
HAL Id: hal-00177670
https://hal.science/hal-00177670

Submitted on 8 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reuse Design and Test using Object-Oriented
Hierarchical Models Libraries
Fabrice Bernardi, Jean-François Santucci

To cite this version:
Fabrice Bernardi, Jean-François Santucci. Reuse Design and Test using Object-Oriented Hierarchical
Models Libraries. SCS Summer Computer Simulation Conference (SCSC04), Aug 2004, San Jose,
United States. pp. 475-480. �hal-00177670�

https://hal.science/hal-00177670
https://hal.archives-ouvertes.fr


Reuse Design and Test using Object-Oriented

Hierarchical Models Libraries

Fabrice Bernardi Jean-François Santucci
University of Corsica, SPE Laboratory

Quartier Grossetti, BP 52, 20250 Corte, France
{bernardi, santucci}@univ-corse.fr

ABSTRACT

We introduce in this paper an object-oriented VHDL De-
sign and Test library in which are saved all the descriptions
and testbenches developed during the Design and Validation
phases. The design of complex manufactured systems is a
task requiring a lot of time to be achieved. One way to speed
up this task is to develop methodologies for creating highly
reusable components and assisting the reuse process in the
design and test phases. A set of recent works has recently
dealt with reusable concepts and libraries in the VHDL De-
sign and Test area. The originality of our approach lies in
the facts that it is based on a strong notion of genericity of
use, and on notions like the inheritance and abstraction links
between the stored descriptions. We describe how managing
inheritance between stored models can improve their classifi-
cation and their accuracy, and how the abstraction hierarchy
allows to describe a same model at various detail levels.

Keywords: Design, Test, Library, Object-Oriented, Reuse,
Hierarchical

INTRODUCTION

The design of complex manufactured systems is a task re-
quiring a lot of time to be achieved. One way to speed up this
task is to develop methodologies for creating highly reusable
components and assisting the reuse process in the design and
test phases. Usually, design tools are associated with libraries
of reusable modeling components [2, 3, 12]. Storing mod-
els in a common generic library has several benefits. First,
the genericity of this storage service can be offered to various
modeling and simulation environments. Second, a common
library allows environments to share information so they can
interact each other, and third, modeling components can be
shared by several users. This last point is the most important
since it allows a design team enabling an efficient collabora-
tive work.

A set of recent works has recently dealt with reusable con-

cepts and libraries in the VHDL Design and Test area. The
definition of the basic elements (VHDL descriptions and test-
benches) is a very important part of reuse oriented Design and
Test process. The elements are normally defined in terms of
concepts which are specific to the class of elements or test-
benches for which the model is used. These definitions are
generally stored in a library. When an element occurs in a
VHDL or testbench description, its definition is copied from
the library and placed in the context of the model. Thus an
element once defined and placed in the library, can be used as
often as required without having to be redefined.

To facilitate the reusability of components, management
systems of libraries should provide a nice way to store com-
ponents and testbenches in order to facilitate the access to
components and testbenches, to offer a classification allow-
ing to avoid a memory loss and to propose an elegant way
to put stored elements in the context of a particular design.
The problems derived from the previous requirements are (1)
How to integrate the different levels of abstraction involved in
VHDL design (Algorithmic level, RT Level, Gate level, Tran-
sistor level) in the framework of the same library ? (2) How
to efficiently associate testbenches to VHDL descriptions ?
(3) How to provide inheritance between VHDL descriptions
or testbenches ? (4) How to facilitate the retrieval of descrip-
tions and testbenches ?

We introduce in this paper an object-oriented VHDL De-
sign and Test library in which are saved all the descriptions
(which can be seen as models) and testbenches developed
during the Design and Validation phases. This library con-
tains the components which may be used in VHDL descrip-
tions at different levels of abstraction. A full description of
these components can be specified just once by a designer
and stored in the library. The basic strategy is to provide
the four distinct levels of abstraction of a same component
with the library framework. Furthermore the designer may
define appropriate intermediate models allowing to provide
an inheritance between models. As elements must be defined
according to two kinds of domains (VHDL descriptions or

SCSC '04 475 ISBN: 1-5655-283-0

mailto:bernardi@univ-corse.fr, santucci@univ-corse.fr


Testbenches) and for each level of abstraction, it follows that
separate domains must also be built for each type of elements
and level of abstraction. The proposed library is based on a
hierarchical organization of concepts. The leaves of the hi-
erarchical structure represent the elements which can be used
in model descriptions. Information concerning the elements
can be placed at the appropriate level in the hierarchy, thus,
eliminating needless repetition when the elements are being
defined.

The originality of our approach lies in the facts that it is
based on a strong notion of genericity of use, and notions like
the inheritance and abstraction links between the stored mod-
els. We describe how managing inheritance between stored
models can improve their classification and their accuracy,
and how the abstraction hierarchy allows to describe a same
model at various detail levels.

The paper is organized as follows. Section 2 presents the
basics concepts of the VHDL Design and Test. Section 3 in-
troduces the basic concepts of the object oriented approach
for defining a hierarchical library. Section 4 presents the ar-
chitecture we defined for a VHDL Design and Test library.
Section 5 presents our web-based implementation of the li-
brary. Finally, section 6 concludes this paper and provides
some perspectives of work.

ABSTRACTION HIERARCHY AND HDL
DESIGN FOR TEST

One of the most difficult tasks in the field of design of com-
plex systems is to choose a good level of detail. In all scien-
tific domains, models are built at a precise abstraction level.
The abstraction level of a model determines the amount of
information that is contained in the model. The quantity of
information in a model decreases with the abstraction levels:
a model described at a low abstraction level will contain more
information than a model described at a higher abstraction
level (Figure 1).

P2

P1

P1’

P2’

Model M

Model M

Abstraction Level n

Abstraction Level n−1

Figure 1: Abstraction hierarchy.

P. Benjamin claims that “determining the correct abstrac-
tion level refers to selecting the quantum of information that
must be included in the model to help address the modeling

goals” [4]. So, well defining the abstraction level is an impor-
tant step in design. A model described according to several
abstraction levels is said a “hierarchical model”. Digital de-
signers employ a set of abstraction levels:

• System level: the system is described using a natural lan-
guage;

• Algorithmic level (also called System level): the system
is described using natural language and an algorithmic
description (like C language);

• RTL (Register Transfer Level): explicit definition of all
state-holding elements;

• Gate level: all high level constructs (if, case,...) are con-
verted to gates;

• Transistor level: all are converted with nmos, pmos,...

• Layout/Silicon level: final picture of the circuit.

The Silicon level is the lowest level in the hierarchy, the
System level the highest. One can represent a design at any of
these levels.

VHDL is an Hardware Description Language (HDL, [1,
10]) and can be defined as a high-level programming language
with specialized constructs for modeling hardware. It is used
to provide the description in the Algorithmic, RTL, Gate and
Transistor levels.

An HDL testbench is a program that describes simula-
tion input using standard HDL language procedures. Sim-
ply speaking, the test bench is a top level hierarchical model
which instantiates the Unit Under Test (UUT) and drives it
with a set of test vectors and compares the generated results
with expected responses. A typical VHDL or Verilog test
bench is composed of three main elements: a Stimulus Gener-
ator, driving the UUT with certain signal conditions (correct
and incorrect transactions, minimum and maximum delays,
fault conditions, etc.), an Unit Under Test (UUT), represent-
ing the model undergoing verification and a Verifier, automat-
ically checking and reporting any errors encountered during
the simulation run. It also compares model responses with
the expected results.

OBJECT-ORIENTED HIERARCHICAL

MODELS LIBRARIES

Object-Oriented Architecture of the Models Li-
brary

We define, in order to be as precise as possible, two notions:
“context-in” and “context-out” models. A context-out model

SCSC '04 476 ISBN: 1-5655-283-0



is an abstraction of a model. It presents a structure allowing
it to be stored in a models library. A context-in model is a
context-out model extracted from a library and formatted so
as to be directly reusable in its environment.

Building a models library is as creating a high level repre-
sentation of the models and their relations. In order to meet
the requirements stated above, we define five objects likely
to be stored in a Library object. First of all, a Domain cor-
responds to the theoretical domain of the stored models (Ex:
DEVS Simulation, High Level Synthesis, VHDL Test). Inside
Domains, an Application Domain corresponds to the applica-
tion domain of the considered models (Ex: Microelectronic,
Energetic). A Classification Intermediate Model (CIM) be-
longs to an Application Domain and allows creating a classi-
fication hierarchy between the storage objects. This kind of
model is not a storage model. An Inheritance Intermediate
Model (IIM) is a storage model allowing the share of charac-
teristics with its children through an inheritance mechanism.
Finally, a Model File represents a context-out model. It is
the basic storage element of the library. We can note that the
documentation of the model is included as an attribute of this
object.

Library

Domain

ApplicationDomain

ClassificationIntermediateModel

ModelFile

InheritanceIntermediateModel
Contains

0..1

0..*

0..1

Contains

0..*

Figure 2: Links between elements.

Figure 2 presents the relations existing between all these
objects. We can note that we defined two types of storage
objects (Model Files and Inheritance Intermediate Models).
An Inheritance Intermediate Model can not contain directly a
Classification Intermediate Model, since its children must be a
storage object (Model Files or other Inheritance Intermediate
Models) for the sharing of properties using the inheritance
mechanism.

All these objects are associated in a library with a key. As in
a relational database, this key is unique in all the storage space
and is used in order to allow the definition of links between
the various stored objects.

Abstraction Hierarchy

We defined previously the abstraction level of a model as
a level of details. We saw also that a model described at a
low abstraction level presents more informations than a same
model described at a higher level. In our case, only model
files can be associated with an abstraction level. In order to
manage this hierarchy, we introduce the notion ofabstraction
matrix. The values of this square matrix are composed by the
difference between the two abstraction levels of two models.
If models are the same, the value is “0”, the same as if they
have no “abstraction relationship”.

Let ΩLi be the abstraction matrix associated to the library
Li , and letωj ,k be one of its elements. Ifm fi, j andm fi,k are
two model files, and ifni, j andni,k are their respective abstrac-
tion levels,we have:

ΩLi =




0 · · · ω1,k · · · · · · ωNMF ,i
... 0

...
...

... 0 ωk, j
...

ωj ,1 · · · ωj ,k 0
...

... 0
...

ωNMF ,i · · · · · · · · · · · · 0




with : ωj ,k =





0, if j = k
0, if m fi, j andm fi,k are not linked
ni, j −ni,k, if m fi, j andm fi,k are linked

We can also write:ωj ,k =−ωk, j .
Moreover, we define the following relation:∀ i, j,k, we

haveωi, j 6= ωi,k or ωi, j = ωi,k = 0. That means that a same
value different from “0” can not appear two times on a same
line of the matrix. Thus, an abstraction level defines an unique
relationship between two models.

Storage Independence Management

One of the most important objectives of a models library,
as defined in this paper, is to be independent from the stor-
age mode. That means that a library must be able to store
fundamentally different models coming from fundamentally
different modelling and simulation environments. This inde-
pendence implies that we must dissociate the contents from
the format of the stored models, and also that the communica-
tion interfaces of a library with the external applications must
be identical for all kinds of models.

The storage independence of the library is performed using
a “Domain Parser”. We call Domain Parser an object able to
be used in two distinct modes, and able to analyze or to create
a file that describes a context-in model. A Domain Parser re-
lies upon a separation methodology of the extent of the model

SCSC '04 477 ISBN: 1-5655-283-0



from its description format. Thus, the selected approach con-
sists in defining a separation methodology for each domain in
a library. Using such a methodology, a Domain Parser allows
the user to transform a context-in model to a context-out one.
The main advantage of this approach is that, never mind the
model is, it can be placed context-out. Our implementation of
a Domain Analyzer is based on the Builder Design Pattern [7]
used in order to “separate the construction of a complex object
from its representation so that the same construction process
can create different representations”. In our implementation,
we use the XML language in order to define context-out mod-
els [13, 5].

Inheritance Hierarchy Management

In order to avoid a properties repetition inside a same kind
of models, a models library must deal with an inheritance be-
tween the stored models. This inheritance between a parent
model and its children allows to store these shared proper-
ties inside some special models (parent models), dramatically
simplifies the children models, and facilitates the maintenance
of the whole library. Furthermore, this inheritance hierarchy
inside a library provides all the classical benefits of object in-
heritance: automatic properties transmission, methods over-
loading if components are described using algorithmic func-
tions. For R.C Rosenberg, “the importance of a good models
library is that the model designer can be supplied with reason-
able alternatives” [11]. The choice between these alternatives
can be strongly facilitated if the inheritance hierarchy is struc-
tured in a smart way. In our architecture, the management of
inheritance between models is performed using the character-
istics of XML. For instance, a ModelFile will inherit a part
of its description from an IIM only using a tag substitution or
adding.

THE DESIGN AND TEST LIBRARY

Structure of the Library

In order to take into account all the specificities of this kind
of libraries, we introduce two new objects. The first of them
is an object called “Bench” and is a specialization of the Mod-
elFile object (in the UML meaning [6]). This object includes
a new attribute called “results” containing the results of the
bench (Figure 3). We use this class instead of the ModelFile
in the “Testbench” branch. The second object we introduce is
called the “testbench matrix”. This matrix is built in a strictly
identical way than the abstraction matrix. A design is asso-
ciated with its corresponding testbench using integer values.
The only difference in this case is that these values can be
only boolean values since there is no test hierarchy.

documentation: File

results: File

ModelFile

Bench

Figure 3: The Bench object.

The first step in order to define our storage architecture us-
ing the previously defined notions is to define an element Li-
brary. Let’s call it “Design & Test”. Then, we have to de-
fine the domains able to be stored in this library. Let’s create
the “DEVS”, “VHDL” and “Verilog” domains. Using this ap-
proach, we are able to store two different formats in a single
library. From now, we focus only on the VHDL domain.

The next step is to define application domains linked to the
domains. We choose here to define two different application
domains: “design” and “testbench”. In the first one, we will
store the VHDL code describing a design, while in the sec-
ond one, we will store the corresponding testbenches. We see
here a first link between stored elements. We call it a “test
link”. We saw previously that a description can occur at four
different levels. Following this point, we define four CIMs in-
side the two application domains. We see here a second link
between stored models concerning the abstraction hierarchy.
We call it an “abstraction link”.

Figure 4 presents this architecture. We added two Inheri-
tance Intermediate Models (“RAM” and “ROM”) allowing a
sharing of some properties between their respective children.
What is important in this figure is that we can illustrate the
links betweens the elements. “RAM1.1” and “RAM1.2” are
linked by abstraction. That means that they represent the same
system described at two different abstraction levels (respec-
tively RTL level and Algorithmic level). “RAM1.1” is also
test-linked with “RAM1.3”. That means that, starting from
the key of RAM1.1, we can find immediately its associated
testbench.

Format of a Stored Description

In order to illustrate how a HDL description is stored inside
a ModelFile element (and also a Bench element), let’s take
the example of a counter. A very simplified code can be the
following:

library IEEE;
use IEEE.std_logic_1164.all

SCSC '04 478 ISBN: 1-5655-283-0



Design & Test

DEVS VHDL Verilog

Design Testbench

Algorithmic GateGate TransistorTransistor

RAM

RAM1.1

RTL

ROM RAM

RAM1.2RAM2.2 RAM1.3

Algorithmic

Abstraction Link

Test Link

RTL

RAM

Library

Domains

Application Domains

IIMs

CIMs

Model Files

Figure 4: Architecture of the design and test library.

ENTITY counter
PORT(clk, en, clr: IN std_logic;
rco: OUT std_logic;
q: OUT INTEGER RANGE 0 TO 9);

END counter;

ARCHITECTURE behav OF counter IS
SIGNAL cnt: INTEGER RANGE 0 TO 9;
BEGIN

...
END behav;

This description is clearly divided in three parts: the header
and the ENTITY and ARCHITECTURE declarations. In this
case, the Domain Parser is configured so as to be able to rec-
ognize these parts. Once they are identified (following some
keywords like ENTITY or constructions like “END *;”), it
will transform this context-in description in a context-out one
using the XML language as follows:

<?xml version="1.0" encoding "UTF-8">
<Description key=12345 Name=counter>

<header>
library IEEE;
use IEEE.std_logic_1164.all

</header>

<entity>
ENTITY counter
PORT(clk, en, clr: IN std_logic;
rco: OUT std_logic;
q: OUT INTEGER RANGE 0 TO 9);
END counter;

</entity>
<architecture>

ARCHITECTURE behav OF counter IS
SIGNAL cnt: INTEGER RANGE 0 TO 9;
BEGIN

...
END behav;

</architecture>
</Description>

Since testbenches are written in VHDL, the same Domain
Parser can be used for this kind of descriptions.

This XML description can then be associated with a Mod-
elFile instance and stored in a Library instance.

WEB-BASED IMPLEMENTATION

Kuljis and Paul claim that the web “can serve as an operat-
ing system, and as a distribution channel for applications” [8].

SCSC '04 479 ISBN: 1-5655-283-0



They note that the main characteristics of the web are: ease
of navigation and use, ease of publishing content, new dis-
tribution models and enabling of a nework-centric computing
paradigm. Our Libraries Architecture is built on a core stor-
age engine, and provides a set of interfaces enabling a remote
access. This is one of the main features of our approach since
it allows a design team to work on the same models stored on
a storage server. The basic idea is that the storage engine is
running on a server and that the client access the models us-
ing a Web browser or directly from the environment upon a
local network or even over the Internet, following the classi-
cal 3-tiers architecture. Clients do not need to know how the
models are stored on the server, they should only access them
for consulting, adding or removing them. We performed the
implementation of these concepts using the Java language and
we wanted to provide to the final user the easiest way to access
the models libraries remotely. So, we used a servlet/applet ap-
proach for the remote part of our work. A servlet [9] is a Java
program running on a Web server accept-ing requests from
a client, performing some tasks and returning the result, and
an applet is a Java program running in the client browser and
allowing it to dialog with the server.

CONCLUSION AND PERSPECTIVES OF

WORK

This paper presents an efficient approach for reuse oriented
Design and Test of digital systems. This work is based upon
the concepts of hierarchical object oriented libraries. We pre-
sented here a library architecture used for storing, accessing
and reusing VHDL descriptions and associated testbenches.
The implementation is based on the one hand on the use of
object oriented paradigms and on the other hand on the use of
XML. Using such an architecture is helpful in two situations.
First, the designer can reuse the stored designs directly in their
simulation environment using the Domain Parser. Secondly,
he can build a new testbench and compare the results with
those already stored.

The future orientations of our research work will deal with
the following points :

• Integration of the work presented in this paper in a more
general framework allowing a web oriented use of a
VHDL design and Test library;

• Definition of a software tool allowing testbenches to
be automatically derived for an interconnection of basic
VHDL components from a set of individual testbenches
stored in a library and associated with basic components.

References

[1] P. Ashenden.The Designer Guide to VHDL. Morgan
Kaufmann Publishers, 2001.

[2] O. Balci, A. Bertelrud, C. Esterbrook, and R. Nance. De-
veloping a Library of Reusable Model Components by
Using the Visual Simulation Environment. InProceed-
ings of the SSC’97, 1997. San Diego, CA, USA.

[3] D. Batory and S. O’Malley. The Design and Implemen-
tation of Hierarchical Software Systems with Reusable
Components.ACM Transactions on Software Engineer-
ing and Methodology, 1992.

[4] P. Benjamin, J. Erratungla, D. Delen, and R. Mayer.
Simulation Modeling at Multiple Levels of Abstraction.
In Proceedings of WSC’98, 1998.

[5] G. Bierman.Using XML as an Object Interchange For-
mat. ODMG, Object Data Management Group, 2000.

[6] G. Booch, J. Rumbaugh, and I. Jacobson.The Uni-
fied Modeling Language User Guide. Addison-Wesley,
1998.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign Patterns, Elements of Reusable Object-Oriented
Software. Addison-Wesley, 2002.

[8] J. Kuljis and R. Paul. A Review of Web-Based Simu-
lation: Wither We Wander ? InProceedings of WSC
2000, 2000.

[9] K. Moss. Java Servlets, Second Edition. McGraw-Hill,
1999.

[10] D. Pellerin and D. Taylor.Vhdl Made Easy !Prentice-
Hall PTR, 1997.

[11] R. Rosenberg. The Bond Graph as an Unified Database
for Engineering System Design.Journal of Engineering
for Industry, 97, 1975.

[12] A. Stritzinger. A Component-Based Modeling Ap-
proach. InProceedings of WOON’96, 1996.

[13] W3C Consortium.Extensible Markup Language (XML)
1.0, 1998.

SCSC '04 480 ISBN: 1-5655-283-0


	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	Reuse Design and Test using Object-Oriented Hierarchical Models Libraries
	ABSTRACT
	Keywords: 
	INTRODUCTION
	ABSTRACTION HIERARCHY AND HDL DESIGN FOR TEST
	OBJECT-ORIENTED HIERARCHICAL MODELS LIBRARIES
	Object-Oriented Architecture of the Models Library
	Abstraction Hierarchy
	Storage Independence Management

	THE DESIGN AND TEST LIBRARY
	Structure of the Library
	Format of a Stored Description

	WEB-BASED IMPLEMENTATION
	CONCLUSION AND PERSPECTIVES OF WORK
	References




