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PSEUDOCONVEX REGIONS OF FINITE D’ANGELO TYPE IN FOUR DIMENS |ONAL
ALMOST COMPLEX MANIFOLDS

FLORIAN BERTRAND

ABSTRACT. Let D be aJ-pseudoconvex region in a smooth almost complex manifdld.J) of real dimen-
sion four. We construct a local peakplurisubharmonic function at every poipte bD of finite D’Angelo
type. As applications we give local estimates of the Kobhypseudometric, implying the local Kobayashi
hyperbolicity of D atp. In case the poinp is of D’Angelo type less than or equal to four, or the appro&ch
nontangential, we provide sharp estimates of the Kobaysshidometric.

INTRODUCTION

Analysis on almost complex manifolds recently became adorehtal tool in symplectic geometry with
the work of M.Gromov in [15]. The local existence of pseudohworphic discs proved by A.Nijenhuis-
W.Woolf in their paper [21], allows to define the Kobayastepdometric, which is crucial for local analysis.

In the present paper we study the behaviour of the Kobayashiqometric of a/-pseudoconvex re-
gion of finite D’Angelo type in an almost complex manifold/, J) of dimension four. Finite D’Angelo
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type appeared naturally in complex manifolds when considethe boundary behaviour of tiieoperator
(see [7],[8],[18],[4]). Moreover on complex manifolds daftension two, the D’Angelo type unifies many
type conditions as the finite regular type. Finite regulg@etyas recently characterized intrinsically by J.-
F.Barrault-E.Mazzilli [1] by means of Lie brackets, whicbrgralizes in the non integrable case, a result of
T.Bloom-1.Graham [4].

Our main result is the construction of a local pe&ablurisubharmonic function on pseudoconvex regions
provided by Theorem A (see also Theorem 2.6):

Theorem A. Let D = {p < 0} be a domain of finite D’Angelo type in an almost complex mé&hifd/, .J)
of dimension four. We suppose thads aC? defining function oD, .J-plurisubharmonic on a neighborhood
of D. Letp € 9D be a boundary point. Then there exists a local pégiurisubharmonic function gt.

Theorem A allows to localize pseudoholomorphic discs anabtain lower estimates of the Kobayashi
pseudometric which provide the local Kobayashi hyperligliof .J-pseudoconvex regions of D’Angelo
type 2m (Proposition 3.4 and Proposition 3.10). As an applicatianpsove thel /2m-Holder extension
of biholomorphisms up to the boundary (Proposition 3.9)odder to obtain sharp lower estimates of the
Kobayashi pseudometric similar to those given in complexifolds by D.Catlin [5] (see also [3]), we
consider a natural scaling method. However this reveal$attehat for a domain of finite D’Angelo type
greater than four, the sequence of almost complex strigtreined by any polynomial scaling process
does not converge generically to the standard structuig;ighpresented in the Appendix. This may be
related to the fact that finite D’Angelo type is based on pummplex considerations, as the boundary
behaviour of the Cauchy-Riemann equations. Hence we masharp lower estimates of the Kobayashi
pseudometric for a region of finite D’Angelo type four (sescalheorem 4.1):

Theorem B. Let D = {p < 0} be a relatively compact domain of finite D’Angelo type lessitbr equal
to four in an almost complex manifo(d/, J) of dimension four, wherg is aC? defining function oD, .J-

plurisubharmonic on a neighborhood Bf. Then there is a positive constafitwith the following property:
for everyp € D and everyv € T),M there exists a diffeomophisti,- in a neighborhood’ of p, such that:

d@* d@a«
K(DyJ)(pW)zC(Hp pv)1|+|(p pv)2|>.

p(p) |5 P (p)]

We point out that the approach we use, based on some renpatiaii principle of pseudoholomorphic
discs, gives also a different proof of precise lower estawaibtained by H.Gaussier-A.Sukhov in [12]
for strictly J-pseudoconvex domains in arbitrary dimension. As an agiidic of Theorem B, we obtain
the (local) complete hyperbolicity af-pseudoconvex regions of D’Angelo type less than or equéduo
(Corollary 4.5) and we give a Wong-Rosay theorem for regiwith noncompact automorphisms group
(Corollary 4.6).

Finally, in order to obtain precise estimates near a poiatlitrary finite D’Angelo type, we are interested
in the nontangential behaviour of the Kobayashi pseudam(iee also Theorem 4.7):

Theorem C. Let D = {p < 0} be a domain of finite D’Angelo type in an almost complex mé&hifd/, .J)
of dimension four, wherg is a C? defining function ofD, J-plurisubharmonic on a neighborhood &f.
Letg € 0D be a boundary point of D’Angelo ty@sn and letA C D be a cone with vertex at and axis
the inward normal axis. Then there exists a positive coristasuch that for every € D N A and every
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Up, v
K(D,J>(p,v)2c< [0n] n vy )

v=v, +vy € T,M:

lp(p)|zn 1o (D)
wherev,, and v, are the normal and the tangential partsofvith respect ta;.

1. PRELIMINARIES

We denote byA the unit disc ofC and byA,. the disc ofC centered at the origin of radius> 0.

1.1. Almost complex manifolds and pseudoholomorphic discsAn almost complex structuré on a real
smooth manifoldM is a(1, 1) tensor field which satisfie? = —Id. We suppose thal is smooth. The
pair (M, J) is called aralmost complex manifoldVe denote by/,, the standard integrable structure ©f

for everyn. A differentiable mapf : (M’,J') — (M, J) beetwen two almost complex manifolds is said
to be(.J’, .J)-holomorphicif J (f (p)) o d,f = d,f o J' (p), for everyp € M'. In caseM’ = A C C, such

a map is called aseudoholomorphic disdf f : (M, J) — M’ is a diffeomorphism, we define an almost
complex structuref,.J, on M’ as the direct image of by f :

Fed (@) = dpagfo T (f71 (@) odgf ™,

for everyq € M'.
The following lemma (see [12]) states that locally any altramsnplex manifold can be seen as the unit
ball of C* endowed with a small smooth pertubation of the standardjiiabde structure/,;.

Lemma 1.1. Let (M, J) be an almost complex manifold, with of classC*, k > 0. Then for every
point p € M and every)\, > 0 there exist a neighborhood of p and a coordinate diffeomorphism
z : U — B centered ap (ie z(p) = 0) such that the direct image of satisfiesz,.J (0) = Jg and
|2 (J) — JstHck(@) < Xo.

This is simply done by considering a local chartU — B centered a (ie z(p) = 0), composing it with
a linear diffeomorphism to insure.J (0) = J,; and dilating coordinates.

So letJ be an almost complex structure defined in a neighbortidad the origin inR?"?, and such that
J is sufficiently closed to the standard structure in unifolwnm on the closuré&’ of U. The.J-holomorphy
equation for a pseudoholomorphic disc A — U C R?" is given by

ou ou
According to [21], for everyp € M, there is a neighborhooll of zero in7, M, such that for every
v € V, there is a/-holomorphic disa: satisfyingu (0) = p anddyu (9/0x) = v.

(1.1)

1.2. Levi geometry. Let p be aC? real valued function on a smooth almost complex manifdid .J) . We
denote byip the differential form defined by

S (v) = —dp (Jv),
whereuv is a section of"A/. TheLevi formof p at a pointp € M and a vectow € T),M is defined by
Lyp(p,v) == d(djp) (p) (v, J(p)v) = ddjp(p) (v, J(p)v) .

In case(M, J) = (C", Jg), thenL,,pis, up to a positive multiplicative constant, the usual dead Levi
form :
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We investigate now how close is the Levi form with respect foom the standard Levi form. Fgre M
andv € T,M, we easily get :

1.2)  Lyp(p,v) =Ly, p(p,v) +d(d] —dj,,)p(p)(v, J(p)v) + ddj,, p(p)(v, J(p) — Jst)v).

In local coordinatesty, to, - - - ,to,) of R?", (1.2) may be written as follows

Lip(p,v) = Ly,pp,v)+"v(A="A)T(p)v+"(J(p) — Jst)vDJsv +
(1.3) t(J(p) — Ja)vD(J(p) — Js)v
where

Ou 0.J; 0%u
A= - b and D := <7> .
(zz: Oti Oty >1<j k<2n atjatk 1sjks2n

Let f be a(.J’, J)-biholomorphism from(A/’, J') to (M, J). Then for every € M and every € T,M:
Lyp(p.v)=Lypo f7(f(0),dpf (v)).

This expresses the invariance of the Levi form under psehdtdmorphisms.
The next proposition is useful in order to compute the Lewurfgsee [10], [16] and [17]).

Proposition 1.2. Letp € M andv € T,,M. Then
Lp(p,v) =A(pou)(0),
whereu : A — (M, J) is anyJ-holomorphic disc satisfying (0) = p anddyu (0/0,.) = v.
Proposition 1.2 leads to the following proposition-deforit :

Proposition 1.3. The two statements are equivalent :

(1) p o uis subharmonic for any-holomorphic disa: : A — M.
(2) Lyp(p,v) > 0for everyp € M and every € T,M.

If one of the previous statements is satisfied we say et/ -plurisubharmonic We say thap is strictly
J-plurisubharmonicif £;p(p, v) is positive for anyp € M and anyv € T,M \ {0}. J-plurisubharmonic
functions play a very important role in almost complex getigne they give attraction and localization
properties for pseudoholomorphic discs. For this reaserctimstruction of/-plurisubharmonic functions
is crucial.

Similarly to the integrable case, one may define the notigosefidoconvexity in almost complex mani-
folds. LetD be a domain i{}M, .J). We denote byi™/ 0D := TOD N JTAD the J-invariant subbundle of
ToD.

Definition 1.4.
(1) The domainD is J-pseudoconvex (resp. it strictly-pseudoconvex) it ;p(p,v) > 0 (resp. > 0)
foranyp € 9D andv € TpJaD (resp.v € TpJaD \ {0}).
(2) A J-pseudoconvex region is a domald = {p < 0} wherep is aC? defining function,.J-
plurisubharmonic on a neighborhood bf

We recall that a defining function fdp satisfiesip # 0 on9oD.
The following Lemma is useful in order to compute the Levinfioof some functions.
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Lemma 1.5. Assume that is a diagonal almost complex structure B that coincides with the standard
structure.J onC x {0}. To fix notations we suppose that its matricial represeatets given by :

aq bl 0 0
c1 —aq 0 0
0 0 as bg
0 0 Coy —a2

J =

Then the Levi form of some smooth real valued funcfiat a pointz = (z1,22) andv = (1,0,0,0) is
equal to

Lif(z,v)=—ciAif + 0O (|z2])).
0% f . 0% f
0x10x1 0y1011 '

Proof. Let us compute the Levi form of some smooth real valued foncfi at a pointz = (z1, z2) and
v=(1,0,0,0) :

whereA; f :=

_ >*f O*f >*f
1 = —A -2 1 -1
i Lyf(z,0) 1of + { 3x18y1a1+ axlaxl( +b1)+ 300 (c1 )} +
of [0 _ow] o [om o
Oxy |0xy  Oy1]  Oy1 [Ox1 Oy
o2 f 021 0 f
= —Aif+ {_28:::16@/10('22') + MOOZQ') + MOU@D} +
of aof
8x10(|Z2|) + ay10(|22|)
= —A1f+0(|z]).

2. CONSTRUCTION OF A LOCAL PEAK PLURISUBHARMONIC FUNCTION

This section is devoted to the proof of Theorem A (see The@&n

2.1. Pseudoconvex regions of finite D’Angelo typeln this subsection we describe a pseudonconvex re-
gion on a neighborhood of a boundary point of finite D’Angegflpd. We point out that all our considerations
are purely local. Assume thd& = {p < 0} is a.J-pseudoconvex region i6? and that the structurd is
defined on a fixed neighborhodd of D. We suppose that the origin is a boundary poinbof

Definition 2.1. Letu : (A,0) — (R4,O,J) be a.J-holomorphic disc satisfying (0) = 0. The order of
contactdy (0D, u) with 9D at the origin is the degree of the first term in the Taylor exgp@mofp o u. We
denote by (u) the multiplicity of v at the origin.

We now define the D’Angelo type and the regular type of the mgpkrsurfaceé D at the origin.
Definition 2.2.
(1) The D’Angelo type oD at the origin is defined by:
00 (0D, u)
6 (u)
The point0 is a point of finite D’Angelo typem if A! (0D,0) = 2m < +oo.

Al (0D,0) := Sup{ s Ut A — (R“, J) J-holomorphic, u (0) = 0} .
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(2) The regular type odD at origin is defined by:
Al (0D,0) = sup{dy (9D, u), u: A — (R*,J) J-holomorphic,
u(0) = 0,dou # 0}.

Since the regular type @fD at the origin consists in considering only regular discs aeeh
(2.1) Al (0D,0) < A1 (0D,0).

reg

The type condition as defined in part 1 of Definition 2.2 wasoaticed by J.-P.D’Angelo [7], [8] who

proved that this coincides with the regular type in complenifolds of dimension two. After Proposition
2.3, we will also prove that the D’Angelo type and the regujgore coincide in four dimensional almost
complex manifolds (see Proposition 2.4).

We suppose that the origin is a point of finite regular typeetetu : A — R* be a regular/-
holomorphic disc of maximal contact ordem. We choose coordinates such thais given byu (¢) =
(¢,0), J (21,0) = Jg and such that the complex tangent sp@ag8D N J(0)T,0D is equal to{ze = 0}.
Then by considering the family of vectof$, 0) at base point$0, ¢) for ¢ # 0 small enough, we obtain a
family of J holomorphic discs:; such that., (0) = (0,¢) anddyu; (0/9,) = (0,1). Due to the parameters
dependance of the solution to thieholomorphy equation (1.1), we straighten these discsth@aomplex
lines{z2 = t}. We then consider a transversal foliation J/sholomorphic discs and straighten these lines
into {z; = ¢}. In these new coordinates still denoted)yhe matricial representation dfis diagonal:

aq b1 0 0
c1 —a 0 0
0 0 as bg
0 0 Cy —a9

2.2) J =

SinceJ (z1,0) = Js we have
(2.3) J=Jst + 0 (|z2]).
In the next fundamental proposition we describe precidedcal expression of the defining functipn

Proposition 2.3. The J-plurisubharmonic defining function for the domaihhas the following local ex-
pression:

p=Reza + Hap (21,71) + H(21,22) + O (|21 + |22 || + |22]%)
whereHs,, is a homogeneous polynomial of deggee, subharmonic which is not harmonic and

m—1
H(z,22) = Re Z prztzo.
P

Proof. SinceTp0D N J(0)Tp0D = {z2 = 0}, we have
p=Rez + O(|2]]2).

Moreover the dis¢ — (¢, 0) being a regula/-holomorphic disc of maximal contact ordem, the defining
function p has the following local expression:

p = Rezy + Hop (21,71) + O (|2 "™ + |22][|2])) ,

whereHs,, is a homogeneous polynomial of degtee.
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We prove that the polynomiall,,, is subharmonic using a standard dilation argument. Congiae

non-isotropic dilation ofC?
As (z1,22) :== (cfﬁzl,&_lzz) .
Due to Proposition 1.2, the domain
As (D) = {671 (p o Agl (#1, 22)) <0}
is (As), (J)-pseudoconvex. Moreovek; (D) converges in the sense of local Hausdorff set convergence to
D :={Re(z2) + Hom (21,71) < 0},

aso tends to zero and the sequence of structifgs, .J converges to the standard structute. It follows
that the limit domainD is Js-pseudoconvex implying thdis,, is subharmonic.

Now we proveH,, that contains a nonharmonic part. By contradiction, werassthhatH,,, is harmonic.
Then Hy,,, can be writteriRez?™. According to Proposition 1.1 of [17], and since the struetiiis smooth
there exists, for a sufficiently small > 0, a pseudoholomorphic disc : A — (R?,.J) such that:

u (0) = 0

% 0 = (A,0,00)

%(0) = (0,0,0,0), forl <k <2m
% 0) = (0,0,—A(2m)!,0).

We prove that the contact order of such a regular digcgreater tha?m which contradicts the fact thd?
is of regular type2m. We denote byp o ul,,,, the homogeneous part of degr2e in the Taylor expansion
of p o u at the origin:

2m
[0 0 ulom (z,y) = > apay*™ ",
k=0

k 2m—k
Let us prove thaty, = %%p o (0) is equal to zero for eadh < k£ < 2m.
¥ Oy
For as,,, we have:
an 2m 2m 5
axmp ou (0) = %GWUQ (O) + %eaxzm Ulm (0)
a2m
= =A(2m)!+ éRe@ﬂm ud™ (0).
2m
Sinceu; (0) = 0, it follows that the only non vanishing term %688:52”1 u™ (0) is
e (29.0)) " = x(2m)
m)Jee 8:6 = m)..

This proves that,,, = 0.
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Thenlet0 < k < 2m:

ak a2mfk ak 82mfk ak 82mfk
ew WUQ (0) + §R€

2m
gk gyl (0)-

k an—k
For the same reason as previously, the only term to consi(%azﬁ mufm (0) is
oy

(2m)!Re <(%u1 (0)>k <8%u1 (0)>2m_k = \Zm (2m)!Re <%—“yl (0)>2m_k.

Then, sinceu is J-holomorphic, it satisfies the diagon&iholomorphy equation:
ou J Oy

oy =" 5y

Dk gy2m—kP Y (0)

forl = 1,2, where
J = < a _b; z ) (see (2.2) for notations).

q
It follows that

2m—k 2m—k
Azm (2m)IRe (%—1;1 (0)> = Azn (2m)Re <J1 (u (0)) % (0)>

= X\ (2m)!Re (i)*™F

ok .
Moreover due to the condltlonﬁ (0) = (0,0), for 1 < k < 2m, it follows that the only part we need
2m—k v o an—k—l aZm—k
2m—k

to consider iang (0) is J2 (u) and by induction(J; (u)) Bm—k U2 (0).

oz oy 12 (0)
Finally

ak a2mfk S 82mu2

= —x@m)e (s (u(0)" 7 (1,0))
— A (2m)!Re ()",

This proves that the homogeneous part u)s,,, is equal to zero.
- : ok
For smaller order terms it is a direct consequence @) = 0 anda—z (0) = (0,0,0,0),for1 < k <
xXr
2m.

It remains to prove there are no tefiap, 21z with k < m in the defining functiorp. This is done by
contradiction and by computing the Levi form @&t a pointzy = (2;,0) and at a vectoo = (X1, 0, X2,0).
Assume that

p = Rezo + Hop (21,21) + f[(zl, z9) + §RepEz’f72 +0 (121\2””1 + ]@Hzl\k“ + 122\2) ,

with k£ < m. Replacingz; by (pg)%zl if necessary, we suppoge = 1.
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The Levi form ofRezs at a pointzg = (z1,0) and at a vector = (X, 0, X2, 0) is equal to

8a2 8&2 abQ
= - ] 22 (20) — 22 )| XX
CrReza o) = [(on = a) Ga) G Gn) + cnCao) G ) = o) 52 e | X Xa +
da ob
ca(0) |G en) = 2 )| X
Due to (2.3) we have
ai(z0) = a2(20) = 0,
C2 (ZO) = 1’
8a2 o (%2 N
E (20) = prs (20) = 0.
So the Levi form ofRez, atzy = (z1,0,0,0) and at a vectov = (X1,0, X5,0) is
da ob
LiRezs (z0,v) = a—yz(zo) - 6—1'22(20) X2
According to Lemma 1.5, the Levi form dfs,,, + O(|z1|>*™*!) atzg andv; = (X71,0, X5,0) is equal to
Ly(Hapm + O(|21P™1) (20,0) = A (Ham + O(|21*™ 1)) XT + O(|21[* 1) X1 Xa.

According to the fact that the Levi form for the standard cltinve off{f(zl, z9) is identically equal to
zero, and due to (1.3) and to (2.3), it follows that the Leviaf H(z, 22) at 2z, is equal to

LyH (20,0) = O(|z1])X3.
Now the Levi form ofO(|z|?) is equal to
L;0(|22)?) (z0,v) = O(1)X3.
And the Levi form ofRez}73 is equal
LiRez¥73 (z0,v) = (EReF 1) X1 Xo + O(|21[F) X2

Finally the Levi form of the defining functiop at a pointzy = (z1,0) and at a vectov = (X, 0, X»,0)
is equal to:

Lip(z0,v) = O (|1 ?) X7 + [4k§Rezf71 + O(!zl\Qm_l)} X1 X5
8&2 (%2 9
| Gate0) = 520)+0(1) + O (Ja)| X3,

It follows that sincek < m there arez;, X; and X5 such thatC ;p (2o, v) is negative, providing a contra-
diction.

U
Now we prove that the D’Angelo type coincides with the regtyg@e in the non integrable case.

Proposition 2.4. We have
Al (0D,0) = A (0D,0).
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Proof. We suppose that the origin is a point of finite D’Angelo typecArding to (2.1) we may write:
AL, (0D,0) = 2m < +oo0.

reg

So we may assume tha{() = (¢, 0) is aregulat/-holomorphic disc of maximal contact order, and that
the structure/ satisfies (2.2) and (2.3). Moreover the defining funcjidras the following local expression:

p=Rez + Ham (21,71) + O (|1 """ + |2]l|2])) -

Now consider a/-holomorphic disew = (f1, g1, f2,92) : (A,0) — (R*,0,J) of finite contact order
satisfyingv (0) = 0 and such that (v) > 2 (see definition 2.1 for notations).
We setv; := f1 + ig1 andvs := fo + igo. The J-holomorphy equation for the discis given by:
afk 8919 o afk
a’k(v) o + k(?)) o - ay7

o (v) e _, (v) 99k _ Ogk
k Ox k Ox oy’
for k =1,2. SinceJ (v) = Jg + O (Jv2|) andé (v) > 2, it follows that:

{5(01) = 0(f1) = d(q),

d(v2) = 6(fe) = 0(g2).

(2.4)

Then consider

25 pov(Q) = f2(Q) + Ham (v1(0), 01 () + O (o1 () P + a0 (€) 1) -
Equation (2.4) implies that the ter@ (|v2|||v||) in (2.5) vanishes to order larger thgn

Case 1:6(f2) > d (Hap, (v1,77)). In that case
do (6D,u) =0 (Hgm (?)1,?}_1)) = 2md (1)1) .

Thus we get:
60 (0D, v)  2md (v1)

d(w) — d(v)

=2m.

Case 2:4(f2) < 0 (Ham (v1,771)). We have two subcases.
Subcase 2.1 + Hay, (v1,77) # 0. Thus
00 (0D, u) = § (Reva) = d (v2),

and so
do (aD,U) _ (5(?}2) < 5(H2m (1)1,?}_1)) _ 2mod (?)1)
0 (v) o(v) — 0 (v) d(v)

This means that:

50 (aD, U) - . o

I 1if 0 (v) =9 (v2)
or

(S(] (aD, U)

< 2m if §(v) =6 (vy).
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Subcase 2.2if; + Hay, (v1,77) = 0. Letw : A — (R?, Jy) be a standard holomorphic disc satisfying
w (0) = 0 and:
OFw v
fork = 1,---,2mé (v). Sinced (v2) = 2md (v1) = 2md (v) < +oo and sinceJ (v) = Jg + O(|va|),
any differentiation ofJ (v), of order smaller thalmJ (v), is equal to zero. Combining this with the
holomorphy equation (1.1) af we obtain:

akJrl 8k+l
W gy = I g,
Oxk oyl Oxk oyl
fork+1=1,---,2md (v). Sincep o v vanishes to an order greater thanos (v) at 0 and since it involves

only the2md (v)-jet of v, it follows thatp o w vanishes to an order greater thand (v) at 0. Finally we
have constructed a standard holomorphic dissuch that

5 (w) = 0(v),

do (0D, w) > 2md (w),

which is not possible since, according Proposition 2.3fype for the standard structure @D at the origin
is equal t@2m. O

2.2. Construction of a local peak plurisubharmonic function. We first give the definition of a local peak
J-plurisubharmonic function for a domaib.

Definition 2.5. Let D be a domain in an almost complex manif@lt/, .7). A function ¢ is called a local
peak.J-plurisubharmonic function at a boundary point 9D if there exists a neighborhodd of p such
thaty is continuous up td N U and satisfies:

(1) ¢ is J-plurisubharmonic o N U,

() ¢(p)=0,
(3) p <0onDNU\{p}.

The existence of local peak;-plurisubharmonic functions was first proved by
E.Fornaess and N.Sibony in [11]. For almost complex madsftthe existence was proved by S.lvashkovich
and J.-P.Rosay in [17] whenever the domain is strigtdyseudoconvex. In the next Proposition we state the
existence fotr/-pseudoconvex regions of finite D’Angelo type. As mentiahearlier our the considerations
are purely local. In particular, the assumptions/gblurisubharmonicity and of finite D’Angelo type may
be restricted to a neighborhood of a boundary point. Foreoience of writing, we state them globally.

Theorem 2.6.Let D = {p < 0} be a domain of finite D’Angelo type in a four dimensional altramsnplex
manifold (M, J). We suppose thatis aC? defining function oD, .J-plurisubharmonic on a neighborhood
of D. Letp € 0D be a boundary point. Then there exists a local pégslurisubharmonic function g.

Proof. Since the existence of a local peak function near a boundzing pf type2 was proved in [17], we
assume thap is a boundary point of D’Angelo typgm > 2. The problem being purely local we assume
that D ¢ C? and thatp = 0. According to Proposition 2.3 the defining functiprnas the following local
expression on a neighborhoédof the origin:

p=Rezy + Hop (21,71) + H(z1,29) + O (|21 2™ *E + | 22| |21 ]™ + |22]?)
whereHa,, is a subharmonic polynomial containing a nonharmonic pienoted byH;  , and

m—1
H(z1,2) = Re Z PRzt z0.
k=1
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According to [11] (see Lemma 2.4), the polynomia},,, satisfies the following Lemma:

Lemma 2.7. There exist a positivé > 0 and a smooth functiog : R — R with period 27 with the
following properties:

(1) =2 <g(0) < -1,
@ llgl < 1/6, |
(3) max (AHam, A ([[H3,,|lg (0) [21]*™)) > S| H3, || 21|20, for 21 = |21]€ # 0 and,

(4) A (Hom + 8| H3, llg (8) 21[*™) > 62| H3,, ||[22 "0
We denote by the function defined by
P (21,71) := Hom (21, 71) + || Hyp [lg (8) |21
Theorem 2.6 will be proved by establishing the followingiia

Claim. There are positive constantsandC' such that the function
@ = Rezg + 2L (Rezg)? — L (Smzz)? + P(z1,71) 4+ H(z1, 22) + C|z1]?]22)?
is a local peak/-plurisubharmonic function at the origin.

Proof of the claim We first prove that the functiog is J-plurisubharmonic. We set:
ddf]gp = aqdr1 A dyy + asdrs A dys + agdry A dxo + agdry A dys + asdyr A dzg + agdyr A dys,

whereay, for k = 1,--- |6, are real valued function. According to the matricial repreation ofJ (see
(2.2)), the Levi form ofp at a pointz € DN U and at a vector = (X1, Y7, X», Y2) € T,R* can be written

Lo (z,v) = craiXi —2a101X1Y1 — bon Y + B3 X1 Xo + B X1Ys +

B5Y1Xo + BsY1Y2 + c200 X3 — 2a002X2Ys — boasYy,

with
B3 = az(az —a1)+ascs — asc
Bs = —ay(ar +a2)+ azby — agcy
Bs = as(a1+a2)— asb + ages
Bs = ag(a1 —az) — asb; + asbs.

Moreover due to (2.3) we have far= 1,2
ar = O (|z2])
b, = —14 O (|z2])

ck =140 (]z]).
This implies that fork = 1, 2:

(%
CkOqCX]% — 2ap0, XY — bkakYkQ > Ek (X]% + YkQ) .
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Thus we obtain
aq

4

(65

4

a1

4

a2

>
Log(av) 2 :

X+ B3 X1 X0+ —X5 + —Y2 + 31 X0+ — X3 +

« o o o
T X BaXaYe + 2VE 4 YT A B Ye + Y
In order to prove thap is J-plurisubharmonic, we need to see that:
(1) ay >0, fork = 1,2,
(2) 467 < v, forj =3,--- ,6.

The coefficient, is obtained by the differentiation 8tezy, 2L (Rezs)? — L (Smzs)?, H(z1, 22) and
C|z1|?|22|?. Hence we have for sufficiently close to the origin

ag > L > 0.
The coefficienty, is obtained by differentiating®, H (21, z2) andC|z1|2|22|2. This is equal to

a1 = AP+O0(|z1[*"?|z]) + O(|z2)*) + Clzaf* + O(|22*)

82| Hz _ C
2 H 22m”|zl|2m 2+5|22|2’

for z sufficiently small and” > 0 large enough. Hence; is honnegative.
Finally it sufficient to prove that

82| Hz _ C
4ﬂj2 §L< H 22mH|Zl|2m 2+5|22|2>,

to insure the/-plurisubharmonicity ofp. The coefficient/3;| is equal to

81 = O(z2l) + LO(|22f*) + O(|1*™ 1) + CO(|z1|z2l)

IN

C' (|22l + ™),

for a positive constant” (not depending o andC). It follows that¢ is J-plurisubharmonic on a neigh-
borhood of the origin.

We prove now thap is local peak at the origin, that is there exists 0 such thatD N {0 < ||z < r} C
{¢ < 0}. Assuming that € {p = 0} N {0 < ||z]| < r} we have:

p(z) = OH3pllg(0)|z1*" +2L (Rez2)® — L (Smz)* + ClarP|zaf” +

O (|z1)*™) + O (Jz]|21™) + O (|22]?) -

Sinceg < —1 and increasind. if necessary we have

1o, 1
O (IBmas||1™) < =50 Hamlg (6) |21 P + oL (Smz2)?,
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whenever: is sufficiently close to the origin. Thus

1 1
p(2) < =0llH |2 + (2L + Clat ) (Rez)? — oL (Smz)” + Clz1*(Smz2)” +

0] (‘21’2m+1) + O (JRez||z1]™) + O (]22\2)

IN

1 1
=0 s l[121[*™ + (2L + Clza]) (Rezz)” — 1L (Smz2)” + O (|Reze|l1[™) +

O (‘2’2’2) .
There is a positive constaat” such that
O (|z2]?) < C"|Rez|? + C"[Smes .

Thus increasind. if necessary:

1
0(2) < —70llH, 1™ + (2L + Clar ) (Rezo)® + O(|Rez?)

1
— <ZL — C”> (Smza)? + O (|Reza||z1™) + O(|Smz?|2]).

1
< =201 Hg 5 P+ (2L + Clan[2) (Reza)? + O(Rezal) + O (Rezal]n ™)

_% <iL - C’"> (Smz)?.
Since
—Reza(1+ O(|2])) = Haom (21,21) + O (|2 "™ + |Smze|21| + |[Smzel?)
we have
(Rez2)*(1+O(|2])) = O (|z1|"™ + |Smzn| |21 " + [Smzof*||2])) -
We finally obtain forz small enough
1/1

1
¢(2) < ~galgllaPm - 1 (32 C") @ma?.

Thus is negative forz € {p = 0} N {0 < ||z|| < r}, with » small enough. It follows that, reducingif
necessary,

Dn{o< |zl <r}c{p<0},
which achieves the proof of the claim and of Theorem 2.6. O

We notice that in caseC;Rezo, = 0, we may give a simpler expression for a local pe#k
plurisubharmonic function.

Proposition 2.8. If £ ;Rezy = 0, then there exists a real positive numtesuch that the function
@ = Rezy + 2L (Rezy)? — L (22)* + P (21, 71)

is local peak/-plurisubharmonic at the origin.
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3. ESTIMATES OF THEKOBAYASHI PSEUDOMETRIC

In this section we prove standard estimates of the Kobayzshidometric on/-pseudoconvex regions
of finite D’Angelo type in an almost complex manifold.

3.1. The Kobayashi pseudometric. The existence of local pseudoholomorphic discs provedlihdows
to define theKobayashi pseudometri&’(y;, ;) for p € M andv € T,,M :

1 .
K1) (p,v) := inf {; > 0,u: A — (M,J) J-holomorphic,u (0) = p,dyu (9/0x) = m)} )

Since the composition of pseudoholomorphic maps is silugeholomorphic, the Kobayashi (infinites-
imal) pseudometric satisfies the following decreasing eroyp:

Proposition 3.1. Let f : (M’,J") — (M, J) be a(J’, J)-holomorphic map. Then for any € M’ and
v € T,M' we have

Koy (p,v) = Koy (f (p) s dpf (0))
Letdy,, ;) be the integrated pseudodistanceqfy; ;) :

1
doar,gy (pyq) = inf{/o Kaorg (v @),y (@) dt, v:[0,1] = M, v(0) =p,v(1) = q}.

Similarly to the standard integrable case, B.Kruglikove($£9]) proved that the integrated pseudodis-
tance of the Kobayashi pseudometric coincides with the iadlai pseudodistance defined by chains of
pseudholomorphic discs. Then we define :

Definition 3.2. (1) The manifold (M, J) is Kobayashi hyperbolic if the integrated pseudodistance
dnr,) 1s a distance.
(2) The manifold(21, J) is local Kobayashi hyperbolic at € M if there exist a neighborhood of p
and a positive constaudt such that

K,y (g, 0) = Cllo]|

for everyq € U and every € T, M.
(3) A Kobayashi hyperbolic manifold)/, .J) is complete hyperbolic if it is complete for the distance

d(ar, -

3.2. Hyperbolicity of pseudoconvex regions of finite D’Angelo tpe. In order to localize pseudoholo-
morphic discs, we need the following technical Lemma (s@¢fidr a proof).

Lemma 3.3. Let0 < r < 1 and letd, be a smooth nondecreasing function®n such thatd,. (s) = s
fors < r/3andf,(s) = 1fors > 2r/3. Let(M,J) be an almost complex manifold, and jebe a
point of M. Then there exist a neighborhoddof p, positive constantsl = A (r) > 1, B = B(r), and a
diffeomorphism : U — B such that: (p) = 0, z.J (p) = Jy and the functionog (6, (|z[*)) +6, (A|z])+
B|z|? is J-plurisubharmonic ort/.

In the next Proposition we give a priori estimates and a Ipatibn principle of the Kobayashi pseudo-
metric. This proves the local Kobayashi hyperbolicity bpseudoconvex? regions of finite D’Angelo
type. If (M, J) admits a global/-plurisubharmonic function, then K.Diederich and A.Sukipooved in [9]
the (global) Kobayashi hyperbolicity of a relatively conspd-pseudoconvex domains (with* boundary)
by constructing a bounded strictly-plurisubharmonic exhaustion function. We notice thatpim case,
if the manifold (M, J) admits a global/-plurisubharmonic function ther-pseudoconvex’? relatively
compact regions of finite D’Angelo type are also (globallygkayashi hyperbolic.



16 FLORIAN BERTRAND

Proposition 3.4. Let D = {p < 0} be a domain of finite D’Angelo type in an almost complex méhifo
(M, J), wherep is aC? defining function ofD, .J-plurisubharmonic in a neighborhood @. Letp € D
and letU be a neighborhood af in M. Then there exist positive constaiuisand s, and a neighborhood
V c U ofpin M, such that for eacly € D NV and eachw € T, M:

(31) K(D,J) (Q7v) > C||U||>

(3.2) Ko, (a,v) = sKpau,g (¢,v) -

This Proposition is a classical application of Lemma 3.3isTédue to N.Sibony [22] (see also [2] and
[12] for a proof). For convenience we give the proof.

Proof. According to Theorem 2.6, there exists a local péaflurisubharmonic functiorp atp for D. We
can choose constants< o < o/ < 3’ < gandN > 0 such thaty > —3%/N on {||z|| < «a} and
o< —232/NonDn{d < |z <8}

We definep by:

{ max (N + ||2[|2 — 82, —262) it € Dn{|z] <83,

P =
—2? on D\{|z[| < #'}.

The function| z[|? is J-plurisubharmonic ofg € U : |z (q) | < 1}if [[2.J — Jot||c2(m) is sufficiently small.
Then it follows thatp is J-plurisubharmonic o). We may also suppose thatis negative orD. Moreover
the functiong — ||z||? is J-plurisubharmonic o N {qg € U : |z (q)| < a}.

Letd,. be a smooth non decreasing function®h such thad,,> (s) = s for s < a?/3 andf,2 (s) = 1
for s > 2a2/3. SetV = {q € U : |z(q)| < o?}. According to Lemma 3.3, there are uniform positive
constants4 > 1 and B such that the function

10g (002 (12 = 2 (a) I*)) + 0a2 (Alz = 2 () |) + Bl2|”

is J-plurisubharmonic o/ for everyg € DNV.
We define for eaclh € D NV the function:

o { Ouz (12— 2 (@) [?) exp (2 (Alz — 2 (q) ) exp (BE (2))  onD N {|lz] < o},

exp (1 + By) onD\ {|lz|| < a}.

The functionlogV¥, is J-plurisubharmonic oD N {||z|| < a} and, onD \ {||z|| < a}, it coincides with
1 + B¢ which is J-plurisubharmonic. Finallyog¥, is J-plurisubharmonic on the whole domain

Letq € V and letv € T,M and consider a-holomorphic disct : A — D such that (0) = ¢ and
dou (0/0z) = rv wherer > 0. For( sufficiently close to 0 we have

u(Q) = q+dou(¢) + 0 (I¢”) -
We define the following function

v
6(0)i= Trit)
which is subharmonic o\ {0} sincelog¢ is subharmonic. If close to0, then
_ (@ —qP

(3.3) ¢ (C) = exp (Alu (¢) — g]) exp (B (u(C))) -

CI?
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Setting¢ = (1 + (2 and using the/-holomorphy conditioniyu o Jg = J o dyu, we may write :
dou (¢) = Cidou (9/0z) + C2J (dou (0/0x)) .

(3.4) |dou (Q) | < [CL(IT + JI[ ldow (0/0) |[)
According to (3.3) and to (3.4), we obtain thah sup._, ¢ (¢) is finite. Moreover setting; = 0 we have

lim sup & (€) > [|dou (8/0) ||” exp (B& (q)) -

Applying the maximum principle to a subharmonic extensibg on A we obtain the inequality
ldow (9/0) ||* < exp (1 — B& (q)) -
Hence, by definition of the Kobayashi pseudometric, we olfaieveryg € DNV and every € T, M:

1
Kp,) (q,v) = (exp (=14 B@(q)))? [lv]-
This gives estimate (3.1).

Now in order to obtain estimate (3.2), we prove that there ineighborhood C U and a positive
constants such that for any/-holomorphic disa: : A — D with u (0) € V thenu (As) € DNU. Suppose
this is not the case. We obtain a sequegicef A and a sequence of-holomorphic discs:, such that(,
converges to Oy, (0) converges tp and||u, (¢,) || ¢ D NU for everyv. According to the estimate (3.1),
we obtain for a positive constant> 0:

c < dp,r) (uy (0),u, (¢)) < da (¢, 0).
This contradicts the fact thgt, converges to 0. O

The (global) Kobayahsi hyperbolicity is provided if we sopgp that there is a global strictly-
plurisubharmonic function o/, .J).

Corollary 3.5. Let D = {p < 0} be a relatively compact domain of finite D’Angelo type in amast
complex manifold M, .J) of dimension fourp being a defining function ab, .J-plurisubharmonic in a
neighborhood oD. Assume thatM, J) admits a global strictly/-plurisubharmonic function. TheiD, .J)
is Kobayahsi hyperbolic.

As an application of the a priori estimate (3.1) of Proposit8.4, we prove the tautness f

Corollary 3.6. Let D = {p < 0} be a relatively compact domain of finite D’Angelo type in amast
complex manifold M, J) of dimension two. Assume thats .J-plurisubharmonic in a neighborhood @.
Moreover suppose thaf\/, J) admits a global strictly/-plurisubharmonic function. TheP is taut.

Proof. Let (u,), be a sequence of-holomorphic discs irD. According to Corollary 3.5 the domaib is
hyperbolic. Thus the sequen¢e, ), is equiconituous, and then by Ascoli Theorem, we can exfrant
this sequence a subsequence still dendtgd,, which converges to a map : A — D. Passing to the
limit the equation ofJ-holomorphicity of eachy,, it follows thatw is a J-holomorphic disc. Since is
J-plurisubharmonic defining function fab, we have, by applying the maximun principle go u, the
alternative: eithet(A) C D oru(A) C dD. O

We point out that the tautness of the domalnwvas proved, using a diferent method, by K.Diederich-
A.Sukhov in [9].
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3.3. Uniform estimates of the Kobayashi pseudometric.In order to obtain more precise estimates, we
need to uniform estimates (3.1) of the Kobayashi pseudaerfetra sequence of domains.

Proposition 3.7. Assume thaD = {Rez, + P (z1,%1) < 0} is a.Jy-pseudoconvex region &, where P
is @ homogeneous polynomial of degide< 2m admitting a nonharmonic part. LdD, be a sequence of
J,-pseudoconvex region &* such thatd € 9D, is a boundary point of finite D’Angelo tyg#, < 2m.
Suppose thab, converges in the sense of local Hausdorff set convergentevihienr tends to+oo and
that .J,, converges taJ,; in the C? topology wherv tends to+oco. Then there exist a positive constagit
and a neighborhood” C U of the origin inR*, such that for larges and for every; € D, NV and every
v € T,R?

K, (q.v) > C|v|.

Proof. Under the conditions of Proposition 3.7 we have the follapliemma:

Lemma 3.8. For every largev, there exists a diffeomorphisdn, : R* — R* with the following property:

(1) The magp, — (¢,0) isa(®,), J,-holomorphic disc of maximal contact ordef, .
(2) The almost complex structu(é, ), J, satisfies conditions (2.2) and (2.3).
(3) @, (D,) = {p, < 0} with

2m
pr=Rezxy+ > Py (21,7) + O (|1 "™ + |22 | 2]) <0,
j=21,

whereP; , are homogeneous polynomials of degjeand P, , contains a nonharmonic part de-
noted byPs;; , # 0.
(4) we havein f,{|| P, .||} > 0.

Moreover the sequence of diffeomorphisbpsconverges to the identity on any compact subsefs!af the
C? topology.

The crucial fact used to prove Proposition 3.7 is the pgint which is a direct consequence of the
convergence ob, (D,) to D. Hence the proof of Proposition 3.7 is similar to Theoremé&h@ Theorem
3.4, where all the constants are uniform.

]

3.4. Holder extension of diffeomorphisms. This subsection is devoted to the boundary continuity of dif
feomorphisms. This is stated as follows:

Proposition 3.9. Let D = {p < 0} and D’ = {p < 0} be two relatively compact domains of finite
D’Angelo type2m in four dimensional almost complex manifold®, J) and (M’,.J’). We suppose that
p (resp. p') is a J(resp J')-plurisubharmonic defining function on a neighborhood/df{resp. D’). Let

f : D — D' be a(J,J')-biholomorphism. Therf extends as a Blder homeomorphism with exponent
1/2m betweenD and D’.

Estimates of the Kobayashi pseudometric obtained by H.$&auand A.Sukhov in [12] provide the
Holder extension with exponent/2 up to the boundary of a biholomorphism between two stricgp
doconvex domains (see Proposition 3.3 of [6]). Similanyprder to obtain Proposition 3.9, we begin by
establishing a more precise estimate than (3.1) of Praposit4.

Proposition 3.10. Let D = {p < 0} be a domain of finite D’Angelo type in a four dimensional altnos
complex manifold M, .J), wherep is aC? defining function ofD, .J-plurisubharmonic in a neighborhood
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of D. Letp € 9D and letU be a neighborhood of in M. Then there are positive consta@itand a
neighborhoodV” C U of p in M, such that for every € D NV and every € T, M:

ol
dist (¢, 0D)"/*™

(3.5) K, (q,v) = C

Proof of Proposition 3.10Let p € dD. We may suppose thdd c R?*, p = 0 and thatJ satisfies (2.2)
and (2.3). Lety’ be a boundary point in a neighborhood of the origin anddgtbe the local peak’/-
plurisubharmonic function at given by Theorem 2.6. There are positive constantandCs, such that
(3.6) —Cillz =]l < P (2) < —Co¥y (2),
where
Uy (2) = |zt = 4" + |22 — a3 + 21 — 1 P[22 — o

is a.J-plurisubharmonic function on a neighborhobdof the origin.

Now consider a/-holomorphic disat : A — D, such that (0) is sufficiently close to the origin and

then, according to Proposition 3.4, we hav@\;) C D N U, for some0 < s < 1 depending only om (0).
We assume that is such thatlist (v (0) ,0D) = ||u (0) — ¢'||. According to the/-plurisubharmonicity of

U/, we have fori(| < s:
U, (u(Q)) < % /0% v, (u (rew)) do,

v
for some positive constauits. Hence using (3.6) and theplurisubharmonicity ofp,, we obtain:

Ty (u(0) < — -2 /% (u(re?)) a0 < G (w(0))
7 - 27TCQ 0 ¥q - CQ ¥a ’
Since there is a positive constarit such that
[u () = q'|*™ < Ca¥y (u(C))

and using (3.6), we finally obtain:

[u(¢) = d'IP™ <
Hence there exists a positive constétsuch that:

dist (u (¢),0D) < Csdist (u (0),0D)/*™

%dis‘c (u(0),0D).

whenever! < s.
According to Lemma.5 of [17] there is a positive constanf; such that:

[V (0) || < Cg sup |lu(¢) —u(0) || < CsCedist (u (0),0D)/*™
I¢l<s

wich provides the desired estimate. O
We also need the two next lemmas provided by [6]:

Lemma 3.11. Let D be a domain in an almost complex manifoi, .J). Then there is a positive constant
C' such that for any € D and anyv € T),M:

T K <(C————
3.7) (0.7) Pv) < Cdist (p,0D)
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Lemma 3.12. (Hopf lemma) LetD be a relatively compact domain with & boundary on an almost
complex manifold/, .J). Then for any negativé-plurisubharmonic functiop on D there exists a constant
C > 0 such that for any € D:

[p(p)| = Cdist(p, OD).

Now we can go on the proof of Proposition 3.9.

Proof of Proposition 3.9Let f : D — D’ be a(J, J')-biholomorphism. According to Proposition 3.10 and
to the decreasing property of the Kobayashi pseudometietis a positive constaiit such that for every
p € D sufficiently close to the boundary and every T, M

Iy f (v) |
1
dist (f (p) ,0D")>m
Due to Lemma 3.11 there exists a positive constgnsuch that:

< Ky (f @), dpf (v) = Kp,g) (p,0v) -

[l
K <Cj————.
(D,J) (p,?)) = Cl dist (p, 8D)
This leads to: )
Cy dist (f (p),0D")2

< =
Moreover the Hopf lemma 3.12 for almost complex manifoldgligol top’ o f andp o f~! and the fact that
p andp’ are defining functions, provides the following boundantatise preserving property:

[o]]

Cidist (p,0D) < dist (f (p),0D") < Cadist (p,dD),
2

for some positive constdt,. Finally this implies:
C1Cs [[v]l
C . 2m—1 *
dist (p,0D) 2m
This gives the desired statement. O

ldpf (0) || <

4. SHARP ESTIMATES OF THEKOBAYASHI PSEUDOMETRIC

In this section we give sharp lower estimates of the Kobaysstudometric in a pseudoconvex region
near a boundary point of finite D’Angelo type less than or étuiour. This condition will appear necessary,
in our proof, as explained in the appendix. Moreover in otdgfive sharp estimates near a point of arbitrary
finite D’Angelo type, we are also interested in the nontatigebehaviour of the Kobayashi pseudometric.

The main result of this section is the following theorem (aks® Theorem B):

Theorem 4.1. Let D = {p < 0} be a relatively compact domain of finite D’Angelo type lessithr equal
to four in an almost complex manifold/, J) of dimension four, wherg is a C? defining function oD,
J-plurisubharmonic on a neighborhood @f. Then there exists a positive constantwith the following
property: for everyp € D and everyv € T,,M there is a diffeomophisn®,-, in a neighborhood’ of p,
such that:

(4.1 Ko )= €

wherer (p*, |p (p) |) is defined by (4.3).

(@), | | (dp@pe), |
el @D @] »
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As a direct consequence we have:

[ (p®pr0), | | (dpye0), |>

(4.2) K, p,v) 2 C ( o (p) |7 lp(p)|

for a positive constant”.

In complex manifolds, D.Catlin [5] first obtained such anireste, based on lower estimates of the
Carathéodory pseudometric. F.Berteloot [3] gave a diffeproof based on a Bloch principle. Our proof
wich is inspired by the proof of F.Berteloot is based on sooatirsg method.

4.1. The scaling method. We consider here a pseudoconvex region- {p < 0} of finite D’Angelo type
2m in R*, wherep has the following expression on a neighborh@oof the origin:

p(21,22) = Reza + Hop, (21,21) + O (|21 "™ + 22| ||2]]) -

whereHs,, is a homogeneous subharmonic polynomial of degreexdmitting a nonharmonic part.
Assume thap, is a sequence of points i N U converging to the origin. For eagh sufficiently close
to 0D, there exists a unique poip}, € 9D N U such that

P,t =pv+ (0751/) )
with §, > 0. Notice that for large’, the quantitys,, is equivalent talist (p,,0D N U) and to|p (p,) |.

We consider a diffeomorphisd@” : R* — R* satisfying:
(1) @ (p;) = 0and®” (p,) = (0, —4,).
(2) ®” converges tdd : R* — R* on any compact subset Bf* in theC? sense.
(3) When we denote bp” := & (D N U) which admits the defining function j&’ := p o (&) "
and byJ" := (®¥), J, thenp” is given by:
2m
P (21,22) = Rezy + Y P (21,70,05) + O (| + |22 I2])
k=21,

where the polynomialP,;,, contains a nonharmonic part. Moreovgf satisfies (2.2) and (2.3).

This is done by considering first the translatibh of R* given byz — z — p*. According to J.-F.Barraud
and E.Mazzilli [1] that the D’Angelo type is an upper semittonous function in a four dimensional almost
complex manifold. Thus the D’Angelo type of points in a snedbugh neighborhood can only be smaller
than at the point itself. Then we conside(B”), J-holomorphic discu of maximal contact orde2/,,
where2l, < 2m is the D’Angelo type ofp),. We choose coordinates such thats given byu ({) =
(¢,0), and such that7"), J (21,0) = Js andTp (0T (D)) N J(0)To (0T (D)) = {z2 = 0}. Then by
considering the family of vectorgl, 0) at base pointg0,¢) for ¢t # 0 small enough, we obtain a family
of pseudoholomorphic dises such that; (0) = (0,¢) anddpu, (9/0) = (0,1). Due to the parameters
dependance of the solution to thi&-holomorphy equation, we straighten these discs into tfes{izo = ¢}.
Next we consider a transversal foliation by pseudoholomiorgiscs passing through, 0) and(¢, —4é,,) for

t small enough and we straighten these lines {nto= c}. This leads to the desired diffeomorphigrti of
R4,

Now, we need to remove harmonic terms from the polynomial
2m—1

Z Pk; (21,2_1,]);) .

k=21,



22 FLORIAN BERTRAND

So we consider a biholomorphism (for the standard strugtfré? with the following form:
2m—1
oy (21,29) == | 21,22 + Z Re (ck,,,zlf) ,
k=21,
wherec, , are well chosen complex numbers. Then the diffeomorphiigm= ¢, o ®* satisfies:
(1) o, (p;) =0and®, (pV) = (07 _5u)'
(2) ®, converges tdd : R* — R* on any compact subset Bf* in theC? sense.
(3) If we denote byD, := &, (D N U) the domain with the defining function, := p o (®,) ", then

py is given by:
2m—1
pv(21,22) = Rezy + Y Py (21,71,p)) + Pom (21,71, 05) + O (|21 ™ + |22 1 21])
k=21,
where the polynomial
2m—1
Z P];k (Zlvzvpi)
k=21,

does not contain any harmonic terms. Moreover the polynofja is not idencally zero. More-
over, genericallyJ, := (®,), J is no more diagonal.

Since the origin is a boundary point of D’Angelo type: for D, it follows that, denoting by’ the
nonharmonic part of%,,, we haveP;  (.,0) = H;,  # 0, whereH;, is the nonharmonic part dfls,,.
This allows to define for large:

5, \*
(4.3) 7(p},0,) :=  min <HP]:7)H> .

k=21, 2m (., p%
Moreover the following inequalities hold:
1
c
where(C' is a positive constant. The right inequality comes from thet that|| P, (..p}) | > C1 > 0

for largev. And the left one comes the fact that there exists a positivestantCs such that for every
21, <k < 2mwe have|| P} (.,p}) || < Co.

1 1
(4.4) 0; <7(p,,0,) <Coz™,

Now we consider the nonisotropic dilatidy, of C:
Ay i (21,22) — (T (pz,éy)fl 21,5;12’2> )

We setD, := A, (D,) the domain admitting the defining functigh, := 6, 'p, o A, and.J, :=
(Ay), (Jy) the direct image off, underA,,.
The next lemma is devoted to descrild@, , J,) when passing at the limit.
Lemma 4.2.
(1) The domainD¥ converges in the sense of local Hausdorff set convergenagstandard) pseudo-
convex domairD = {p < 0}, with
ﬁ(Z) = §R6'22 + P(Z1>Z_1) )
whereP is a honzero subharmonic polynomial of degree smaller thagaal to2m which admits
a nonharmonic part.
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(2) In case the origin is of D’ Angelo type four for D, the sequence of almost complex structufgs
converges on any compact subset€din theC? sense ta/,;.

Proof. We first prove part 1. Due to inequalities (4.4), the definimgction of D,, satisfies:
2m
~ —1 * k px* — ok —1 * 2m — ok
Pv = §R6’22 + Z 61/ T (py761/) Pk (Zl> Zlapy) + 61/ T (pV7 61’) P2m (Z1> Zlapy) + O (T (51/)) .
k=21,
Passing to a subsequence, we may assume that the polynomial
m
> 6 (05, 00,)" P (21,71,05) + 0,7 (9, 00) "™ Pam (21,71, 1))
k=21,
converges uniformly on compact subsets@f to a nonzero polynomiaP of degree< 2m admitting
a nonharmonic part. Since the pseudoconvexity is invauacker diffeomorphisms, it follows that the

domainsD¥ are.J,-pseudoconvex, and then passing to the limit, the domais .J,;-pseudoconvex. Thus
the polynomialP is subharmonic.

We next prove part 2. The complexification of the almost caxgtructure/, is given by

2 d R d
A — + B — 4+ B —
ZZ;( ” d2’1®a + ”()dzl®8z_l+ 171(2)@®821+

0 0 0

A A Y B 9

l,l()alzl@)a )+ 12()d21®8z2+ 1’2()d21®82+
0 _ 0

B1,2( )dZ1®a +A12( )d21®8—z_2’

where
( 3 2
A“(z) = 1+0 22+ch,l/zlf forl =1,2,
k=2

29 + E Ck,v2]

) forl =1,2,

3 2
k
29 + Ck,v?]
k=2

Bi(2) = <

3
Z kck,,,szlO
k=2

b
fl
o
—
N
S~—

Il

)

3
k
29 + Ck,v?]
k=2

) |

3
Bia(z) = Z k <ck,yzf71 — c/ﬁyzf*l) 0] (

k=2
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By a direct computation, the complexification .ff is equal to:

2
- 0 0
_ -1 -1
(1), = D (A () @ i+ Bulhy ! ()= © g+

_ 0 0
~1 o -1 9
Byi(A, 7 (2))dz @ 9 + A(A, 7 (2))dz @ 671) +

0 0
T(p}, 51,)6V_1A172(A;1(z))d21 ® — + 7(p;, 6,,)5;131,2(A;1(z))d21 ® — +
029 07z

— 0 —_— d
7(p}, 00)0;, "Bia(A) 1 (2))dz @ —— + 7(p), 0,)0;, " A1 (A1 (2))dEr @ ——.
0z9 07
According to (4.4) and since,,, converges to zero whentends to+oo for k = 2,3, it follows that.J,,
converges td/s;. This proves part2). O

4.2. Complete hyperbolicity in D’Angelo type four condition. In this subsection we prove Theorem 4.1.
Keeping notations of the previous subsection; we start tgbéshing the following lemma which gives a
precise localization of pseudoholomorphic discs in boxes.

Lemma 4.3. Assume the origi 9D is a point of D’Angelo type four. There are positive conssar, o
andry such that for any) < 6 < &y, for any larger and for any.J,-holomorphic disg, : A — D, we
have :

v (0) = (07 —61/) = G (TOA) cqQ (07 C061/) )
whereQ (0,6,) := {z € C%: |z1| < 7 (p},8,) , | 22| < 3.}
Proof. Proof of Lemma 4.3Assume by contradiction that there are a sequéngg, that tends to+oo

as (, converges td in A, and.J,-holomorphic discy;, : A — D, such thatg, (0) = (0,—0d,) and
g, (¢) € Q(0,C,6,). We consider the nonisotropic dilations©f:

1 N _ _
Al i (z1,22) — (mr(pl,,éy) 121,7“5,/122) ,

wherer is a positive constant to be fixed. We &gt:= A7 og,, o, := rd, 1 p, o (A7)t andJr := (A7), J,.
It follows from Lemma 4.2 thap?, converges to

p = Re () + P (21,7)
uniformly on any compact subset 6f and.J” converges to/,;, uniformly on any compact subset 6f.
According to the stability of the Kobayashi pseudometratest in Proposition 3.7, there exist a positive
constantC' and a neighborhooll” of the origin inR*, such that for every large, for everyq € D, NV and
everyv € T,R*:

K(p,.7,) (@v) = Clloll
Therefore, there exists a const&i{t> 0 such that

I dhy, (¢) I< €'

for any¢ € (1/2) A satisfyingh,, (¢) € D, N V', with V' ¢ V. Now we choose the constansuch that
hy, (0) = (0, —r) € Int (V'). On the other hand, the sequenkg ({,) | tends to+oco. Denote by0, ¢, | the
segment (irC) joining the origin and;,, and let¢!, = r,¢% < [0, ¢, be the point closest to the origin such
thath, ([0,¢.]) € D, NV andh, (¢) € dV. Sinceh,, (0) € Int (V'), we have

1w (0) = T (G) I = C”
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for some constant”’ > 0. It follows that:
Ty .
Iy ©) = @)1 < [ (1)
0

This contradiction proves Lemma 4.3. O

‘dt < C'r, — 0.

Now we go on the proof of Theorem 4.1.

Proof of Theorem 4.1Due to the localization of the Kobayashi pseudometric distadd in Proposition 3.4,
it suffices to prove Theorem 4.1 in a neighborhdédf ¢ € 0D. Choosing local coordinates : U —
B C R* centered at;, we may assume thdd N U = {p < 0} is a.J-pseudonconvex region ¢R*, .J),
thatg = 0 € 0D and thatJ satisfies (2.2) and (2.3). We also suppose that the comptgertd space
To0D N J(0)Tp0D at0 of 9D is given by{z, = 0}. Moreover the defining functiop is expressed by:

p(2) = Rez + Hom (21,71) + O (|2 + [z2]]12])

Forp € D N U be sufficiently close to the boundat\D, there exists a unique poipt € 9D N U such
that

p*=p+(0,0),
with 6 > 0. We define an infinitesimal pseudometfiton D N U C R* by:
| (dp®p-v)y | | | (dpPpev), ]|
T (", |p () ) lp(p) |

for everyp € D N U and everyv € T,R*, where®,. is defined as diffeomorphisms” (of previous
subsection) fop* instead ofp};.

)

(4.5) N (p,v) :=

To prove estimate (4.1) of Theorem 4.1, it suffices to find atpesconstantC' such that for anyJ-
holomorphic disa: : A — D NU, we have:

(4.6) N (u(0),dou (9/0,)) < C.
Indeed, for a/-holomorphic disa: such that: (0) = p anddou (0/9,) = rv, (4.6) leads to
1 Nev N

r N (u(0),dou(d/0;)) = C

Suppose by contradiction that (4.6) is not true, that igeli®a sequence aof-holomorphic discs:, :
A — DNU such thatV (u, (0) , dou, (3/0,)) > v*. Then we consider a sequengg),, of points iNA; /9
such that:

2v
1) |y | < ,
@ vl = N6 )y 0702)
(2) N (uy (yv) ,dy,w, (0/0x)) > v?, and

() Y + Ay /N(uw (1) ,dy, un (8/02)) S A1/ for sufficiently largev.

This allows to define a sequence.bholomorphic discg, : A, — DNU by

= U C
0@ = (0 Sy o)
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Consider the sequenge = u, (y,,) in DNU. Sincely, | < 2/v and since th€! norm of any.J-holomorphic
discu,, is uniformally bounded it follows thag, (0) converges to the origin.

We apply the scaling method to the sequencé). We denote by, (0)* the boundary point given by
g (0)" := g, (0) + (0,4,). We set the scaled disg, := A, o @, o g, where diffeomorphismg,,, and
®,, are define in the subsection about the scaling method. Iir twdextract fromg, a subsequence which
converges to a Brody curve, we need the following Lemma.

Lemma 4.4. There is a positive constang such that:
(1) There exists a positive constafit such that

(4-7) g~u (TOAV) C AC’1 X ACI'
(2) There exists a positive constatit such that for every large we have :
(4.8) ldgvllco(ron,) < Co.

Proof. We prove the first part. We definea-holomorphic disc:, (¢) := ®, o g, (v¢) from the unit disc
A'to D,,.. According to Lemma 4.3, sinde, (0) = ¢, o g, (0) = (0, —4d, ), we have
hy (roA) C @ (0, Cooy,)
for some positive constantg andCy. Hence
P, 0 gy (roAy) € Q(0,Cody) .
After dilations, this leads to (4.7).

_ Then we prove the second part. According to Lemma 4.2, theeseg of almost complex structures
J,, converges on any compact subset€éfin the C? sense taJ,;. Then for sufficiently large/, the norm
|, — Jst”cl(m) is as small as necessary. So for largand due to Proposition 3.6 of J.-C.Sikorav

1 1

in [23] there existg”> > 0 such that (4.8) holds. O

Hence according to Lemmas 4.2 and 4.4 we may extract fijoemsubsequence, still denoted fywich
converges ir¢! topology to a standard complex line

G :C— ({Reza+ P(z1,71) < 0}, Js)

The polynomial P is subharmonic and contains a nonharmonic part; this impilifet the domain
({Reza + P (z1,71) < 0}, J) is Brody hyperbolic and so the complex ligeis constant. To obtain a
contradiction, we prove that the derivativegoét the origin is nonzero:

1 [ (do (®,00) (9)9:), | | |(do (@, 09) (9/0:),]
g = V190 (0. dogu (9/0:)) = Z TG Tt T elm )

Sincelp (g, (0)) | is equivalent ta,, it follows that for some positive consta@ and for larger, we have:

1 | (do (v 0g,) (0/02)) | | [(do(Pyogy)(0/0z)),| -
< = .
;<G (B n ORI, L Colldod, (0/05) I
Sinceg, converges tg in the C! sense, it follows thatlyj (0/9,) # 0, providing a contradiction. This
achieves the proof of Theorem 4.1. O

Estimate (4.2) of the Kobayashi pseudometric allows toystheé completness of the Kobayashi pseu-
dodistanceD.
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Corollary 4.5. Let D = {p < 0} be a relatively compact domain of finite D’Angelo type lessitbr equal
to four in an almost complex manifold/, J) of dimension four, wherg is a defining function oD, J-
plurisubharmonic in a neighborhood &f. Assume that)M, .J) admits a global strictly/-plurisubharmonic
function. Ther(D, J) is complete hyperbolic.

Proof. The fact that(M, J) admits a global strictly./-plurisubharmonic function and estimate (3.1) of
Proposition 3.4 leads to the Kobayashi hyperbolicitylof Then estimate (4.2) of the Kobayashi pseudo-
metric stated in Theorem 4.1 gives the completness of théomace(D, d(DJ)) by a classical integration
argument. O

4.3. Regions with noncompact automorphisms group.The next corollary is devoted to regions with
noncompact automorphisms group.

Corollary 4.6. Let D = {p < 0} be a relatively compact domain in a four dimensional almashplex
manifold (M, J) of finite D’Angelo type less than or equal to four. Assume piataC? defining function of
D, J-plurisubharmonic on a neighborhood b¥. If there is an automorphism @ with orbit accumulating

at a boundary point then there exists a polynonitabf degree at most four, without harmonic part such that
(D, J) is biholomorphic to{Rez2 + P (z1,%1) < 0}, Jst).

If the domainD is a relatively compact strictly-pseudoconvex domain with noncompact automorphisms
group then(D, J) is biholomorphic to a model domain. This was proved by H.Geusand A.Sukhov in
[12] in dimension four and by K.H.Lee in [20] in arbitrary @v) dimension.

Sketch of the proofWe suppose that for some poing € D, there is a sequencg of automorphisms of
(D, J) such thap, := f, (po) converges t® € 9D. We apply the scaling method to the sequengcesStill
keeping notations of subsectidnl, we set

E,:=A,0®,0f,:f, 1 (DNU) - D,.

This sequence of biholomorphisms is such that :

@) (f, ' (DnU)), converges td.

(2) D, converges to a pseudoconvex domBir= {Rezy + P (21,71) < 0}, whereP is a nonzero sub-
harmonic polynomial of degre€ 4 which contains a nonharmonic part. Changibdpy applying a
standard biholomorphism if necessary, we may suppose?hat, z7) is without harmonic terms.

(3) For any compact subsét C D, the sequencé||F, ||c1 (k) is bounded.

Hence, we may extract froiff’, ), a subsequence converging, on any compact subdetotheC> sense,
to a(.J, Js)-holomorphic mapgF' : D — D. Finally F' is a(.J, Js; )-biholomorphism fromD to D. O
4.4. Nontangential approach in the general setting.In this subsection, refering to I.Graham [14], we
give a sharp estimate of the Kobayashi pseudometric of adpseavex region in a cone with vertex at a

boundary point of arbitrary finite D’Angelo type. We denote/b:= {—Rezs > k||z||}, where0 < k < 1,
the cone with vertex at the origin and axis the negative rgakis.

Theorem 4.7. Let D = {p < 0} be a domain of finite D’Angelo type {iR?, J), where
p(21,22) = Rezy + Hop (21,71) + O (|2 + | 22]]|2]])

is a C? defining function ofD, J-plurisubharmonic on a neighborhood &f. We suppose thatly,, is a
homogeneous subharmonic polynomial of deg@eeadmitting a nonharmonic part. Then there exists a
positive constant’ such that for every € D N A and everyv € T),M:

|v1] |va|
K (p,v) > C — + .
o ) <|p<p>|m o 0]
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Before proving Theorem 4.7 we need the following crucial e

Lemma 4.8. There exist a neighborhodd of the origin and a positive constaatsuch thatifp € DNUNA
then

pE {z € C? :|z| < Cidist (p, 8D)ﬁ ,|z2] < Chdist (p, 8D)} .

Proof. According to the fact thadlist (z,0D) is equivalent top (z) | = —Rezs + O (||z]|*) and to the
definition of the coné\, we have:

lim ﬂ

z—0,ze DA dist (z,9D)

This implies the existence of a positive constahtsuch that

=1.

1
||pH < —E%BPQ < CldiSt (p’ aD) )
whenevep € D N A is sufficiently close to the origin. Thus
pE {z € C? : |z | < Cidist (p, 8D)ﬁ ,|z2] < Chdist (p, 8D)} ,

for p € D N A sufficiently close to the origin.
O

The proof of Theorem 4.7 is similar and easier than proof aforbm 4.1. For convenience, we write it.

Proof of Theorem 4.7Let U be a neighborhood of the origin. We define an infinitesimalgsenetric N
onDNU C R* by:
vy v

o)z e @)

N (p,v) :=
for everyp € DN U and every € T,C2.

We have to find a positive constafitsuch that for every-holomorphic disa: : A — D N U, such that
if u(0) € A then:
N (u(0),dou (0/0,)) < C.
Suppose by contradiction that this inequality is not trbef is, there exists a sequenceJeholomorphic
discsu, : A — D N U such that

u, (0) € A and N (u, (0),dou, (8/9)) > 2

Then consider a sequengg, ), of points inA, /, such that

2v
O Wl < Ny e @702))

(2) N (uy (y0) ,dy,uwy, (0/0x)) > v?, and

() Yo+ Au/N(u (50).dy, v (8)02)) S D12 Tor sufficiently largew.

Then we define a sequence.bholomorphic discg, : A, — DNU by

= U C
0@ = (0 Sy )
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For largev, we havey, (0) = u, (y,) in DN U N A andg, (0) converges to the origin. Set
d, :=dist (g, (0),0D),
and consider the following dilations @f*:
Ay i (21,22) — <53”1‘21,5;122> .

In order to extract from\, o g, a subsequence which converges to a Brody curve, we needlibwifng
Lemma.
Lemma 4.9. There exists a positive constantsuch that:

(1) there exists a positive constaf such that:
(4.9) Ay o gy (10A,) € Mgy x Ay,

(2) there is a positive constaui, such that for every large we have :
(4.10) ld (A © gv) llcorgn,) < Coa.
Proof. We first prove (4.9). We define a nefvholomorphic disd:, (¢) := g, (v¢) from the unit discA to
D,,. According to Lemma 4.8, we have

hy (0) = g, (0) € {z € €2+ || < C1027 , |25] < C16,}.
This implies:
hy (o) C {2 € C : |21] < CodE™, 29| < Cod, ),

1
for positive constants, andCy, since Lemma 4.3 is true if we replacép, 6,) by 6;™ . Hence

1
[ (ToAV) - {Z S Cc? ‘2’1’ < Cpdz™, ’22‘ < CQ5V}.
After dilations, this leads to (4.9).

The proof of (4.10) is similar to (4.8) of Lemma 4.4, since slegluence of structurg¢d, ), J converges
on any compact subset 6f in theC! sense ta/,; because/ is diagonal. O

Hence according to Lemma 4.9 we may extract fibpo g, a subsequence, still denoted byo g, wich
converges in th€! sense to a standard complex lipe: C — ({Rezo + Hap, (21,7%1) < 0}, Js), where
the domain({ Rezs + P (21,%1) < 0}, Jg) is Brody hyperbolic sincéls,, (z1,z1) contains a nonharmonic
part. Then the standard complex lijiés constant. To obtain a contradiction, we prove that thevaéve of
g is nonzero:

1_ _ 1(dogy(9/0:))1| | [(dog,(9/0z))s]
5 N(g,(0),dog,(0/0:)) e (O] + PRI

Sincelp (g, (0)) | is equivalent ta,, it follows that for some positive consta@t we have for large’:

e <|<do<gyzgla/ax>>1| . |<do<gy>5<a/am>>2|> _ Culldo(Ay 0 0)(0/00) 1.

This provide a contradiction. O
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5. APPENDIX: CONVERGENCE OF THE STRUCTURES INVOLVED BY THE SCALING METHOD

In this appendix, we prove that, generically, the convergenf the sequence of structures involved by the
scaling method to the standard structuggoccurs only on a neighborhood of boundary points of D’Angelo
type less than or equal to four.

Let D = {p < 0} be a pseudoconvex region of finite D’Angelo type in R*, wherep has the following
expression on a neighborhoédof the origin:

p(21,22) = Reza + Hop, (21,21) + O (|21 + |22]||2]))

where Hy,,, is a homogeneous subharmonic polynomial of de@reeadmitting a nonharmonic part. As-
sume thatp, is a sequence of points i N U converging to the origin, and, for large consider the
sequence of diffeomorphisms” : R* — R? given in the scaling method. We suppose that the function
P’ = po (®) tis given by:
2m
P’ (21,20) = Rezy + Re (a,27) + Bl + Y P (21,71,0)) + O (|21 ™ + [0 [|2]]) -
k=3

Moreover the structurd” := (&), J satisfies (2.2) and (2.3). To fix notations, we set:
ay by 0 0

cf —ay 0 0

0 0 af by

0 0 «¢§ —aj

J =

Now, consider the following diffeomorphism &* defined by:
(5.1) U, (21,91, 22, 92) = (v1 + Ripyy1 + S10, 72 + Royyya + So)

converging to the identity and such th&tl ;! = Id. We suppose thak;, , andS;, ., for k = 1,2 are real
functions depending smoothly an,y; andy, and thatR, , andS; , are given by:

Ryy = —apai+oyi + O (|21 + 3 + ln2lllz]) .
(5.2)
SQ7V = _2aum1y1 +O(’21‘3+y§+ ‘yQH‘ZH) :
We write:
( Ry, = 7“5,1/90% + repT1y1 + T?,uy% + 7’1,1/5'35’ + 7'2,1/55%y1 + 7“3,u901y%+
rayi + O (|z1]* + 3 + lw2lll=])
(5.3)

_ 2 2 3 2 2
Sty = S5,%7 + S6,T1Y1 + S7LYT + 51,27 + S2,T7Y1 + 53,T1YT+

sawyy + O (2] + v3 + lw2lllzll) -
It follows that;

2m

proW,t(z1,22) = Rezm+ Bylaf| + ) Pi(z1,70,0) + O (| + [z2l2])) -
k=3
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min ( Oy > min ( Oy > ) 5ﬁ
T, 1= , — ] 57 .
Bul) k=8 2m=1 \ || P (., ) ||

And we consider the following anisotropic dilations©#:

Then we define

SIS
e

Ay (21, 29) == (7';121,5;122) .

If we write J,, := (¥,,), J¥ as:

o Jl,u Bl,u : L (JV):I) (Ju)g
J, = < Cry Joy > with Cy, = ( 411 3 ,

then we have:

. Jl,z/ (TI/ZI> 61/22) Ty_l(sl/Bl,l/ (TI/ZI> 61/22)
(Ay)* v (Z) N ( 7—116;101,1/ (7—11217 61/22) J2,1/ (Tuzla 51122) ’

We have generically the following situation:

Proposition 5.1. The sequence of structurés, ), .J,, converges to the standard structurg if and only if
the D’Angelo type of the origin is less than or equal to four.

Proof. We notice thaf A, ), J,, converges to/, if and only if C1, = O (|21|*™71) + O (|22]). Indeed if
Crp =0 (|z1]*™1) + O (|22|) then

71,6;101,,, (Tv21,0,22) = 73m5;10|21|2m + 73m0|z1|2m,

1
which converges to the zefbby 2 matrix sincer,, < ;™ and sinceC; , tends to the zer@ by 2 matrix.
Conversely ifCy, = O (|z1]F) + O (|z2]), with & < 2m — 1, then(A,), J, converges to a polynomial
integrable structurd = J,; + O|z1|* wich is generically different frony;.

We have proved in Lemma 4.2 that when the origin is a point okrigjelo type four, therC;, =
O (|21*) + O (|22]) and so(A,)«J, = (A, 0 ¥,), J¥ converges td/,; whenv tends to+oo, with:

Rl,l/ = Sl,u = 07
2 2
RQ,V = —our] + Yy,

SQ’V = —20@.%'13/1 .

In case the D’Angelo type of the origin is greater than foug @annot guarantee the convergence of
7,6, 1CY (1,21, 0, 22) when we only remove harmonic terms. So we need to find a momrgesequence
of diffeomorphismsl,, defined by (5.1), (5.2) and (5.3) and such tfat, = O (|z1|*™ 1) + O (|22]).

Claim. There are no polynomiak; ,, S1,., R2, andSs, such that”; , does not contain any order three
terms inz; andy; .
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A direct computation leads to:

— v v — v 14 — 6R17V
Oéul (Jv)? (2) = (a5 —af) (‘I’ul (Z)) z1 — (] +b3) (‘I’ul (Z)) Y1 — o2y
o aRl,u - aSl,u + aSl,u +x aRl,u aSl,u aRl,u aSl,u
! Byl ! (31‘1 9 Byl ! (31‘1 (31‘1 9 8.%'1 Byl
OB 051, OBy, 081, (aSLV)? - (asl,y>2
- Oyr Oz Yoy on N\ "oy "\ oy
. OR1, ORs, . 051, OR2, . OR1, ORs, .
! Oxr1  Oys ! dy1  0ys u Oy1 Oy
851,1/ aRQ,y 4
I gt 40 (|21l 4 [eal 2]
and to
-1 3 v v -1 v v -1 8R17V
o, (J)y(2) = (BY —05) (¥, (2)) w1 + (af +a5) (¥, (2)) y1 + 21

8.%'1

—U1 - — 21
o 0y oy1 Oz oy

ORy,, 051, . ORy, 051, - ORy, 051, ORy, 051,
Oxy  Oxy ! Yoy, om h Oy1 Oy

Oxr1 On
o aRl,u aR2,1/ o aSl,u aR2,1/ _ aRl,u 8R2,l/ + asl,u aR2,1/
oy oy om0y, om oy, oy oy

ORy, 951, 951, (aRLV)? (aRLy>2
— 1 — X1 +

O (lzaf* + |2ll=11) -

The only order two terms im; andy; of a; ! (J¥)? (z) and ofa; ! (J¥)3 (z) are those contained, respec-
tively, in
ORy, ORy, 051, 051,
Y1 oz 1 I - 9y + o

and

x aRlu _ aRLV 8517V o 8517V
! 0x1 y 6y1 s 0xq ! 33/1 .

Vanishing these order two terms leads to:
Riy = 715,27 — 285,211 — 5045 + T10@7 + ropaiyn + rux1yt + rauyi+
O (|z1]* + 3 + lw2lll=)

_ 2 2 3 2 2 3
Siy = 85,27+ 285,T1Y1 — S5uY7 + S1,,T7 + S2,TTY1 + 83, T1YT + S4 Y7+

0 (|Zl|3 +y3 + lyall2]) -
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Then it follows that:

= v v - OR N
a, ()1 (2) = (a5 —af) (9, (2)) 21— (cf +5) (U, (2)) v — 83611
aRl,u 65171, 651711 4
—r =t sty = 4 O (laf + =)

and that

o (I3 () = (O —b%) (U5t (2) 21 + (af + ) (‘1’;1(2))%”18@]%—;1’”

. 8R1V . 8517y . aSl,V
Y1 o Y1 o7, 1 o

+0 (lal* + [zll=l) -

SinceJ” satisfies (2.3), we have:
( (a5 —af) (T,1 (2)) @1 — (] +05) (U1 (2)) 1 = Hap(21,51)+
O (Jaf* + |22l l12]])

OF = 05) (9,1 (2) 21+ (af +a5) (¥, ' (2) 1 = Hy,, (z1,01) +

O (Jz1]* + l2ll=l]) ,

whereHs , (z1,y1) andHj , (21, y1) are real homogeneous polynomials of degree threg andy; which
are generically non identically zero. Since we cannot imshe convergence of

ayTy5;1H3,u (Tuxh Tuyl) - aVT35;1H37V (x17 yl)

and
—1 g ds—1 g
ay 1,0, Hy,, (Tyw1, 70y1) = o768, Hy , (21,91)

we want to cancel polynomiald , (z1,y1) andHj , (1, y1) by order three terms im; andy; contained

n
aRl,y 8R1,1/ aSl,u aSl,u
€1

—U1 o1 — X1 o - o, +1n o0

and
aRLy aRl,y aSl,u aSl,u

€1 021 U1 e U1 o2y €1 e

Finally, vanishing order three terms in andy; of o, ' (J¥)? () and ofa; ! (J¥); () involve the
following system of linear equations:

3020 0 1 0 0 1
3000 0 -1 0 0 To.
0100 3 0 0 0 T3,
0203 0 0 —1 0 rw | _y
0100 -3 0 -2 0 S1
0010 0 0 0 -3 2.
0010 0 2 0 3 S3.
0003 0 0 1 0 Sy
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Since this8 x 8 system of linear equations is not a Cramer system, it folltdves there does not exist,
generically, polynomialg?; , andS; ., such that there are no order three termjrandy; in (J”)i’ (z)and

(V)5 (2). 0
REFERENCES

[1] J.-F.Barraud, E.MazzilliRegular type of real hyper-surfaces in (almost) complexifolis, Math. Z., 248 (2004), no. 4,
757-772.
[2] F.BertelootAttraction des disques analytiques et continuité hakt@re d'applications holomorphes proprd®pics in com-
plex analysis (Warsaw, 1992), Banach Center Publ., 31siPdéicad. Sci., Warsaw, 1995, 91-98.
[3] F.Berteloot,Principe de Bloch et estimations de la métrique de Kobaydahs les domaines d&?, J. Geom. Anal., 13-1
(2003), 29-37.
[4] T.Bloom-l.GrahamA geometric characterization of type on real submanifold§’s, J. Diff. Geometry, 12 (1977), 171-182.
[5] D.Catlin, Estimates of invariant metrics on pseudoconvex domairimiision twgMath. Z,200(1989),429-466.
[6] B.Coupet, H.Gaussier,A.Sukhokefferman’s mapping theorem on almost complex manifoldsomplex dimension two.
Math. Z., 250 (2005), no. 1, 59-90.
[7] J.-P.D’Angelo,Real hypersurface, orders of contact, and applicatiéng. of Math. 115 (1982), 615-637.
[8] J.-P.D’Angelo,Finite type conditions for real hypersurfacéDiff. Geometry, 14 (1979), 59-66.
[9] K.Diederich, A.SukhovPlurisubharmonic exhaustion functions and almost comglein structurespreprint, math.CV/.
[10] R.Debalme Kobayashi hyperbolicity of almost complex manifolgseprint of the University of Lille, IRMA 50 (1999),
math.CV/9805130.
[11] J.E.Fornaess, N.Sibongonstruction of p.s.h. functions on weakly pseudoconvexadtws Duke Math. J., vol. 58 (1989),
633-655.
[12] H.Gaussier, A.SukhoEstimates of the Kobayashi metric on almost complex maisjfBull. Soc. Math. France, 133 (2005),
no. 2, 259-273.
[13] H.Gaussier, A.Sukho¥Mong-Rosay Theorem in almost complex manifgdsprint, math.CV/0412095.
[14] 1.Graham,Boundary behaviour of the Caratheodory and Kobayashi mm&win strongly pseudoconvex domaingih with
smooth boundaryTrans. Amer. Math. Soc. 207 (1975), 219-240.
[15] M.Gromov,Pseudoholomorphic curves in symplectic manifpldgent. Math. 82-2 (1985), 307-347.
[16] F.HagguiFonctions PSH sur une variété presque compl€xeRr. Acad. Sci. Paris, Ser.l 335 (2002), 1-6.
[17] S.lvashkovich, J.-P.Ros&chwarz-type lemmas for solutionsisinequalities and complete hyperbolicity of almost comple
manifolds Ann. Inst. Fourier 54 (2004), no. 7, 2387-2435.
[18] J.Kohn,Boundary behavior a® on weakly pseudoconvex manifolds of dimension fviff Geometry, 6 (1972), 523-542.
[19] B.Kruglikov, Existence of close pseudoholomorphic disks for almost Eommanifolds and their application to the
Kobayashi-Royden pseudonagr(Russian) Funktsional. Anal. i Prilozhen. 33 (1999), no4@-58, 96; translation in Funct.
Anal. Appl. 33 (1999), no. 1, 38-48.
[20] K.H.Lee,Domains in almost complex manifolds with an automorphisiit accumulating at a strongly pseudoconvex bound-
ary point, Michigan Math. J., 54 (2006), no. 1, 179-205.
[21] A.Nijenhuis, W.Woolf,Some integration problems in almost-complex and compleifolds Ann. Math. 77(1963), 429-484.
[22] N.Sibony,A class of hyperbolic manifolgdsnn. of Math. Stud., 100, Princeton Univ. Press, Princeboh 1981., 91-97
[23] J.-C.SikoravSome properties of holomorphic curves in almost complexfoldg Holomorphic Curves in Symplectic Ge-
ometry, eds. M. Audin and J. Lafontaine, Birkhauser (19985-189.

LATP, C.M.l, 39RUE JOLIOT-CURIE 13453 MARSEILLE CEDEX13, FRANCE
E-mail addressbertrand@ni . uni v-nrs. fr



