and kinetic time-scales are too
different we may miss the actual CR back-reation. To pre-
vent the CR decoupling from the fluid we make sure that
within each hydrodynamical time-step the relative variation
of the fluid energy ∆e/e due to the CR back-reaction is never
higher than 10%.

c© 2007 RAS, MNRAS 000, 1–17
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2.3 Test 1: a strongly modified shock

To test our code we start with the second test case from the
pioneers of the kinetic approach Falle & Giddings (1987)
(hereafter FG).

2.3.1 Test Design

The shock wave is generated by a supersonic piston: a piston
of constant Mach number Mp = up/cs,1 generates a shock of
constant Mach number MS = uS/cs,1 given by (eg Landau
& Lifshitz 1959)

MS =
γ + 1

4
Mp

√

1 +
(

γ + 1

4
Mp

)2

. (26)

We work in the piston frame: the upstream medium is given
a velocity of −up, using a “reflecting” left boundary con-
dition. The piston is then fixed at x = 0 in the simulation
box, and the shock emerges out of this left boundary. The
right boundary condition is chosen to be gradient zero. The
upstream medium is initially of constant density ρ0

1 = 1 and
pressure P 0

1 = 1. The piston Mach number is Mp = 15, so
that MS = 100.5, uS = 4.52 in the upstream rest frame, and
r = 3.55.

There are no CR upstream initially (P 0
cr = 0). Par-

ticles are injected at a constant rate η = 0.0225 at a
variable momentum defined by ξ′ = 2 (see section 2.2.2).
The piston beta (β = up/c) is adjusted so that initially
p0
inj = 10−1 as done in FG. The momentum grid extends

from log(pmin) = −3 to log(pmax) = +4, with a resolution
(not critical here) δy = 0.23 (that is 10 bins per decade). The
diffusion coefficient is a power-law with a weak momentum
dependence: D (p) ∝ p0.25. Its normalisation is adjusted so
that the simulation unit time is the acceleration time-scale
at injection tacc(pinj) (see equation (22)) as implicitly done
in FG.

The simulation is run to tend = 40 as in FG to show con-
vergence of the coupled fluid-CR system (in the linear case
we then expect CR to be accelerated to pmax = 3.2 < 4).
The space box size equals the distance travelled by the shock
during that time (at constant velocity uS = 1.77 with re-
spect to the piston located at x = 0) plus 10 times the
diffusion length of the highest energy CR (corresponding to
Λ = 10 as defined by equation (35)) that is xmax = 250. The
space resolution is set to δx = 2, 9.10−2 to achieve numer-
ical convergence (corresponding to λ = 0.050 at pmin (and
λ = 0.037 at p0

inj) as defined by equation (34)). The hydro-
dynamic Courant number is set to 0.8, the kinetic scheme
being sub-cycled by another factor of 2.

2.3.2 Physical results

The results of the simulation are presented in figures 1 to 4.
Figure 1 shows the hydrodynamical profiles for various

times. The shock is visible as a discontinuity traveling to
the right. As expected (see section 2.2.4) it is smoothed by
the presence of a precursor, visible in all profiles, caused by
the presence of CR upstream of the shock – their pressure,
added dashed on the bottom plot, exceeds the fluid one. We
see that after a quick initial adjustment the shock structure
reaches a quasi-stationary state, as observed by FG.

Figure 2 shows the time evolution of the shock (in

1
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Figure 1. Time evolution of the hydrodynamical profiles for a
modified shock (with D(p) ∝ p0.25, see section 2.3.1 for simulation
details). Plotted are the fluid density ρ, velocity u and pressure
P (the CR pressure Pcr is added dashed).
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Figure 2. Evolution of the strongly modified shock (in green) of
figure 1: the shock position xs, velocity us and Mach number Ms

are plotted versus time. In red are added the results when CR
back-reaction is turned off, which follow the theoretical evolution
(dotted).
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Figure 3. Evolution of some key CR parameters for the modi-
fied shock (in green) of figure 1: plotted versus time are the maxi-
mum momentum pcr (its theoretical linear evolution is added dot-
ted, see equation (21)), pressure Pcr (the fluid pressure is added
dashed) and adiabatic index γcr (the non-relativistic (5/3) and
ultra-relativistic (4/3) values are added dotted). In red are added
the results when CR back-reaction is turned off.
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Figure 4. Time evolution of the CR spectrum just downstream
of the modified shock of figure 1. The spectrum f(p) is shown on
top. On this plot the horizontal dotted line marks the theoret-
ical spectrum normalization f0 at injection (in the linear case)
and the two other dotted lines are power-law spectra of slopes
s = 4 and s1 = 4.18 = the theoretical linear slope (for this shock
compression ratio r = 3.55) and of same normalization f0 at in-
jection. These two remarkable slope values are also marked dotted
on the bottom plot, which shows the spectrum logarithmic slope
−s = ∂ log(f)/∂ log(p).

green). We see that after the quick initial adjustment the
shock velocity is again almost constant, but slower than in
the linear case (added in red).

Figure 3 shows the time evolution of the CR population
(again with back-reaction switched on/off in green/red). In
both cases the CR maximum momentum agrees well with
the dotted theoretical linear prediction (the determination
of pcr is less reliable in the non-linear case, the differences
seen are not conclusive). The CR pressure quickly converges

thanks to the regulation effect of the back-reaction (as both
the sub-shock mass flux and downstream temperature are re-
duced) whereas it grows linearly in time in the linear regime.
The CR adiabatic index is computed as γcr = 1 + Pcr/Ecr

where Pcr is the ”CR fluid” pressure given by equation (23)
and Ecr is the ”CR fluid” internal energy given by

Ecr =

∫

p

K(p)f(p)4πp2dp = 4π

∫

y

√

1 + p2 − 1

p
g(y)dy (27)

where K(p) is the kinetic energy of a CR of momentum p. As
expected γcr starts at the same value as the adiabatic index
of a non-relativistic fluid γ = 5/3 (as CR are injected from
the thermal pool) and goes down (constantly but more and
more slowly) as CR are accelerated to high energies (tending
to the adiabatic index γ = 4/3 of a relativistic fluid).

The latter quantities are global (macroscopic) proper-
ties of the CR (seen as a fluid). Figure 4 shows the CR
spectrum (and its slope) just downstream of the shock at
some given times. We see how DSA progressively builds the
CR distribution. Note that the time discretization is lin-
ear as in figure 1, so we see that it takes more and more
time to accelerate particles to higher energies: this is be-
cause of the diffusion coefficient dependence on p (see equa-
tion (22)). Initially the CR are injected at log(p0

inj) = −1,
with a normalization which agrees with the theoretical one
in the linear case (see equation (20)). But soon afterwards
pinj drifts slightly towards lower energies as the downstream
temperature is reduced (see the bottom plot of figure 1).
The CR spectra extend over 20 orders of magnitude, they
seem to approach a power-law form but the plot of their lo-
cal slope clearly shows that they are actually concave: they
are softer at low energies and harder at high energies than
the theoretical linear slope s1 = 4.18. This is another well-
known feature of the acceleration by CR-modified shocks
(see section 2.2.4), due again to the energy dependence of
the diffusion coefficient

2.3.3 Comparison with previous study

The results presented here can be compared to the FG sec-
ond test (section 4.2, especially their figure 7). Most notably
the fluid and CR pressure have exactly the same time evo-
lution, with a convergence at the same values within a few
percents. The shock Mach number and CR adiabatic index
also agree well. This is to our knowledge the first direct com-
parison to the results of FG, and this success cross-validates
the two codes. It proves that our code can handle well a
strongly modified shock produced by the tight coupling of
fluid hydrodynamics and CR diffusive acceleration.

3 DIFFUSION SCALES AND ADAPTIVE

MESH REFINEMENT

We have already seen in the previous section how the energy
dependence of the diffusion coefficient drives the main fea-
tures of modified shocks. This is also the reason why realis-
tic kinetic simulations of DSA are numerically a challenging
problem: the difficulty is the potentially huge range of space
and time scales which must be resolved. We now investigate
this important issue in details, showing its physical grounds
and its numerical answer.
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3.1 Diffusion

3.1.1 The diffusion coefficient

In our model the scattering of CR off magnetic field fluctu-
ations is represented by a diffusive term (first r.h.s term of
equation (9)), controlled by the diffusion coefficient D which
can be expressed as

D =
1

3
lmfpv (28)

where v is the particle velocity and lmfp its mean free path
at this energy. A special case of interest is the so called
”Bohm limit” (see eg Kang & Jones 1991 and Duffy 1992)
reached when lmfp ∼ rg where rg = p/eB is the particle
gyro-radius, that is when the particles are scattered within
one gyro-period, meaning that the turbulence causing par-
ticle scattering is random on the scale rg. This constitutes a
lower limit on the (parallel) diffusion coefficient, and on the
acceleration time-scales. This Bohm limit has been widely
favored in the literature. In that case D ∝ pv so that

DB(p) = D0
p2

√

1 + p2
(29)

where one can evaluate D0 = 3× 1022cm2s−1 ×
(

B

1µG

)−1

.

The dependence of D on p is also frequently conveniently
modelled by a simple power-law form

Dα(p) = D0p
α. (30)

We note that DB(p) reduces to such a power-law in the non-
relativistic limit (α = 2) and in the ultra-relativistic limit
(α = 1).

We can also consider a space-dependent diffusion coef-
ficient. A common choice is

D(x, p) =
ρ1

ρ(x)
D(p). (31)

This dependence on ρ avoids the sound wave instability stud-
ied by Drury & Falle (1986) and mimics the compression of
the magnetic field attached to the density field.

Note that otherwise the code doesn’t handle explicitly
the evolution in space and time of the magnetic field: some
constant mean value of B is assumed to get the normaliza-
tion of D. Therefore we restrict here ourselves to the study
of parallel shocks. We note that CR are thought to trig-
ger themselves the field perturbations which make them dif-
fuse, through various instabilities excited when they stream
upstream of the shock. Thus it is possible to compute the
diffusion coefficient D(x, p, t) self-consistently from the CR
distribution itself, adding the wave transports equations. We
postpone this problem to a future work.

3.1.2 The diffusion scales

Whatever the precise description used for D, the key point
is that it is thought to be a growing function of p. As the
CR momenta span many orders of magnitude (from say p =
10−2 to p = 106 or even p = 109 for galactic CR) this
introduces a wide range of scales. The relevant time scale is
the diffusive acceleration time-scale (see equation (22)):

tacc(p) ∝ D(p)

u2
S

. (32)

The relevant space scale is the diffusion length of the CR
upstream of the shock:

xupst(p) =
D(p)

uS
. (33)

The space scales range from the microscopic scale where the
CR decouple from the fluid (of the order of a few thermal
gyration lengths) to macroscopic scales (of the order of the
supernova remnant radius for high energy CR, which then
escape, thus limiting the pmax the remnant can achieve).

From a numerical perspective the resolution of the grid
is then dictated by the diffusion of the lowest energy CR (we
must ensure δx ≪ D(pmin)/uS to catch their dynamics well)
whereas the size of the grid is dictated by the diffusion of the
highest energy CR (we must ensure xmax ≫ D(pmax)/uS not
to lose them artificially). The ratio D(pmax)/D(pmin) (and
thus the number of cells xmax/δx) may exceed ten orders of
magnitude if D(p) ∝ p, which is extremely demanding in
terms of memory requirements and computing time. This is
the reason why the first simulations were made with low p
dependence of D (α = 0.25 in Falle & Giddings (1987) and
in Kang & Jones (1991)), before exploring the Bohm regime
(Duffy 1992) – which was achieved by using more involved
numerical techniques.

3.2 Adaptive Mesh Refinement

3.2.1 Principle

Fortunately we need very high resolution (δx small) only
around the shock, as this resolution is required by the low-
est energy particles only, which don’t diffuse far away from
the shock. More generally CR of a given energy require a cer-
tain space resolution on a certain space extended around the
shock (the key parameter being xupst(p)). Hence the idea,
pioneered by Duffy (1992) and developed by Kang et al.
(2001), to implement techniques of Adapative Mesh Refine-
ment (AMR) to allow the numerical resolution δx to vary
according to the needs of the CR that are likely to be found
at a given location at a given time (see also Berezhko et al.
(1994) for a different approach). This allows correct han-
dling of the transport of CR whereas considerably lowering
the numerical requirements.

3.2.2 Design

We adopt here the technique of nested grids (Berger & Oliger
1984): N sub-grids of increasing resolution are added to the
base-grid around the shock5. The resolution of the grid at
level k (base grid being level 0) is δrk = δr0/Ri where R is
the refinement factor, taken as usual to be R = 2.

The grid hierarchy is automatically designed by the
code according to the CR diffusion properties as follows.
The resolution at the last sub-level N is adapted to the low-
est energy CR, of momentum pmin = pN :

(δx)N = λ × xupst(pN) (34)

5 We haven’t used tree-based AMR as this technique is much
more complicated to implement and as its main advantage is its
versatility but the situation we have to deal with is well defined.
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where λ ≪ 1 (Kang & Jones (1991) suggest λ = 0.05, and
this is indeed what test 1 of section 2.3 required for full
convergence). The resolution of the N −1 sub-level will nec-
essarily be δxN−1 = R × δxN . This resolution will be good
enough for all particles of momentum above some pN−1 so
that δxN−1 = λ×xupst(pN−1). Then the sub-grid N should
take care of all CR of momenta from pN = pmin to pN−1,
in particular it must contain them as they diffuse from the
shock, so we set its half-size ∆x as

(∆x)N = Λ × xupst(pN−1) (35)

with Λ > 1. The sub-grid N is now fully defined by its size
∆x and resolution δx, the process is then iterated to the level
N − 1, the resolution of which is imposed by the resolution
at level N and the size of which is imposed by the resolution
at level N − 2, and so on. The total number of sub-grids is
adjusted semi-empirically to maximize the AMR efficiency.

From now on the grids design will be conveniently de-
scribed by the two parameters λ and Λ defined by rela-
tions (34) and (35). We use the same Λ for all sub-grids,
and we extend its definition to a base grid where ∆x now
refers to the distance xmax − uS × tend between the position
of the shock at the end of the simulation and the position of
the right physical boundary (so that in all cases ∆x is the
minimum distance upstream of the shock).

3.2.3 Algorithm

The nested-grids algorithm is a recursive one: at each level
(from top to bottom) we update the quantities on the whole
grid, we run the same process at the sub-level, and we re-
place the grid coarse quantities by the sub-grid finer quan-
tities (we also correct the coarse fluxes at the sub-grid in-
terfaces to preserve the scheme conservation properties, see
Berger & Leveque 1998). We recall that the refinement is
both a refinement in space (the resolution is divided by R)
and a refinement in time (because of the Courant condi-
tion (7)). Note that the two operators in the code (the hy-
drodynamic one and the kinetic one) still operate conjointly
at each level, as refining them separately would artificially
decouple their effects. Note also that injection is done at
bottom level only and propagates to all the upper levels as
they are updated.

To set up the refinement the child grid must be given
appropriate boundary conditions to match its parent pro-
files. Regarding the hydrodynamics these nested boundary
conditions consist of a simple filling of the child’s ghost with
the corresponding values of its parent. Regarding the kinetic
part we note that diffusion is controlled by interface fluxes,
so that we enforce matching of the diffusion flux between
the child and parent level. Note that this mechanism works
whatever the diffusion coefficient scheme (be it explicit or
implicit), but that the Crank-Nicholson scheme gets more
sensitive because of such nested boundary conditions.

The grid hierarchy is set up around the shock position
at start-up and moves with it over time. For the shock track-
ing to remain efficient with any number of grids levels we
allow each sub-grid to move independently both in space and
time. However a sub-grid can move only by R = 2 of its cells
to keep the simple 1 to 2 correspondence of the AMR refine-
ment scheme (and only at the end of a complete refinement
step).

3.3 Test 2: adding Bohm scaling

Here we extend test 1 using a more realistic (and demanding)
diffusion model.

3.3.1 Test Design

The physical parameters are the same as in 2.3.1, but for
the fact that we now use the relativistic6 Bohm scaling
for the diffusion coefficient, that is D (p) ∝ p (see sec-
tion 3.1.1). Numerically we then enter a new world, because
of the requirements induced by equations (32) (longer run)
and (33) (higher resolution). Simulation of test 1 runs within
2 hours at high resolution on a desktop-class processor. Now
with the same pmax it wouldn’t be even possible to allocate
the grid in memory. We thus apply the AMR technique to
lower the numerical requirements. We use here λ = 0.3 at
log(pmin) = −1.5 (that is λ = 0.1 at log(p0

inj) = −1); and
Λ = 6 for each sub-grid (as we have observed that for Λ > 6
the sub-grids nested boundary conditions for diffusion are
indifferent for all the CR up to the momentum a sub-grid
has to deal with) and Λ = 10 for the base grid. We use a
better momentum resolution than in test 1: δy = 0.1 (that
is 23 bins per decade). We’ve run different simulations with
different maximum momentum log(pmax) ranging from 0 to
3 by steps of 0.5. We’ve run each simulation up to the time
required for CR to reach this maximum momentum (derived
from equation (21)), ranging accordingly from 10 to 10000.
We set the Courant number to 0.5 and we sub-cycle the DSA
scheme a few times (all the more so since we are at a deep
level). The number N of sub-grids automatically dumped by
the code ranges from 1 to 7 as log(pmax) rises from 0 to 3.

3.3.2 Physical results

Figures 5 to 8 show the results in the case log(pmax) = 1,
tend = 100, N = 3 (note that on figure 5 one sees how the
grid hierarchy follows the shock). The global picture remains
the same as in test 1: quick convergence to a quasi-steady
state where the fluid and CR pressures are of the same or-
der (here the CR pressure doesn’t reach the fluid one). The
effects of the dependence of D on p, which were already vis-
ible in test 1, are now enhanced: the shock precursor is more
extended (figure 5), the CR are more slowly accelerated to-
wards high energies (figure 8).

3.3.3 AMR efficiency

On figures 6 and 7 the red curves show the results (in the
case log(pmax) = 1) without activating AMR, that is with a
single grid having the same size as the base grid (given by
Λ = 10) and the same resolution as the deepest grid (given
by λ = 0.3). The results can hardly be distinguished, which
proves that AMR doesn’t compromise the physical accuracy.
And we show now that on the other hand it considerably
lowers the numerical cost. Simulations described previously

6 Using the exact Bohm scaling, that is D (p) ∝ p2 at injection
energies, considerably increases the numerical cost of the simula-
tion without changing much the physical results, see eg Kang &
Jones (2006).
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Figure 5. Time evolution of the hydrodynamical profiles for a
modified shock (with D(p) ∝ p, see sections 3.3.1 for simulation
details). Plotted are the fluid density ρ, velocity u and pressure
P (the CR pressure Pcr is added dashed). The AMR grids hier-
archy is over-plotted at each output time: dotted lines mark the
center of the grids (which follow the shock), dashed lines mark
the boundaries of the 3 nested sub-grids.
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Figure 6. Evolution of the strongly modified shock of figure 5: the
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versus time. The theoretical evolution in the non-modified case
is added as the dotted line. Results obtained with and without
using AMR are shown in green and red respectively.
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Figure 8. Time evolution of the CR spectrum just downstream
of the modified shock of figure 5. The spectrum f(p) is shown on
top. On this plot the horizontal dotted line marks the theoret-
ical spectrum normalization f0 at injection (in the linear case)
and the two other dotted lines are power-law spectra of slopes
s = 4 and s1 = 4.18 = the theoretical linear slope (for this shock
compression ratio r = 3.55) and of same normalization f0 at in-
jection. These two remarkable slope values are also marked dotted
on the bottom plot, which shows the spectrum logarithmic slope
−s = ∂ log(f)/∂ log(p).

have been made (up to pmax = 1.5) without using AMR
too. The computing time of each simulation with (green)
and without (red) AMR is shown on figure 9. In the case
log(pmax) = 1 presented in section 3.3.2 the speed-up is of
roughly 250; and it grows steadily as pmax grows. We note
that both curves are power laws, with an index 240% times
lower when AMR is activated. Thus the AMR technique is
both very efficient and absolutely mandatory to address such
difficult (realistic) problems.
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Figure 9. Computing time as a function of the maximum mo-
mentum pmax (in logarithmic scale) for a Bohm-like diffusion
(D(p) ∝ p). The time unit on this plot is arbitrary, on an Ita-
nium II processor the simulation to log(pmax) = 1 lasted 13.4 H
with AMR off and 8 mn with AMR on. The CR are injected
at log(pinj) = −1 at t = 0, the minimum momentum is set to
log(pmin) = −1.5. The two sets of measures have been done
with (green) and without (red) activating the automatic AMR
scheme (see sections 3.2 and 3.3.1 for details). Physical results
for log(pmax) = 1 have been shown on figures 5 to 8, with com-
parisons of results with and without AMR on figures 6 and 7.

4 MULTIPLE SHOCKS AND

PARALLELIZATION

Even using the numerical trick of AMR, the computing time
of realistic DSA simulations can still be very high, espe-
cially if one wants a precise estimate of the CR spectrum
over a wide range of momenta. This quickly becomes an un-
acceptable limitation if one wants to investigate the effects
of multiple, successive shocks. In this section we present an
original attempt to increase the code computing efficiency,
aimed at increasing the number of simulated shocks in a
given reasonable simulation time.

4.1 Multiple shocks acceleration

In many astrophysical contexts CR are likely to experi-
ence many successive shocks: in chaotic stellar winds (White
1985), in rotating accreting flows (Spruit 1988), in radio
sources with multiple hot spots (Pope et al. 1996), in the
galactic center (Melrose & Crouch 1997), in the OB asso-
ciations inside superbubbles (Klepach et al. 2000, Parizot
et al. 2004), in the early cosmological flows (Kang & Jones
2005) and in galaxy clusters (Brunetti & Lazarian 2007).
Many efforts have been made to better understand multiple
diffusive shock acceleration (hereafter mDSA), but on quite
particular cases, and clearly not to the same extent as single
diffusive shock acceleration (hereafter sDSA).

4.1.1 Previous studies

From a theoretical point of view, mDSA is well understood
in the linear regime, as we can simply add the effect of a sin-
gle shock. Being of astrophysical interest it has been investi-
gated analytically since the early developments of the DSA
theory (see eg Eichler 1980, Blandford & Ostriker 1980).
The main result of mDSA is that the CR spectrum flat-
tens progressively to a universal asymptotic power-law of
index s = 3 (regardless of the shock compression ratios, see
eg Pope & Melrose 1994). More involved analytical models
have been developed including various effects such as second
order Fermi acceleration, radiation losses (for electrons) and
escape (Schlickeiser 1984, Achterberg 1990, Schneider 1993).
But while there is a well-defined analytic framework for the
linear mDSA, there is no such thing in the non-linear regime.
However Bykov (2001) has developed a non-linear model of
the acceleration by chaotic large scales fluid motions inside
superbubbles, and Blasi (2004) has proposed a simple semi-
analytical model including ”seed” particles.

From a numerical point of view, as we have already seen
the fully non-linear regime is quite well studied now, but
in the single shock model: although feasible, multiple DSA
has received extremely reduced attention so far. Gieseler &
Jones (2000) have studied acceleration at multiple oblique
shocks, but in the test-particle regime (they found the CR
spectrum to harden substantially). Recently Kang & Jones
(2005) have investigated the effect of an upstream CR pres-
sure in the non-linear regime, but for single shocks (they
concluded that it doesn’t affect strong shocks much but may
enhance the efficiency of weak ones).

Our aim with the code presented in this paper is to be
able to study CR acceleration by multiple shocks in detail,
in the full time-dependent non-linear regime.

4.1.2 Inter-shock physics

A new important point to consider when simulating multiple
shocks is the fate of the CR between two successive shocks.

First the shocked fluid will decompress to recover its
initial state, and the CR being bound to it through scatter-
ing will experience adiabatic decompression (see Melrose &
Pope 1993): when the shocked fluid density is decreased by
a factor r the CR momenta are decreased by a factor r1/3.
We would like to insist on the physical importance of this
decompression, whose inclusion is essential in the correct
treatment of mDSA. For instance a sequence of identical
shocks of ratio r will produce in the linear regime a CR
spectrum with the well-known s = 3 slope if and only if the
CR are decompressed by the corresponding r1/3 factor be-
tween each shock: if we don’t decompress them enough they
will pile-up from the injection momentum, producing much
harder spectra, and if we decompress them too much they
will still form a power-law but a steeper one of slope s > 3.

Apart from these energy losses due to decompression
the CR might simply escape the system before the next
shock occurs. In fact CR can be quite well confined in a
medium thanks to their diffusion, whose typical length scale
grows with the CR energy, so that the CR spectrum will be
depleted from its highest part. In a given physical situation,
given the typical time between two shocks and the diffu-
sion experienced by CR during that time (not necessarily of
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Bohm type) we can estimate the maximum momentum of
the remaining CR when the next shock arrives.

We also note that the second order Fermi acceleration
mechanism (diffusion in momentum) might become an im-
portant process between the shocks However we won’t in-
vestigate this possibility any further in this paper.

4.1.3 Numerical treatment

The code is fully automated to run a sequence of shocks.
Assuming that the fluid has enough time to decompress be-
tween two shocks, the same initial hydrodynamical condi-
tions are used for each shock. The shock Mach number (and
thus velocity and compression ratio) can however vary from
shock to shock. At the end of each shock we take the down-
stream CR spectrum, modify it to take into account the
inter-shock physics of section 4.1.2, and pre-inject it in each
space cell before launching the next shock. Although this
mechanism seems simple we have to elucidate a few points.

First the very idea of a ”downstream spectrum” sup-
poses that we have reached some converged state down-
stream of the shock. According to Kang & Jones (2005)
such a quasi-stationnary state is obtained once the CR are
accelerated up to the relativistic regime (p > mpc), which
agrees with our own observations. In the following we con-
sider that the time each shock is run is long enough so that
each single shock can fully relax regarding particle accelera-
tion (at least up to the maximum momentum we consider),
so that the downstream CR pressure is well defined.

To mimic adiabatic decompression the CR spectrum
ln(f) is shifted in y = ln(p) by

∆y(r) =
1

3
ln(r) (36)

towards lower energies. Lost values of f below ymin are sim-
ply discarded. We have checked by lowering the value of
ymin that they don’t influence the overall subsequent spec-
trum evolution. Missing values of f between ymax −∆y and
ymax are filled by linearly extrapolating the slope from the
end of f . This treatment of the gap gives the best accu-
racy at high energies in the linear regime. As emphasised
in section 4.1.2 to obtain correct results we need to resolve
precisely this decompression shift and thus to use a high
resolution in momentum: δy ≪ ∆y. We have found that in
order to obtain exactly s = 3 in the linear regime, the shift
∆y/δy must in fact be an exact number of bins, and must
be as high as roughly 10. But ∆y depends on r, and we
want to be able to run multiple simulations with variable r,
and in non-linear simulations r will be constantly modified
(see section 2.2.4) so that we will never know its final value
beforehand. To solve this problem we proceed as follows.
We use the same momentum resolution δy to run all shocks,
fixed so that δy < ∆y(rmin)/J where J is a chosen integer
≫ 1 and rmin is the lowest allowed compression ratio (note
that in the case of modified shocks the relevant ratio for de-
compression is the total one, which will always be greater
than the ratio imposed initially, so that rmin is well defined).
At the end of each shock we measure the actual value r of
the compression ratio, re-bin the numerical spectrum f with
new resolution δy′ = ∆y(r)/J , shift this under-sampled f
by ∆y(r) that is by exactly J bins, and then re-bin f back
to the nominal resolution δy.

Regarding escapes due to losses we simply give to the
code a cut-off momentum pcut above which the CR spectrum
f is set to zero.

4.2 Parallelization

Even using AMR running multiple realistic shocks simula-
tions can easily be very demanding in computing time, lim-
iting drastically the possibility to do parameter studies and
thus fully explore the mDSA mechanism. We note here that
even if the code is 1D in space the inclusion of the full spec-
trum of particles in each cell makes it actually 2D. Thus we
now pay more attention to the momentum dimension.

4.2.1 Principle

Confronted by this problem, Jones & Kang (2005) use an
interesting ”coarse-grained finite momentum volumes” tech-
nique to lower the constraints imposed by the p dimension.
The basic idea under this approach (first introduced by Jun
& Jones (1999) and Jones et al. (1999)) is simply to lower
the numerical resolution δy in momentum, but prescribing
a power-law spectrum shape to each part of the discretized
spectrum in order to keep reasonable accuracy. The numeri-
cal spectrum is then no longer a piece-wise constant function
but a piece-wise linear function. This technique allows rea-
sonably good estimates of the modified shock evolution with
unusually low momentum resolutions (which can be as low
as 2-3 bins per decade). However we believe that the adi-
abatic decompression between multiple shocks wouldn’t be
handled properly by such low resolutions, as it is typically of
only 1/5 of decade and has to be well sampled to get precise
results in the linear regime (see section 4.1.3).

In this paper we adopt an alternative way to lower the
p−dimension numerical cost, without any compromise re-
garding momentum resolution, which consists simply of fully
exploiting the power of modern super-computers by paral-
lelizing the code. We consider here the paradigm, imple-
mented with MPI, which consists of splitting the grid over
many processors, each processor running the same code but
on its own data – which still involves some communications
between the processors, most notably to define their bound-
ary conditions.

4.2.2 Implementation

We have parallelized our code in the momentum space as
this is straightforward to implement (as nothing happens in
momentum space but a global advection to higher energies)
and perfect load-balances can always be obtained (provided
we slightly adjust the resolution δy so that the number of
momentum bins is an exact multiple of the number of proces-
sors). Parallelizing in space would be more difficult because
of space diffusion, and far less efficient because with AMR
realistic problems are always ill-balanced, no matter how we
split the grids. However parallelization in momentum suffers
from two limitations. First not all the code is parallelized
but only the parts dealing with CR and the maximal ef-
ficiency of the parallelization of a code is always limited
by its sequential portions – but realistic problems are CR-
dominated so that it is easy to reach very high ratios of the
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parallelized over un-parallelized fractions of the code. Sec-
ondly, this ratio determines only the maximum acceleration
achievable through parallelization: in practice the effective
efficiency of parallelization is limited by the extra cost in-
duced by inter-processor communications, which eventually
leads to a saturation of the efficiency – but we managed to
achieve good scalings as shown below.

4.3 Test 3: doing multiple shocks

Here we present the evolution of test 2 when multiple shocks
are run. To the best of our knowledge, these are the first
direct simulations of time-dependent linear and non-linear
multiple DSA.

4.3.1 Test Design

We start from the design of section 3.3.1, with the same
hydrodynamical initial conditions for each shock, but an
evolving CR population, as explained in section 4.1.3. We
recall that particles are injected at log(pinj) = −1. We want
here to study acceleration up to log(p) = 1. When multiple
shocks are run with CR now present everywhere upstream
the code faces harder numerical precision issues at high en-
ergies. To fix that first we set a bigger maximum momen-
tum log(pmax) = 1.5 and we set bigger sub-grids (Λ = 15).
We use the same space resolution as before: λ = 0.3 at
log(pmin) = −1.5 (that is λ = 0.1 at log(p0

inj) = −1). We use
a better momentum resolution: δy = 0.036 corresponding
to exactly 64 bins per decade (which, over 3 decades in p,
allows perfect load balancing when running the code in par-
allel on clusters of processors that are powers of 2 up to 64).
This nominal resolution is adjusted at the end of each shock
to be exactly 10 bins per decompression shift (as explained
in section 4.1.3). We consider here that pcut > pmax so that
CR don’t escape between two shocks (section 4.1.3).

4.3.2 Parallelization efficiency

Figure 10 shows the gain brought by parallelization. We ob-
tain good scalings up to a few tens of processors. Thus par-
allelization allows us to study the acceleration by multiple
shocks within the time previously required to study acceler-
ation by a single shock.

In this simulations the DSA operator represents a bit
more than 90% of the computations time, and as the hy-
drodynamic operator also advects CR the fraction of the
code actually benefiting from parallelization is more than
99.5%. On slightly less CR-dominated simulations we have
observed that the scaling is better on the shared memory
machine than on the distributed memory machine, as our
code is then bound by communications. The slightly less
good scaling observed with 64 processors is no surprise given
that in that case each processor deals with only 3 momenta
cells, which makes a high surface/volume (that is communi-
cations/computations) ratio. We note here that a good point
of parallelization in momentum is that it’s all the more use-
full since one wants to investigate high energies. Indeed the
higher pmax, the bigger the momentum grid, and the more
processors one can use with a same given efficiency.
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Figure 10. User computing time as a function of the number of
processors for simulations of section 4.3.1. Measures have been
made on two machines, the soleil super-computer of the French
Calmip collaboration (a cluster of 120 Itanium II processors with
shared memory) and the rowan super-computer of the Irish Cos-

mogrid (a cluster of 256 Xeon processors with Gigabit Ethernet).
Tests have been made up to the maximum number of processors
available on this middle-class machines (32 on soleil and 64 on
rowan). The computing times have been normalized to empha-
size the parallelization scaling with the number of processors. The
three dotted lines show the theoretical scaling for a perfect paral-
lelization (that is with no induced over-cost) of respectively 99%
and 100% of the code.

4.3.3 Linear results

Figures 11 and 12 show the evolution of test 2 when 30
such shocks are successively launched with CR back-reaction
turned off. In this linear case the CR pressure grows forever,
so that we end each shock at the time tend = 300 correspond-
ing to log(pmax) = 1.5. Figure 11 shows the evolution of the
CR spectra just downstream of the last shock. The spectra
are all normalized at the injection momentum to emphasize
the slope evolution (the actual normalization rises by a fac-
tor of roughly two). We clearly see the convergence of the
spectrum from an initial power-law of slope s = 3r/(r − 1)
(the well-known linear solution for a single shock) to a final
power-law of slope s = 3 (the well-known limit in the case
of multiple shocks). The slopes plot (bottom) shows that in
between the spectrum is never a simple power-law, as the
asymptotic convergence to s = 3 is all the more slow since
the momentum is high. The way the spectrum hardens at
different momenta is shown on figure 12, where we plot the
slope as a function of the number N of shocks. Dashed is
added the theoretical slope computed (with centered finite
differences) from the analytical expression of the spectrum
produced after N shocks, which reads (eg Melrose & Pope
(1993))

fN (p) ∝
N
∑

i=1

si
1

(i − 1)!

(

Ri p

pinj

)−s1
(

ln

(

Ri p

pinj

))i−1

(37)
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Figure 11. Time evolution of the final downstream CR spec-
tra for a sequence of successive linear shocks (see sections 4.3.1
and 4.3.3 for details). Each coloured line shows the CR distribu-
tion just at the end of a shock. The spectra f(p) are shown on top
(all normalized so that f(pinj) = 1), where we have added (dot-
ted) the three power-laws of slope s = 3 and s = 4 and s1 = 4.18
the theoretical linear slope for the compression ratio r = 3.55 of
the shocks. These three remarkable slope values are also marked
(dotted) on the bottom plot, which shows the spectra logarithmic
slopes −s = ∂ log(f)/∂ log(p). The evolution of the slope from s1

to 3 with the number of shocks is shown on figure 12 for three
different momenta.

where R = r1/3 is the decompression factor and s1 =
3r/(r−1) is the single shock slope. The code reproduces the
expected behavior within roughly 1% for the three momenta
(close to the maximum momentum the code is less precise).
This validation of our code in the linear regime gives us
confidence to explore the unknown non-linear regime.
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Figure 12. Evolution of the final CR spectrum slope at three
different momenta (log(p) = −0.5, 0.0,+0.5) for a sequence of
successive linear shocks (this figure consists in three vertical cuts
in the bottom plot of figure 11). The theoretical results (from
equation (37)) are added dashed. The three remarkable slopes
s = 3, s = 4 and s1 are marked dotted.

4.3.4 Non-linear results

On figure 13 we now allow the CR to back-react on the
shock. Each shock is run until the downstream CR pressure
has converged, before doing decompression and launching
the next one. We recall that one of the consequences of CR
back-reaction is that pinj varies in time (as the downstream
state changes). However we still use here a fixed injection
fraction η, but we run different simulations with different
values of η as this parameter is quite poorly constrained. To
get an overall picture we use a broad range of values of η,
around the value η0 = 0.0225 used since test 1 to match FG
parameters. For η > 10−1 (a value which seems physically
unreasonably high) the very first shock gets fully smoothed
by CR back-reaction before Pcr has converged (following FG
we consider a shock to be smoothed – and thus stop injection
of fresh CR7 – as soon as the Mach number of the sub-shock
drops below MS,cut = 1.3). As η is lowered to around 10−2

the first shock can run but the cumulative effect of shocks
is such that one shock eventually gets fully smoothed. As
η is lowered to around 10−3 the number of shocks N be-
fore smoothing occurs raises exponentially: below roughly
ηc = 1.5×10−3 it seems that virtually any number of shocks
could run (although all this shocks are still modified ones).
We have limited here the maximum number of shocks to 30,
as this seems reasonable for both numerical reasons (given
the evolution of the red curve it would take extremely long
times to fully explore the very low injection fractions), and
physical reasons (considering a few tens of successive strong

7 Note that stopping injection doesn’t mean stopping accelera-
tion. FG have shown that it is possible to have a CR-dominated
”self-sustaining” shock without injection of fresh particles. They
had also no advection of particles, whereas with multiple shocks
we have to consider the effect of an upstream population too. We
postpone the detailed study of this aspect to a future work.
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shocks makes sense in environments such as superbubbles).
At the last ”complete” shock N we measure the range of
spectra slopes s (between the injection momentum and the
momentum of hardest slope, at which its final decay starts).
We observe two evolutions as η decreases. First the spectra
globally harden as η is lowered, which is expected as more
shocks can run. Note that as we limit ourselves to N = 30
the slopes below ηc can’t be directly compared with the
slopes above ηc: below ηc the slopes would get closer to the
s = 3 limit if one would allow for a higher number of shocks.
Anyway we see that in the non-linear regime the building of
the s = 3 spectrum within 30 shocks (as on figures 11 and 12)
requires an injection fraction lower than η = 10−6. Second
the range of slopes gets constantly narrower, especially be-
low ηc (that is when when CR no longer limit the number of
shocks). Thus this simulations suggest the existence of two
regimes of mDSA with respect to the injection ratio η: there
seems to be some critical ηc (here of roughly 1.5 × 10−3)
above which CR dictate the fate of the shocks (producing
soft and irregular spectra) and below which CR are almost
transparent to the successive shocks (producing harder and
more regular spectra). We have observed the same global
picture with other simulations (not shown here) involving a
constant diffusion coefficient D.

We note that the self-consistent injection fraction pro-
posed by Blasi et al. (2005) (equation (15)) is here initially
ηB ≈ 10−1, thus in the regime where CR dominate from the
very first shock. This self-consistent ηB is time-dependent
and is lowered as the shock gets modified, but we have ob-
served that the first shock still gets fully smoothed before a
quasi-steady state has been reached. Such a very high back-
reaction might be surprising for a thermal leakage mech-
anism. It comes from our particular choice (to match FG
parameters) of the ratio of the velocity of injected CR to
the downstream sound speed ξ′ = 2, as ηB has a very strong
dependence on this free parameter (recall that ξ′ = 1.1ξ).
ξ′ = 2 is a realistic but rather low value, we could suggest as
well ξ′ = 3, in which case ηB is initially ∼ 270 times lower,
that is ηB ≈ 3.7 × 10−4, that is in the regime where CR
are transparent to the successive shocks. Thus this points
out that Blasi’s model, although providing a self-consistent
injection fraction, still requires some initial tuning.

Finally we note that the actual fate of CR-dominated
shocks might depend on geometry effects too. For the sake
of (both numerical and physical) simplicity we have consid-
ered here piston-driven shocks in slab geometry, this work
shall now be extended to supernova-like shocks in spherical
symmetrical geometry. We also recall that all this results
were obtained with a numerical momentum box limited to
log(pmax) = 1.5. Thus their validity depends the assump-
tion that CR accelerated to higher energies: (i) don’t have a
major impact on the final shock structure (and thus on the
spectrum shape at lower energies); (ii) have enough time to
escape from the system between two shocks. Another more
fundamental assumption on which we rely (as all other stud-
ies of that kind) is that the inertia of the CR is negligible.
Although reasonable for sDSA this might be questionable for
mDSA because of the cumulative effect of shocks. However
we note that the higher the injection fraction, the lower the
number of shocks that we actually run. And we have checked
that the ratio ρcr/ρ remains always below 10 % in all our
non-linear simulations.
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Figure 13. Evolution of the number of shocks N (up to 30) that
reach a quasi-steady state before complete smoothing and of the
range of final CR spectra slopes −s as a function of the injection
fraction η in the non-linear case (see section 4.3.4 for details).

5 CONCLUSION

We have presented a new code aimed at the simulation of
time-dependent non-linear diffusive shock acceleration. It is
based on the kinetic approach, coupling the hydrodynamical
evolution of the plasma with the diffusive transport of the
distribution function of the supra-thermal particles. As such
it falls under the legacy of the pioneers (Falle & Giddings
1987, Duffy 1992) and of the masters (Kang & Jones 1991,
Kang et al. 2001) of the genre. As the CRASH code it im-
plements an efficient AMR technique to deal with the huge
range of space- and time-scales induced by CR diffusion of
Bohm-like type. To save even more on computing time we
have also parallelized our code in momentum so that we can
study acceleration by multiple shocks as fast as accelera-
tion by a single shock. However in many aspects (high-Mach
flows, shock tracking, self-consistent injection) our code re-
mains numerically simpler than CRASH – which can be
both a limitation and an advantage. Regarding the physics
we note that various mechanisms of importance could be
included in the code: self-consistant diffusion coefficient
(adding magnetic waves transport), second-order Fermi ac-
celeration (especially between multiple shocks), electrons ac-
celeration (adding radiative losses), CR radiation (hadronic
and leptonic). . .

We have presented a few tests that show that our code
works well, with respect to both the physical accuracy and
the numerical efficiency, even in realistic difficult situations.
We are now able to investigate in details the various as-
pects of the DSA mechanism, which 30 years after its early
developments still poses some difficulties. In particular we
can address the non-linear multiple DSA mechanism, which
we believe hasn’t received so far all the attention it deserves.
Our very first results suggest that the injection fraction plays
a crucial role. We intend now to study in more details the
situation in superbubbles.
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