Florian Bertrand 
  
PSEUDOCONVEX REGIONS OF FINITE D'ANGELO TYPE IN FOUR DIMENSIONAL ALMOST COMPLEX MANIFOLDS

Keywords: 2000 Mathematics Subject Classification. Primary 32Q60, 32T25, 32T40, 32Q45, 32Q65 Almost complex structure, peak plurisubharmonic functions, Kobayashi pseudometric, D'Angelo type

Let D be a J-pseudoconvex region in a smooth almost complex manifold (M, J) of real dimension four. We construct a local peak J-plurisubharmonic function at every point p ∈ bD of finite D'Angelo type. As applications we give local estimates of the Kobayashi pseudometric, implying the local Kobayashi hyperbolicity of D at p. In case the point p is of D'Angelo type less than or equal to four, or the approach is nontangential, we provide sharp estimates of the Kobayashi pseudometric.

INTRODUCTION

Analysis on almost complex manifolds recently became a fondamental tool in symplectic geometry with the work of M.Gromov in [START_REF] Gromov | Pseudoholomorphic curves in symplectic manifolds[END_REF]. The local existence of pseudoholomorphic discs proved by A.Nijenhuis-W.Woolf in their paper [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF], allows to define the Kobayashi pseudometric, which is crucial for local analysis.

In the present paper we study the behaviour of the Kobayashi pseudometric of a J-pseudoconvex region of finite D'Angelo type in an almost complex manifold (M, J) of dimension four. Finite D'Angelo type appeared naturally in complex manifolds when considering the boundary behaviour of the ∂ operator (see [START_REF] Angelo | Real hypersurface, orders of contact, and applications[END_REF], [START_REF] Angelo | Finite type conditions for real hypersurfaces[END_REF], [START_REF] Kohn | Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two[END_REF], [START_REF] Bloom | A geometric characterization of type on real submanifolds of C n[END_REF]). Moreover on complex manifolds of dimension two, the D'Angelo type unifies many type conditions as the finite regular type. Finite regular type was recently characterized intrinsically by J.-F.Barrault-E.Mazzilli [START_REF] Barraud | Regular type of real hyper-surfaces in (almost) complex manifolds[END_REF] by means of Lie brackets, which generalizes in the non integrable case, a result of T.Bloom-I.Graham [START_REF] Bloom | A geometric characterization of type on real submanifolds of C n[END_REF].

Our main result is the construction of a local peak J-plurisubharmonic function on pseudoconvex regions provided by Theorem A (see also Theorem 2.6):

Theorem A. Let D = {ρ < 0} be a domain of finite D'Angelo type in an almost complex manifold (M, J) of dimension four. We suppose that ρ is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. Let p ∈ ∂D be a boundary point. Then there exists a local peak J-plurisubharmonic function at p.

Theorem A allows to localize pseudoholomorphic discs and to obtain lower estimates of the Kobayashi pseudometric which provide the local Kobayashi hyperbolicity of J-pseudoconvex regions of D'Angelo type 2m (Proposition 3.4 and Proposition 3.10). As an application we prove the 1/2m-Hölder extension of biholomorphisms up to the boundary (Proposition 3.9). In order to obtain sharp lower estimates of the Kobayashi pseudometric similar to those given in complex manifolds by D.Catlin [START_REF] Catlin | Estimates of invariant metrics on pseudoconvex domains if dimension two[END_REF] (see also [START_REF] Berteloot | Principe de Bloch et estimations de la métrique de Kobayashi dans les domaines de C 2[END_REF]), we consider a natural scaling method. However this reveals the fact that for a domain of finite D'Angelo type greater than four, the sequence of almost complex structures obtained by any polynomial scaling process does not converge generically to the standard structure; this is presented in the Appendix. This may be related to the fact that finite D'Angelo type is based on purely complex considerations, as the boundary behaviour of the Cauchy-Riemann equations. Hence we provide sharp lower estimates of the Kobayashi pseudometric for a region of finite D'Angelo type four (see also Theorem 4.1): Theorem B. Let D = {ρ < 0} be a relatively compact domain of finite D'Angelo type less than or equal to four in an almost complex manifold (M, J) of dimension four, where ρ is a C 2 defining function of D, Jplurisubharmonic on a neighborhood of D. Then there is a positive constant C with the following property: for every p ∈ D and every v ∈ T p M there exists a diffeomophism Φ p * in a neighborhood U of p, such that:

K (D,J) (p, v) ≥ C | (d p Φ p * v) 1 | |ρ (p) | 1 4 + | (d p Φ p * v) 2 | |ρ (p) | .
We point out that the approach we use, based on some renormalization principle of pseudoholomorphic discs, gives also a different proof of precise lower estimates obtained by H.Gaussier-A.Sukhov in [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF] for strictly J-pseudoconvex domains in arbitrary dimension. As an application of Theorem B, we obtain the (local) complete hyperbolicity of J-pseudoconvex regions of D'Angelo type less than or equal to four (Corollary 4.5) and we give a Wong-Rosay theorem for regions with noncompact automorphisms group (Corollary 4.6).

Finally, in order to obtain precise estimates near a point of arbitrary finite D'Angelo type, we are interested in the nontangential behaviour of the Kobayashi pseudometric (see also Theorem 4.7):

Theorem C. Let D = {ρ < 0} be a domain of finite D'Angelo type in an almost complex manifold (M, J) of dimension four, where ρ is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. Let q ∈ ∂D be a boundary point of D'Angelo type 2m and let Λ ⊂ D be a cone with vertex at q and axis the inward normal axis. Then there exists a positive constant C such that for every p ∈ D ∩ Λ and every

v = v n + v t ∈ T p M : K (D,J) (p, v) ≥ C |v n | |ρ (p) | 1 2m + |v t | |ρ (p) | ,
where v n and v t are the normal and the tangential parts of v with respect to q.

PRELIMINARIES

We denote by ∆ the unit disc of C and by ∆ r the disc of C centered at the origin of radius r > 0.

1.1. Almost complex manifolds and pseudoholomorphic discs. An almost complex structure J on a real smooth manifold M is a (1, 1) tensor field which satisfies J 2 = -Id. We suppose that J is smooth. The pair (M, J) is called an almost complex manifold. We denote by J st the standard integrable structure on C n for every n. A differentiable map f : (M ′ , J ′ ) -→ (M, J) beetwen two almost complex manifolds is said to be (J ′ , J)-holomorphic if J (f (p))

• d p f = d p f • J ′ (p)
, for every p ∈ M ′ . In case M ′ = ∆ ⊂ C, such a map is called a pseudoholomorphic disc. If f : (M, J) -→ M ′ is a diffeomorphism, we define an almost complex structure, f * J, on M ′ as the direct image of J by f :

f * J (q) := d f -1 (q) f • J f -1 (q) • d q f -1 ,
for every q ∈ M ′ .

The following lemma (see [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF]) states that locally any almost complex manifold can be seen as the unit ball of C n endowed with a small smooth pertubation of the standard integrable structure J st . Lemma 1.1. Let (M, J) be an almost complex manifold, with J of class C k , k ≥ 0. Then for every point p ∈ M and every λ 0 > 0 there exist a neighborhood U of p and a coordinate diffeomorphism

z : U → B centered a p (ie z(p) = 0) such that the direct image of J satisfies z * J (0) = J st and ||z * (J) -J st || C k ( B) ≤ λ 0 .
This is simply done by considering a local chart z : U → B centered a p (ie z(p) = 0), composing it with a linear diffeomorphism to insure z * J (0) = J st and dilating coordinates.

So let J be an almost complex structure defined in a neighborhood U of the origin in R 2n , and such that J is sufficiently closed to the standard structure in uniform norm on the closure U of U . The J-holomorphy equation for a pseudoholomorphic disc u : ∆ → U ⊆ R 2n is given by

(1.1) ∂u ∂y -J (u) ∂u ∂x = 0.
According to [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF], for every p ∈ M , there is a neighborhood V of zero in T p M , such that for every v ∈ V , there is a J-holomorphic disc u satisfying u (0) = p and d 0 u (∂/∂x) = v.

Levi geometry.

Let ρ be a C 2 real valued function on a smooth almost complex manifold (M, J) . We denote by d c J ρ the differential form defined by

d c J ρ (v) := -dρ (Jv)
, where v is a section of T M . The Levi form of ρ at a point p ∈ M and a vector v ∈ T p M is defined by

L J ρ (p, v) := d (d c J ρ) (p) (v, J(p)v) = dd c J ρ(p) (v, J(p)v) .
In case (M, J) = (C n , J st ), then L Jst ρ is, up to a positive multiplicative constant, the usual standard Levi form :

L Jst ρ(p, v) = 4 ∂ 2 ρ ∂z j ∂z k v j v k .
We investigate now how close is the Levi form with respect to J from the standard Levi form. For p ∈ M and v ∈ T p M , we easily get :

(1.2) L J ρ (p, v) = L Jst ρ(p, v) + d(d c J -d c Jst )ρ(p)(v, J(p)v) + dd c Jst ρ(p)(v, J(p) -J st )v). In local coordinates (t 1 , t 2 , • • • , t 2n ) of R 2n , (1.
2) may be written as follows

L J ρ (p, v) = L Jst ρ(p, v) + t v(A -t A)J(p)v + t (J(p) -J st )vDJ st v + t (J(p) -J st )vD(J(p) -J st )v (1.3)
where

A := i ∂u ∂t i ∂J i,j ∂t k 1≤j,k≤2n
and

D := ∂ 2 u ∂t j ∂t k 1≤j,k≤2n
.

Let f be a (J ′ , J)-biholomorphism from (M ′ , J ′ ) to (M, J). Then for every p ∈ M and every v ∈ T p M :

L J ′ ρ (p, v) = L J ρ • f -1 (f (p) , d p f (v)) .
This expresses the invariance of the Levi form under pseudobiholomorphisms. The next proposition is useful in order to compute the Levi form (see [START_REF] Debalme | Kobayashi hyperbolicity of almost complex manifolds[END_REF], [START_REF] Haggui | Fonctions PSH sur une variété presque complexe[END_REF] and [START_REF] Ivashkovich | Rosay Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF]).

Proposition 1.2. Let p ∈ M and v ∈ T p M . Then L J ρ (p, v) = ∆ (ρ • u) (0) , where u : ∆ → (M, J) is any J-holomorphic disc satisfying u (0) = p and d 0 u (∂/∂ x ) = v.
Proposition 1.2 leads to the following proposition-definition :

Proposition 1.3. The two statements are equivalent :

(1) ρ • u is subharmonic for any J-holomorphic disc u : ∆ → M .

(2) L J ρ(p, v) ≥ 0 for every p ∈ M and every v ∈ T p M .

If one of the previous statements is satisfied we say that ρ is J-plurisubharmonic. We say that ρ is strictly J-plurisubharmonic if L J ρ(p, v) is positive for any p ∈ M and any v ∈ T p M \ {0}. J-plurisubharmonic functions play a very important role in almost complex geometry : they give attraction and localization properties for pseudoholomorphic discs. For this reason the construction of J-plurisubharmonic functions is crucial.

Similarly to the integrable case, one may define the notion of pseudoconvexity in almost complex manifolds. Let D be a domain in (M, J). We denote by T J ∂D := T ∂D ∩ JT ∂D the J-invariant subbundle of T ∂D.

Definition 1.4.

(1) The domain

D is J-pseudoconvex (resp. it strictly J-pseudoconvex) if L J ρ(p, v) ≥ 0 (resp. > 0) for any p ∈ ∂D and v ∈ T J p ∂D (resp. v ∈ T J p ∂D \ {0}). (2) A J-pseudoconvex region is a domain D = {ρ < 0} where ρ is a C 2 defining function, J- plurisubharmonic on a neighborhood of D.
We recall that a defining function for D satisfies dρ = 0 on ∂D.

The following Lemma is useful in order to compute the Levi form of some functions.

Lemma 1.5. Assume that J is a diagonal almost complex structure on R 4 that coincides with the standard structure J on C × {0}. To fix notations we suppose that its matricial representation is given by :

J =     a 1 b 1 0 0 c 1 -a 1 0 0 0 0 a 2 b 2 0 0 c 2 -a 2     .
Then the Levi form of some smooth real valued function f at a point z = (z 1 , z 2 ) and v = (1, 0, 0, 0) is equal to

L J f (z, v) = -c 1 ∆ 1 f + O (|z 2 |)).
where

∆ 1 f := ∂ 2 f ∂x 1 ∂x 1 + ∂ 2 f ∂y 1 ∂y 1 .
Proof. Let us compute the Levi form of some smooth real valued function f at a point z = (z 1 , z 2 ) and v = (1, 0, 0, 0) :

c -1 1 L J f (z, v) = -∆ 1 f + -2 ∂ 2 f ∂x 1 ∂y 1 a 1 + ∂ 2 f ∂x 1 ∂x 1 (1 + b 1 ) + ∂ 2 f ∂y 1 ∂y 1 (c 1 -1) + ∂f ∂x 1 ∂b 1 ∂x 1 - ∂a 1 ∂y 1 + ∂f ∂y 1 ∂a 1 ∂x 1 + ∂c 1 ∂y 1 = -∆ 1 f + -2 ∂ 2 f ∂x 1 ∂y 1 O (|z 2 |) + ∂ 2 f ∂x 1 ∂x 1 O (|z 2 |) + ∂ 2 f ∂y 1 ∂y 1 O (|z 2 |) + ∂f ∂x 1 O (|z 2 |) + ∂f ∂y 1 O (|z 2 |) = -∆ 1 f + O (|z 2 |) .

CONSTRUCTION OF A LOCAL PEAK PLURISUBHARMONIC FUNCTION

This section is devoted to the proof of Theorem A (see Theorem 2.6).

Pseudoconvex regions of finite D'Angelo type.

In this subsection we describe a pseudonconvex region on a neighborhood of a boundary point of finite D'Angelo type. We point out that all our considerations are purely local. Assume that D = {ρ < 0} is a J-pseudoconvex region in C 2 and that the structure J is defined on a fixed neighborhood U of D. We suppose that the origin is a boundary point of D.

Definition 2.1. Let u : (∆, 0) → R 4 , 0, J be a J-holomorphic disc satisfying u (0) = 0. The order of contact δ 0 (∂D, u) with ∂D at the origin is the degree of the first term in the Taylor expansion of ρ • u. We denote by δ (u) the multiplicity of u at the origin.

We now define the D'Angelo type and the regular type of the real hypersurface ∂D at the origin.

Definition 2.2.

(1) The D'Angelo type of ∂D at the origin is defined by:

∆ 1 (∂D, 0) := sup δ 0 (∂D, u) δ (u) , u : ∆ → R 4 , J J-holomorphic , u (0) = 0 .
The point 0 is a point of finite D'Angelo type 2m if ∆ 1 (∂D, 0) = 2m < +∞.

(2) The regular type of ∂D at origin is defined by:

∆ 1 reg (∂D, 0) := sup{δ 0 (∂D, u) , u : ∆ → R 4 , J J-holomorphic , u (0) = 0, d 0 u = 0}.
Since the regular type of ∂D at the origin consists in considering only regular discs we have:

(2.1) ∆ 1 reg (∂D, 0) ≤ ∆ 1 (∂D, 0) . The type condition as defined in part 1 of Definition 2.2 was introduced by J.-P.D'Angelo [START_REF] Angelo | Real hypersurface, orders of contact, and applications[END_REF], [START_REF] Angelo | Finite type conditions for real hypersurfaces[END_REF] who proved that this coincides with the regular type in complex manifolds of dimension two. After Proposition 2.3, we will also prove that the D'Angelo type and the regular type coincide in four dimensional almost complex manifolds (see Proposition 2.4).

We suppose that the origin is a point of finite regular type. Then let u : ∆ → R 4 be a regular Jholomorphic disc of maximal contact order 2m. We choose coordinates such that u is given by u (ζ) = (ζ, 0), J (z 1 , 0) = J st and such that the complex tangent space T 0 ∂D ∩ J(0)T 0 ∂D is equal to {z 2 = 0}. Then by considering the family of vectors (1, 0) at base points (0, t) for t = 0 small enough, we obtain a family of J holomorphic discs u t such that u t (0) = (0, t) and d 0 u t (∂/∂ x ) = (0, 1). Due to the parameters dependance of the solution to the J-holomorphy equation (1.1), we straighten these discs into the complex lines {z 2 = t}. We then consider a transversal foliation by J-holomorphic discs and straighten these lines into {z 1 = c}. In these new coordinates still denoted by z, the matricial representation of J is diagonal:

(2.2) J =     a 1 b 1 0 0 c 1 -a 1 0 0 0 0 a 2 b 2 0 0 c 2 -a 2     .
Since J (z 1 , 0) = J st we have

(2.3) J = J st + O (|z 2 |) .
In the next fundamental proposition we describe precisely the local expression of the defining function ρ.

Proposition 2.3. The J-plurisubharmonic defining function for the domain D has the following local expression:

ρ = ℜez 2 + H 2m (z 1 , z 1 ) + H(z 1 , z 2 ) + O |z 1 | 2m+1 + |z 2 ||z 1 | m + |z 2 | 2
where H 2m is a homogeneous polynomial of degree 2m, subharmonic which is not harmonic and

H(z 1 , z 2 ) = ℜe m-1 k=1 ρ k z k 1 z 2 .
Proof. Since T 0 ∂D ∩ J(0)T 0 ∂D = {z 2 = 0}, we have

ρ = ℜez 2 + O( z 2 ).
Moreover the disc ζ → (ζ, 0) being a regular J-holomorphic disc of maximal contact order 2m, the defining function ρ has the following local expression:

ρ = ℜez 2 + H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z ,
where H 2m is a homogeneous polynomial of degree 2m.

We prove that the polynomial H 2m is subharmonic using a standard dilation argument. Consider the non-isotropic dilation of

C 2 Λ δ (z 1 , z 2 ) := δ -1 2m z 1 , δ -1 z 2 .
Due to Proposition 1.2, the domain

Λ δ (D) = {δ -1 ρ • Λ -1 δ (z 1 , z 2 ) < 0} is (Λ δ ) * (J)-pseudoconvex. Moreover Λ δ (D) converges in the sense of local Hausdorff set convergence to D := {Re (z 2 ) + H 2m (z 1 , z 1 ) < 0},
as δ tends to zero and the sequence of structures (Λ δ ) * J converges to the standard structure J st . It follows that the limit domain D is J st -pseudoconvex implying that H 2m is subharmonic. Now we prove H 2m that contains a nonharmonic part. By contradiction, we assume that H 2m is harmonic. Then H 2m can be written ℜez 2m

1 . According to Proposition 1.1 of [START_REF] Ivashkovich | Rosay Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF], and since the structure J is smooth there exists, for a sufficiently small λ > 0, a pseudoholomorphic disc u : ∆ → (R 4 , J) such that:

                           u (0) = 0 ∂u ∂x (0) = λ 1 2m , 0, 0, 0 ∂ k u ∂x k (0) = (0, 0, 0, 0) , for 1 < k < 2m ∂ 2m u ∂x 2m (0) = (0, 0, -λ (2m)!, 0
) . We prove that the contact order of such a regular disc u is greater than 2m which contradicts the fact that D is of regular type 2m. We denote by [ρ • u] 2m the homogeneous part of degree 2m in the Taylor expansion of ρ • u at the origin:

[ρ • u] 2m (x, y) = 2m k=0 a k x k y 2m-k . Let us prove that a k = ∂ k ∂x k ∂ 2m-k ∂y 2m-k ρ • u (0) is equal to zero for each 0 ≤ k ≤ 2m.
For a 2m , we have:

∂ 2m ∂x 2m ρ • u (0) = ℜe ∂ 2m ∂x 2m u 2 (0) + ℜe ∂ 2m ∂x 2m u 2m 1 (0) = -λ (2m)! + ℜe ∂ 2m ∂x 2m u 2m 1 (0) .
Since u 1 (0) = 0, it follows that the only non vanishing term in ℜe

∂ 2m ∂x 2m u 2m 1 (0) is (2m)!ℜe ∂u 1 ∂x (0) 2m = λ (2m)!.
This proves that a 2m = 0.

Then let 0 ≤ k < 2m:

∂ k ∂x k ∂ 2m-k ∂y 2m-k ρ • u (0) = ℜe ∂ k ∂x k ∂ 2m-k ∂y 2m-k u 2 (0) + ℜe ∂ k ∂x k ∂ 2m-k ∂y 2m-k u 2m 1 (0) .
For the same reason as previously, the only term to consider in ℜe

∂ k ∂x k ∂ 2m-k ∂y 2m-k u 2m 1 (0) is (2m)!ℜe ∂ ∂x u 1 (0) k ∂ ∂y u 1 (0) 2m-k = λ k 2m (2m)!ℜe ∂u 1 ∂y (0) 2m-k .
Then, since u is J-holomorphic, it satisfies the diagonal J-holomorphy equation:

∂u l ∂y = J l (u) ∂u l ∂x , for l = 1, 2,
where

J l = a l b l c l -a l (see (2.
2) for notations).

It follows that

λ k 2m (2m)!ℜe ∂u 1 ∂y (0) 2m-k = λ k 2m (2m)!ℜe J 1 (u (0)) ∂u 1 ∂x (0) 2m-k = λ (2m)!ℜe (i) 2m-k .
Moreover due to the condition

∂ k u 2 ∂x k (0) = (0, 0), for 1 ≤ k < 2m, it follows that the only part we need to consider in ∂ 2m-k ∂y 2m-k u 2 (0) is J 2 (u) ∂ ∂x ∂ 2m-k-1 ∂y 2m-k-1 u 2 (0) and by induction (J 2 (u)) 2m-k ∂ 2m-k ∂x 2m-k u 2 (0). Finally ℜe ∂ k ∂x k ∂ 2m-k ∂y 2m-k u 2 (0) = ℜe (J 2 (u (0))) 2m-k ∂ 2m u 2 ∂x 2m (0) = -λ (2m)!ℜe J 2 (u (0)) 2m-k (1, 0) = -λ (2m)!ℜe (i) 2m-k .
This proves that the homogeneous part [ρ • u] 2m is equal to zero.

For smaller order terms it is a direct consequence of u (0) = 0 and

∂ k u ∂x k (0) = (0, 0, 0, 0) , for 1 < k < 2m.
It remains to prove there are no term ℜeρ k z k 1 z 2 with k < m in the defining function ρ. This is done by contradiction and by computing the Levi form of ρ at a point z 0 = (z 1 , 0) and at a vector v = (X 1 , 0, X 2 , 0). Assume that

ρ = ℜez 2 + H 2m (z 1 , z 1 ) + H(z 1 , z 2 ) + ℜeρ k z k 1 z 2 + O |z 1 | 2m+1 + |z 2 ||z 1 | k+1 + |z 2 | 2 , with k < m. Replacing z 1 by (ρ k ) 1 k z 1 if necessary, we suppose ρ k = 1.
The Levi form of ℜez 2 at a point z 0 = (z 1 , 0) and at a vector v = (X 1 , 0, X 2 , 0) is equal to

L J ℜez 2 (z 0 , v) = (a 1 -a 2 ) (z 0 ) ∂a 2 ∂x 1 (z 0 ) + c 1 (z 0 ) ∂a 2 ∂y 1 (z 0 ) -c 2 (z 0 ) ∂b 2 ∂x 1 (z 0 ) X 1 X 2 + c 2 (z 0 ) ∂a 2 ∂y 2 (z 0 ) - ∂b 2 ∂x 2 (z 0 ) X 2 2 .
Due to (2.3) we have

             a 1 (z 0 ) = a 2 (z 0 ) = 0, c 2 (z 0 ) = 1, ∂a 2 ∂y 1 (z 0 ) = ∂b 2 ∂x 1 (z 0 ) = 0.
So the Levi form of ℜez 2 at z 0 = (x 1 , 0, 0, 0) and at a vector v = (X 1 , 0, X 2 , 0) is

L J ℜez 2 (z 0 , v) = ∂a 2 ∂y 2 (z 0 ) - ∂b 2 ∂x 2 (z 0 ) X 2 2 .
According to Lemma 1.5, the Levi form of

H 2m + O(|z 1 | 2m+1 ) at z 0 and v 1 = (X 1 , 0, X 2 , 0) is equal to L J (H 2m + O(|z 1 | 2m+1 )) (z 0 , v) = ∆ H 2m + O(|z 1 | 2m+1 ) X 2 1 + O(|z 1 | 2m-1 )X 1 X 2 .
According to the fact that the Levi form for the standard structure of H(z 1 , z 2 ) is identically equal to zero, and due to (1.3) and to (2.3), it follows that the Levi form of H(z 1 , z 2 ) at z 0 is equal to

L J H (z 0 , v) = O(|z 1 |)X 2 2 . Now the Levi form of O(|z 2 | 2 ) is equal to L J O(|z 2 | 2 ) (z 0 , v) = O(1)X 2 2 . And the Levi form of ℜez k 1 z 2 is equal L J ℜez k 1 z 2 (z 0 , v) = (kℜez k-1 1 )X 1 X 2 + O(|z 1 | k )X 2 2 .
Finally the Levi form of the defining function ρ at a point z 0 = (z1, 0) and at a vector v = (X 1 , 0, X 2 , 0) is equal to:

L J ρ (z 0 , v) = O |z 1 | 2m-2 X 2 1 + 4kℜez k-1 1 + O(|z 1 | 2m-1 ) X 1 X 2 + ∂a 2 ∂y 2 (z 0 ) - ∂b 2 ∂x 2 (0) + O(1) + O (|z 1 |) X 2 2 .
It follows that since k < m there are z 1 , X 1 and X 2 such that L J ρ (z 0 , v) is negative, providing a contradiction.

Now we prove that the D'Angelo type coincides with the regular type in the non integrable case.

Proposition 2.4. We have

∆ 1 reg (∂D, 0) = ∆ 1 (∂D, 0) .
Proof. We suppose that the origin is a point of finite D'Angelo type. According to (2.1) we may write:

∆ 1 reg (∂D, 0) = 2m < +∞. So we may assume that u (ζ) = (ζ, 0) is a regular J-holomorphic disc of maximal contact order 2m, and that the structure J satisfies (2.2) and (2.3). Moreover the defining function ρ has the following local expression:

ρ = ℜez 2 + H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z . Now consider a J-holomorphic disc v = (f 1 , g 1 , f 2 , g 2 ) : (∆, 0) → R 4
, 0, J of finite contact order satisfying v (0) = 0 and such that δ (v) ≥ 2 (see definition 2.1 for notations).

We set v 1 := f 1 + ig 1 and v 2 := f 2 + ig 2 . The J-holomorphy equation for the disc v is given by:

         a k (v) ∂f k ∂x + b k (v) ∂g k ∂x = ∂f k ∂y , c k (v) ∂f k ∂x -a k (v) ∂g k ∂x = ∂g k ∂y , for k = 1, 2. Since J (v) = J st + O (|v 2 |) and δ (v) ≥ 2, it follows that: (2.4)    δ (v 1 ) = δ (f 1 ) = δ (g 1 ) , δ (v 2 ) = δ (f 2 ) = δ (g 2 ) .
Then consider

(2.5) ρ • v (ζ) = f 2 (ζ) + H 2m v 1 (ζ) , v 1 (ζ) + O |v 1 (ζ) | 2m+1 + |v 2 (ζ)| v (ζ) . Equation (2.4) implies that the term O (|v 2 | v ) in (2.5) vanishes to order larger than f 2 . Case 1: δ(f 2 ) > δ (H 2m (v 1 , v 1 )). In that case δ 0 (∂D, u) = δ (H 2m (v 1 , v 1 )) = 2mδ (v 1 ) .
Thus we get:

δ 0 (∂D, v) δ (v) = 2mδ (v 1 ) δ (v 1 ) = 2m. Case 2: δ(f 2 ) ≤ δ (H 2m (v 1 , v 1 )
). We have two subcases.

Subcase 2.1:

f 2 + H 2m (v 1 , v 1 ) ≡ 0. Thus δ 0 (∂D, u) = δ (ℜev 2 ) = δ (v 2 ) ,
and so

δ 0 (∂D, v) δ (v) = δ (v 2 ) δ (v) ≤ δ (H 2m (v 1 , v 1 )) δ (v) = 2mδ (v 1 ) δ (v) .
This means that:

δ 0 (∂D, v) δ (v) = 1 if δ (v) = δ (v 2 ) or δ 0 (∂D, v) δ (v) ≤ 2m if δ (v) = δ (v 1 ) . Subcase 2.2: f 2 + H 2m (v 1 , v 1 ) ≡ 0. Let w : ∆ → R 4
, J st be a standard holomorphic disc satisfying w (0) = 0 and:

∂ k w ∂x k (0) = ∂ k v ∂x k (0) , for k = 1, • • • , 2mδ (v). Since δ (v 2 ) = 2mδ (v 1 ) = 2mδ (v) < +∞ and since J (v) = J st + O(|v 2 |),
any differentiation of J (v), of order smaller than 2mδ (v), is equal to zero. Combining this with the Jholomorphy equation (1.1) of v we obtain:

∂ k+l w ∂x k ∂y l (0) = ∂ k+l v ∂x k ∂y l (0) , for k + l = 1, • • • , 2mδ (v).
Since ρ • v vanishes to an order greater than 2mδ (v) at 0 and since it involves only the 2mδ (v)-jet of v, it follows that ρ • w vanishes to an order greater than 2mδ (v) at 0. Finally we have constructed a standard holomorphic disc w such that

   δ (w) = δ (v) , δ 0 (∂D, w) > 2mδ (w) ,
which is not possible since, according Proposition 2.3, the type for the standard structure of ∂D at the origin is equal to 2m.

Construction of a local peak plurisubharmonic function.

We first give the definition of a local peak J-plurisubharmonic function for a domain D.

Definition 2.5. Let D be a domain in an almost complex manifold (M, J). A function ϕ is called a local peak J-plurisubharmonic function at a boundary point p ∈ ∂D if there exists a neighborhood U of p such that ϕ is continuous up to D ∩ U and satisfies:

(

1) ϕ is J-plurisubharmonic on D ∩ U , (2) ϕ (p) = 0, (3) ϕ < 0 on D ∩ U \{p}.
The existence of local peak J st -plurisubharmonic functions was first proved by E.Fornaess and N.Sibony in [START_REF] Fornaess | Construction of p.s.h. functions on weakly pseudoconvex domains[END_REF]. For almost complex manifolds the existence was proved by S.Ivashkovich and J.-P.Rosay in [START_REF] Ivashkovich | Rosay Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF] whenever the domain is strictly J-pseudoconvex. In the next Proposition we state the existence for J-pseudoconvex regions of finite D'Angelo type. As mentionned earlier our the considerations are purely local. In particular, the assumptions of J-plurisubharmonicity and of finite D'Angelo type may be restricted to a neighborhood of a boundary point. For convenience of writing, we state them globally. Theorem 2.6. Let D = {ρ < 0} be a domain of finite D'Angelo type in a four dimensional almost complex manifold (M, J). We suppose that ρ is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. Let p ∈ ∂D be a boundary point. Then there exists a local peak J-plurisubharmonic function at p.

Proof. Since the existence of a local peak function near a boundary point of type 2 was proved in [START_REF] Ivashkovich | Rosay Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF], we assume that p is a boundary point of D'Angelo type 2m > 2. The problem being purely local we assume that D ⊂ C 2 and that p = 0. According to Proposition 2.3 the defining function ρ has the following local expression on a neighborhood U of the origin:

ρ = ℜez 2 + H 2m (z 1 , z 1 ) + H(z 1 , z 2 ) + O |z 1 | 2m+1 + |z 2 ||z 1 | m + |z 2 | 2
where H 2m is a subharmonic polynomial containing a nonharmonic part, denoted by H * 2m , and

H(z 1 , z 2 ) = ℜe m-1 k=1 ρ k z k 1 z 2 .
According to [START_REF] Fornaess | Construction of p.s.h. functions on weakly pseudoconvex domains[END_REF] (see Lemma 2.4), the polynomial H 2m satisfies the following Lemma:

Lemma 2.7. There exist a positive δ > 0 and a smooth function g : R → R with period 2π with the following properties: 1) . We denote by P the function defined by

(1) -2 < g (θ) < -1, (2) g < 1/δ, ( 3 
) max ∆H 2m , ∆ H * 2m g (θ) |z 1 | 2m > δ H * 2m |z 1 | 2(m-1) , for z 1 = |z 1 |e iθ = 0 and, (4) ∆ H 2m + δ H * 2m g (θ) |z 1 | 2m > δ 2 H * 2m |z 1 | 2(m-
P (z 1 , z 1 ) := H 2m (z 1 , z 1 ) + δ H * 2m g (θ) |z 1 | 2m . Theorem 2.

will be proved by establishing the following claim.

Claim. There are positive constants L and C such that the function

ϕ := ℜez 2 + 2L (ℜez 2 ) 2 -L (ℑmz 2 ) 2 + P (z 1 , z 1 ) + H(z 1 , z 2 ) + C|z 1 | 2 |z 2 | 2
is a local peak J-plurisubharmonic function at the origin.

Proof of the claim. We first prove that the function ϕ is J-plurisubharmonic. We set:

dd c J ϕ = α 1 dx 1 ∧ dy 1 + α 2 dx 2 ∧ dy 2 + α 3 dx 1 ∧ dx 2 + α 4 dx 1 ∧ dy 2 + α 5 dy 1 ∧ dx 2 + α 6 dy 1 ∧ dy 2 , where α k , for k = 1, • • • , 6, are real valued function. According to the matricial representation of J (see (2.2)), the Levi form of ϕ at a point z ∈ D ∩ U and at a vector v = (X 1 , Y 1 , X 2 , Y 2 ) ∈ T z R 4 can be written L J ϕ (z, v) = c 1 α 1 X 2 1 -2a 1 α 1 X 1 Y 1 -b 1 α 1 Y 2 1 + β 3 X 1 X 2 + β 4 X 1 Y 2 + β 5 Y 1 X 2 + β 6 Y 1 Y 2 + c 2 α 2 X 2 2 -2a 2 α 2 X 2 Y 2 -b 2 α 2 Y 2 2 , with                        β 3 := α 3 (a 2 -a 1 ) + α 4 c 2 -α 5 c 1 β 4 := -α 4 (a 1 + a 2 ) + α 3 b 2 -α 6 c 1 β 5 := α 5 (a 1 + a 2 ) -α 3 b 1 + α 6 c 2 β 6 := α 6 (a 1 -a 2 ) -α 4 b 1 + α 5 b 2 .
Moreover due to (2.3) we have for

k = 1, 2            a k = O (|z 2 |) b k = -1 + O (|z 2 |) c k = 1 + O (|z 2 |) .
This implies that for k = 1, 2:

c k α k X 2 k -2a k α k X k Y k -b k α k Y 2 k ≥ α k 2 X 2 k + Y 2 k .
Thus we obtain

L J ϕ (z, v) ≥ α 1 4 X 2 1 + β 3 X 1 X 2 + α 2 4 X 2 2 + α 1 4 Y 2 1 + β 5 Y 1 X 2 + α 2 4 X 2 2 + α 1 4 X 2 1 + β 4 X 1 Y 2 + α 2 4 Y 2 2 + α 1 4 Y 2 1 + β 6 Y 1 Y 2 + α 2 4 Y 2 2 .
In order to prove that ϕ is J-plurisubharmonic, we need to see that:

(1)

α k ≥ 0, for k = 1, 2, (2) 4β 2 j ≤ α 1 α 2 , for j = 3, • • • , 6. The coefficient α 2 is obtained by the differentiation of ℜez 2 , 2L (ℜez 2 ) 2 -L (ℑmz 2 ) 2 , H(z 1 , z 2 ) and C|z 1 | 2 |z 2 | 2 .
Hence we have for z sufficiently close to the origin

α 2 ≥ L > 0.
The coefficient α 1 is obtained by differentiating P , H(z 1 , z 2 ) and C|z 1 | 2 |z 2 | 2 . This is equal to

α 1 = ∆P + O(|z 1 | 2m-2 |z 2 |) + O(|z 2 | 2 ) + C|z 2 | 2 + O(|z 2 | 3 ) ≥ δ 2 H * 2m 2 |z 1 | 2m-2 + C 2 |z 2 | 2 ,
for z sufficiently small and C > 0 large enough. Hence α 1 is nonnegative.

Finally it sufficient to prove that

4β 2 j ≤ L δ 2 H * 2m 2 |z 1 | 2m-2 + C 2 |z 2 | 2 ,
to insure the J-plurisubharmonicity of ϕ. The coefficient |β j | is equal to

|β j | = O(|z 2 |) + LO(|z 2 | 2 ) + O(|z 1 | 2m-1 ) + CO(|z 1 ||z 2 |) ≤ C ′ (|z 2 | + |z 1 | 2m-1 ),
for a positive constant C ′ (not depending on L and C). It follows that ϕ is J-plurisubharmonic on a neighborhood of the origin.

We prove now that ϕ is local peak at the origin, that is there exists r > 0 such that D ∩ {0 < z ≤ r} ⊂ {ϕ < 0}. Assuming that z ∈ {ρ = 0} ∩ {0 < z ≤ r} we have:

ϕ (z) = δ H * 2m g(θ)|z 1 | 2m + 2L (ℜez 2 ) 2 -L (ℑmz 2 ) 2 + C|z 1 | 2 |z 2 | 2 + O |z 1 | 2m+1 + O (|z 2 ||z 1 | m ) + O |z 2 | 2 .
Since g < -1 and increasing L if necessary we have

O (|ℑmz 2 ||z 1 | m ) ≤ - 1 2 δ H * 2m g (θ) |z 1 | 2m + 1 2 L (ℑmz 2 ) 2 ,
whenever z is sufficiently close to the origin. Thus

ϕ (z) ≤ - 1 2 δ H * 2m |z 1 | 2m + (2L + C|z 1 | 2 ) (ℜez 2 ) 2 - 1 2 L (ℑmz 2 ) 2 + C|z 1 | 2 (ℑmz 2 ) 2 + O |z 1 | 2m+1 + O (|ℜez 2 ||z 1 | m ) + O |z 2 | 2 ≤ - 1 4 δ H * 2m |z 1 | 2m + (2L + C|z 1 | 2 ) (ℜez 2 ) 2 - 1 4 L (ℑmz 2 ) 2 + O (|ℜez 2 ||z 1 | m ) + O |z 2 | 2 .
There is a positive constant C ′′ such that

O |z 2 | 2 ≤ C ′′ |ℜez 2 | 2 + C ′′ |ℑmz 2 | 2 .
Thus increasing L if necessary:

ϕ (z) ≤ - 1 4 δ H * 2m |z 1 | 2m + (2L + C|z 1 | 2 ) (ℜez 2 ) 2 + O(|ℜez 2 | 2 ) - 1 4 L -C ′′ (ℑmz 2 ) 2 + O (|ℜez 2 ||z 1 | m ) + O(|ℑmz 2 | 2 z ). ≤ - 1 4 δ H * 2m |z 1 | 2m + (2L + C|z 1 | 2 ) (ℜez 2 ) 2 + O(|ℜez 2 | 2 ) + O (|ℜez 2 ||z 1 | m ) - 1 2 1 4 L -C ′′ (ℑmz 2 ) 2 . Since -ℜez 2 (1 + O(|z|)) = H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |ℑmz 2 ||z 1 | + |ℑmz 2 | 2 ,
we have

(ℜez 2 ) 2 (1 + O(|z|)) = O |z 1 | 4m + |ℑmz 2 ||z 1 | 2m+1 + |ℑmz 2 | 2 z .
We finally obtain for z small enough

ϕ (z) ≤ - 1 8 δ H * 2m |z 1 | 2m - 1 4 1 4 L -C ′′ (ℑmz 2 ) 2 .
Thus ϕ is negative for z ∈ {ρ = 0} ∩ {0 < z ≤ r}, with r small enough. It follows that, reducing r if necessary,

D ∩ {0 < z ≤ r} ⊂ {ϕ < 0},
which achieves the proof of the claim and of Theorem 2.6.

We notice that in case L J ℜez 2 ≡ 0, we may give a simpler expression for a local peak Jplurisubharmonic function.

Proposition 2.8. If L J ℜez 2 ≡ 0, then there exists a real positive number L such that the function

ϕ := ℜez 2 + 2L (ℜez 2 ) 2 -L (z 2 ) 2 + P (z 1 , z 1 )
is local peak J-plurisubharmonic at the origin.

ESTIMATES OF THE KOBAYASHI PSEUDOMETRIC

In this section we prove standard estimates of the Kobayashi pseudometric on J-pseudoconvex regions of finite D'Angelo type in an almost complex manifold.

3.1. The Kobayashi pseudometric. The existence of local pseudoholomorphic discs proved in [START_REF] Nijenhuis | Some integration problems in almost-complex and complex manifolds[END_REF] allows to define the Kobayashi pseudometric K (M,J) for p ∈ M and v ∈ T p M :

K (M,J) (p, v) := inf 1 r > 0, u : ∆ → (M, J) J-holomorphic , u (0) = p, d 0 u (∂/∂x) = rv .
Since the composition of pseudoholomorphic maps is still pseudoholomorphic, the Kobayashi (infinitesimal) pseudometric satisfies the following decreasing property :

Proposition 3.1. Let f : (M ′ , J ′ ) → (M, J) be a (J ′ , J)-holomorphic map. Then for any p ∈ M ′ and v ∈ T p M ′ we have K (M ′ ,J ′ ) (p, v) ≥ K (M,J) (f (p) , d p f (v)) .
Let d (M,J) be the integrated pseudodistance of K (M,J) :

d (M,J) (p, q) := inf 1 0 K (M,J) (γ (t) , γ (t)) dt, γ : [0, 1] → M, γ (0) = p, γ (1) = q .
Similarly to the standard integrable case, B.Kruglikov (see [START_REF] Kruglikov | Existence of close pseudoholomorphic disks for almost complex manifolds and their application to the Kobayashi-Royden pseudonorm[END_REF]) proved that the integrated pseudodistance of the Kobayashi pseudometric coincides with the Kobayashi pseudodistance defined by chains of pseudholomorphic discs. Then we define :

Definition 3.2.
(1) The manifold (M, J) is Kobayashi hyperbolic if the integrated pseudodistance d (M,J) is a distance.

(2) The manifold (M, J) is local Kobayashi hyperbolic at p ∈ M if there exist a neighborhood U of p and a positive constant C such that

K (M,J) (q, v) ≥ C v
for every q ∈ U and every v ∈ T q M . (3) A Kobayashi hyperbolic manifold (M, J) is complete hyperbolic if it is complete for the distance d (M,J) .

Hyperbolicity of pseudoconvex regions of finite D'Angelo type.

In order to localize pseudoholomorphic discs, we need the following technical Lemma (see [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF] for a proof).

Lemma 3.3. Let 0 < r < 1 and let θ r be a smooth nondecreasing function on R + such that θ r (s) = s for s ≤ r/3 and θ r (s) = 1 for s ≥ 2r/3. Let (M, J) be an almost complex manifold, and let p be a point of M . Then there exist a neighborhood U of p, positive constants A = A (r) ≥ 1, B = B (r), and a diffeomorphism z : U → B such that z (p) = 0, z * J (p) = J st and the function log θ r |z| 2 +θ r (A|z|)+ B|z| 2 is J-plurisubharmonic on U .

In the next Proposition we give a priori estimates and a localization principle of the Kobayashi pseudometric. This proves the local Kobayashi hyperbolicity of J-pseudoconvex C 2 regions of finite D'Angelo type. If (M, J) admits a global J-plurisubharmonic function, then K.Diederich and A.Sukhov proved in [START_REF] Diederich | Plurisubharmonic exhaustion functions and almost complex Stein structures[END_REF] the (global) Kobayashi hyperbolicity of a relatively compact J-pseudoconvex domains (with C 3 boundary) by constructing a bounded strictly J-plurisubharmonic exhaustion function. We notice that, in our case, if the manifold (M, J) admits a global J-plurisubharmonic function then J-pseudoconvex C 2 relatively compact regions of finite D'Angelo type are also (globally) Kobayashi hyperbolic. Proposition 3.4. Let D = {ρ < 0} be a domain of finite D'Angelo type in an almost complex manifold (M, J), where ρ is a C 2 defining function of D, J-plurisubharmonic in a neighborhood of D. Let p ∈ D and let U be a neighborhood of p in M . Then there exist positive constants C and s, and a neighborhood V ⊂ U of p in M , such that for each q ∈ D ∩ V and each v ∈ T q M :

(3.1) K (D,J) (q, v) ≥ C v , (3.2) K (D,J) (q, v) ≥ sK (D∩U,J) (q, v) .
This Proposition is a classical application of Lemma 3.3. This is due to N.Sibony [START_REF] Sibony | A class of hyperbolic manifolds[END_REF] (see also [START_REF] Berteloot | Attraction des disques analytiques et continuité holdérienne d'applications holomorphes propres, Topics in complex analysis[END_REF] and [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF] for a proof). For convenience we give the proof.

Proof. According to Theorem 2.6, there exists a local peak J-plurisubharmonic function ϕ at p for D. We can choose constants 0 < α < α ′ < β ′ < β and N > 0 such that ϕ ≥ -β 2 /N on { z < α} and

ϕ ≤ -2β 2 /N on D ∩ {α ′ ≤ z ≤ β ′ }.
We define φ by:

φ :=    max N ϕ + z 2 -β 2 , -2β 2 if z ∈ D ∩ { z ≤ β ′ }, -2β 2 on D\{ z ≤ β ′ }.
The function z 2 is J-plurisubharmonic on {q ∈ U :

|z (q) | < 1} if z * J -J st C 2 (B)
is sufficiently small. Then it follows that φ is J-plurisubharmonic on D. We may also suppose that φ is negative on D. Moreover the function φ -z 2 is J-plurisubharmonic on D ∩ {q ∈ U : |z (q) | ≤ α}.

Let θ α 2 be a smooth non decreasing function on R + such that θ α 2 (s) = s for s ≤ α 2 /3 and θ α 2 (s) = 1 for s ≥ 2α 2 /3. Set V = {q ∈ U : |z (q) | ≤ α 2 }. According to Lemma 3.3, there are uniform positive constants A ≥ 1 and B such that the function

log θ α 2 |z -z (q) | 2 + θ α 2 (A|z -z (q) |) + B z 2
is J-plurisubharmonic on U for every q ∈ D ∩ V .

We define for each q ∈ D ∩ V the function:

Ψ q :=    θ α 2 |z -z (q) | 2 exp (θ α 2 (A|z -z (q) |)) exp (B φ (z)) on D ∩ { z < α}, exp (1 + B φ) on D \ { z < α}.
The function logΨ q is J-plurisubharmonic on D ∩ { z < α} and, on D \ { z < α}, it coincides with 1 + B φ which is J-plurisubharmonic. Finally logΨ q is J-plurisubharmonic on the whole domain D. Let q ∈ V and let v ∈ T q M and consider a J-holomorphic disc u : ∆ → D such that u (0) = q and d 0 u (∂/∂x) = rv where r > 0. For ζ sufficiently close to 0 we have

u (ζ) = q + d 0 u (ζ) + O |ζ| 2 .
We define the following function

φ (ζ) := Ψ q (u (ζ)) |ζ| 2
which is subharmonic on ∆\{0} since logφ is subharmonic. If ζ close to 0, then

(3.3) φ (ζ) = |u (ζ) -q| 2 |ζ| 2 exp (A|u (ζ) -q|) exp (B φ (u (ζ))) .
Setting ζ = ζ 1 + iζ 2 and using the J-holomorphy condition d 0 u • J st = J • d 0 u, we may write :

d 0 u (ζ) = ζ 1 d 0 u (∂/∂x) + ζ 2 J (d 0 u (∂/∂x)) . (3.4) |d 0 u (ζ) | ≤ |ζ| ( I + J d 0 u (∂/∂x) )
According to (3.3) and to (3.4), we obtain that lim sup ζ→0 φ (ζ) is finite. Moreover setting ζ 2 = 0 we have

lim sup ζ→0 φ (ζ) ≥ d 0 u (∂/∂x) 2 exp (B φ (q)) .
Applying the maximum principle to a subharmonic extension of φ on ∆ we obtain the inequality

d 0 u (∂/∂x) 2 ≤ exp (1 -B φ (q)) .
Hence, by definition of the Kobayashi pseudometric, we obtain for every q ∈ D ∩ V and every v ∈ T q M :

K (D,J) (q, v) ≥ (exp (-1 + B φ (q))) 1 2 v .
This gives estimate (3.1). Now in order to obtain estimate (3.2), we prove that there is a neighborhood V ⊂ U and a positive constant s such that for any J-holomorphic disc u : ∆ → D with u (0) ∈ V then u (∆ s ) ⊂ D ∩ U. Suppose this is not the case. We obtain a sequence ζ ν of ∆ and a sequence of J-holomorphic discs u ν such that ζ ν converges to 0, u ν (0) converges to p and u ν (ζ ν ) / ∈ D ∩ U for every ν. According to the estimate (3.1), we obtain for a positive constant c > 0:

c ≤ d (D,J) (u ν (0) , u ν (ζ ν )) ≤ d ∆ (ζ ν , 0) .
This contradicts the fact that ζ ν converges to 0. The (global) Kobayahsi hyperbolicity is provided if we suppose that there is a global strictly Jplurisubharmonic function on (M, J). Corollary 3.5. Let D = {ρ < 0} be a relatively compact domain of finite D'Angelo type in an almost complex manifold (M, J) of dimension four, ρ being a defining function of D, J-plurisubharmonic in a neighborhood of D. Assume that (M, J) admits a global strictly J-plurisubharmonic function. Then (D, J) is Kobayahsi hyperbolic.

As an application of the a priori estimate (3.1) of Proposition 3.4, we prove the tautness of D. Corollary 3.6. Let D = {ρ < 0} be a relatively compact domain of finite D'Angelo type in an almost complex manifold (M, J) of dimension two. Assume that ρ is J-plurisubharmonic in a neighborhood of D. Moreover suppose that (M, J) admits a global strictly J-plurisubharmonic function. Then D is taut.

Proof. Let (u ν ) ν be a sequence of J-holomorphic discs in D. According to Corollary 3.5 the domain D is hyperbolic. Thus the sequence (u ν ) ν is equiconituous, and then by Ascoli Theorem, we can extract from this sequence a subsequence still denoted (u ν ) ν which converges to a map u : ∆ → D. Passing to the limit the equation of J-holomorphicity of each u ν , it follows that u is a J-holomorphic disc. Since ρ is J-plurisubharmonic defining function for D, we have, by applying the maximun principle to ρ • u, the alternative: either u(∆) ⊂ D or u(∆) ⊂ ∂D.

We point out that the tautness of the domain D was proved, using a diferent method, by K.Diederich-A.Sukhov in [START_REF] Diederich | Plurisubharmonic exhaustion functions and almost complex Stein structures[END_REF].

Uniform estimates of the Kobayashi pseudometric.

In order to obtain more precise estimates, we need to uniform estimates (3.1) of the Kobayashi pseudometric for a sequence of domains. Proposition 3.7. Assume that D = {ℜez 2 + P (z 1 , z 1 ) < 0} is a J st -pseudoconvex region of R 4 , where P is a homogeneous polynomial of degree 2k ≤ 2m admitting a nonharmonic part. Let D ν be a sequence of J ν -pseudoconvex region of R 4 such that 0 ∈ ∂D ν is a boundary point of finite D'Angelo type 2l ν ≤ 2m. Suppose that D ν converges in the sense of local Hausdorff set convergence to D when ν tends to +∞ and that J ν converges to J st in the C 2 topology when ν tends to +∞. Then there exist a positive constant C and a neighborhood V ⊂ U of the origin in R 4 , such that for large ν and for every q ∈ D ν ∩ V and every

v ∈ T q R 4 K (Dν ,J) (q, v) ≥ C v .
Proof. Under the conditions of Proposition 3.7 we have the following Lemma:

Lemma 3.8. For every large ν, there exists a diffeomorphism Φ ν : R 4 → R 4 with the following property:

(1) The map ζ → (ζ, 0) is a (Φ ν ) * J ν -holomorphic disc of maximal contact order 2l ν . ( 2 
)
The almost complex structure (Φ ν ) * J ν satisfies conditions (2.2) and ( 2.3).

(

) Φ ν (D ν ) = {ρ ν < 0} with ρ ν = ℜez 2 + 2m j=2lν P j,ν (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z < 0, 3 
where P j,ν are homogeneous polynomials of degree j and P 2lν ,ν contains a nonharmonic part denoted by P * 2lν ,ν = 0. (4) we have inf ν { P 2lν ,ν } > 0.

Moreover the sequence of diffeomorphisms Φ ν converges to the identity on any compact subsets of R 4 in the C 2 topology.

The crucial fact used to prove Proposition 3.7 is the point (4), which is a direct consequence of the convergence of Φ ν (D ν ) to D. Hence the proof of Proposition 3.7 is similar to Theorem 2.6 and Theorem 3.4, where all the constants are uniform.

Hölder extension of diffeomorphisms.

This subsection is devoted to the boundary continuity of diffeomorphisms. This is stated as follows: Proposition 3.9. Let D = {ρ < 0} and D ′ = {ρ ′ < 0} be two relatively compact domains of finite D'Angelo type 2m in four dimensional almost complex manifolds (M, J) and (M ′ , J ′ ). We suppose that ρ (resp. ρ ′ ) is a J(resp J ′ )-plurisubharmonic defining function on a neighborhood of D (resp. D ′ ). Let f : D → D ′ be a (J, J ′ )-biholomorphism. Then f extends as a Hölder homeomorphism with exponent 1/2m between D and D ′ .

Estimates of the Kobayashi pseudometric obtained by H.Gaussier and A.Sukhov in [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF] provide the Hölder extension with exponent 1/2 up to the boundary of a biholomorphism between two strictly pseudoconvex domains (see Proposition 3.3 of [START_REF] Coupet | Fefferman's mapping theorem on almost complex manifolds in complex dimension two[END_REF]). Similarly, in order to obtain Proposition 3.9, we begin by establishing a more precise estimate than (3.1) of Proposition 3.4. Proposition 3.10. Let D = {ρ < 0} be a domain of finite D'Angelo type in a four dimensional almost complex manifold (M, J), where ρ is a C 2 defining function of D, J-plurisubharmonic in a neighborhood of D. Let p ∈ ∂D and let U be a neighborhood of p in M . Then there are positive constant C and a neighborhood V ⊂ U of p in M , such that for every q ∈ D ∩ V and every v ∈ T q M :

(3.5) K (D,J) (q, v) ≥ C v dist (q, ∂D) 1/2m .
Proof of Proposition 3.10. Let p ∈ ∂D. We may suppose that D ⊂ R 4 , p = 0 and that J satisfies (2.2) and (2.3). Let q ′ be a boundary point in a neighborhood of the origin and let ϕ q ′ be the local peak Jplurisubharmonic function at q ′ given by Theorem 2.6. There are positive constants C 1 and C 2 such that

(3.6) -C 1 z -q ′ ≤ ϕ q ′ (z) ≤ -C 2 Ψ q ′ (z) ,
where

Ψ q ′ (z) := |z 1 -q ′ 1 | 2m + |z 2 -q ′ 2 | 2 + |z 1 -q ′ 1 | 2 |z 2 -q ′ 2 | 2 is a J-plurisubharmonic function on a neighborhood U of the origin.
Now consider a J-holomorphic disc u : ∆ → D, such that u (0) is sufficiently close to the origin and then, according to Proposition 3.4, we have u (∆ s ) ⊂ D ∩ U, for some 0 < s < 1 depending only on u (0). We assume that q ′ is such that dist (u (0) , ∂D) = u (0) -q ′ . According to the J-plurisubharmonicity of Ψ q ′ , we have for |ζ| ≤ s:

Ψ q ′ (u (ζ)) ≤ C 3 2π 2π 0 Ψ q ′ u re iθ dθ,
for some positive constant C 3 . Hence using (3.6) and the J-plurisubharmonicity of ϕ q ′ we obtain:

Ψ q ′ (u (ζ)) ≤ - C 3 2πC 2 2π 0 ϕ q ′ u re iθ dθ ≤ - C 3 C 2 ϕ q ′ (u (0)) .
Since there is a positive constant C 4 such that

u (ζ) -q ′ 2m ≤ C 4 Ψ q ′ (u (ζ))
and using (3.6), we finally obtain:

u (ζ) -q ′ 2m ≤ C 1 C 3 C 4 C 2 dist (u (0) , ∂D) .
Hence there exists a positive constant C 5 such that:

dist (u (ζ) , ∂D) ≤ C 5 dist (u (0) , ∂D) 1/2m , whenever ζ ≤ s.
According to Lemma 1.5 of [START_REF] Ivashkovich | Rosay Schwarz-type lemmas for solutions of ∂-inequalities and complete hyperbolicity of almost complex manifolds[END_REF] there is a positive constant C 6 such that:

∇u (0) ≤ C 6 sup |ζ|<s u (ζ) -u (0) ≤ C 5 C 6 dist (u (0) , ∂D) 1/2m
, wich provides the desired estimate.

We also need the two next lemmas provided by [START_REF] Coupet | Fefferman's mapping theorem on almost complex manifolds in complex dimension two[END_REF]:

Lemma 3.11. Let D be a domain in an almost complex manifold (M, J). Then there is a positive constant C such that for any p ∈ D and any v ∈ T p M :

(3.7) K (D,J) (p, v) ≤ C v dist (p, ∂D) .
Lemma 3.12. (Hopf lemma) Let D be a relatively compact domain with a C 2 boundary on an almost complex manifold (M, J). Then for any negative J-plurisubharmonic function ρ on D there exists a constant C > 0 such that for any p ∈ D:

|ρ(p)| ≥ Cdist(p, ∂D).
Now we can go on the proof of Proposition 3.9.

Proof of Proposition 3.9. Let f : D → D ′ be a (J, J ′ )-biholomorphism. According to Proposition 3.10 and to the decreasing property of the Kobayashi pseudometric there is a positive constant C such that for every p ∈ D sufficiently close to the boundary and every

v ∈ T p M C d p f (v) dist (f (p) , ∂D ′ ) 1 2m ≤ K (D ′ ,J ′ ) (f (p) , d p f (v)) = K (D,J) (p, v) .
Due to Lemma 3.11 there exists a positive constant C 1 such that:

K (D,J) (p, v) ≤ C 1 v dist (p, ∂D) .
This leads to:

d p f (v) ≤ C 1 C dist (f (p) , ∂D ′ ) 1 2m dist (p, ∂D) v .
Moreover the Hopf lemma 3.12 for almost complex manifolds applied to ρ ′ • f and ρ • f -1 and the fact that ρ and ρ ′ are defining functions, provides the following boundary distance preserving property:

1 C 2 dist (p, ∂D) ≤ dist f (p) , ∂D ′ ≤ C 2 dist (p, ∂D) ,
for some positive constat C 2 . Finally this implies:

d p f (v) ≤ C 1 C 2 C v dist (p, ∂D) 2m-1 2m
.

This gives the desired statement.

SHARP ESTIMATES OF THE KOBAYASHI PSEUDOMETRIC

In this section we give sharp lower estimates of the Kobayashi pseudometric in a pseudoconvex region near a boundary point of finite D'Angelo type less than or equal to four. This condition will appear necessary, in our proof, as explained in the appendix. Moreover in order to give sharp estimates near a point of arbitrary finite D'Angelo type, we are also interested in the nontangential behaviour of the Kobayashi pseudometric.

The main result of this section is the following theorem (see also Theorem B): Theorem 4.1. Let D = {ρ < 0} be a relatively compact domain of finite D'Angelo type less than or equal to four in an almost complex manifold (M, J) of dimension four, where ρ is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. Then there exists a positive constant C with the following property: for every p ∈ D and every v ∈ T p M there is a diffeomophism, Φ p * , in a neighborhood U of p, such that:

(4.1) K (D,J) (p, v) ≥ C | (d p Φ p * v) 1 | τ (p * , |ρ (p) |) + | (d p Φ p * v) 2 | |ρ (p) | , where τ (p * , |ρ (p) |) is defined by (4.3).
As a direct consequence we have:

(4.2) K (D,J) (p, v) ≥ C ′ | (d p Φ p * v) 1 | |ρ (p) | 1 4 + | (d p Φ p * v) 2 | |ρ (p) | ,
for a positive constant C ′ .

In complex manifolds, D.Catlin [START_REF] Catlin | Estimates of invariant metrics on pseudoconvex domains if dimension two[END_REF] first obtained such an estimate, based on lower estimates of the Carathéodory pseudometric. F.Berteloot [START_REF] Berteloot | Principe de Bloch et estimations de la métrique de Kobayashi dans les domaines de C 2[END_REF] gave a different proof based on a Bloch principle. Our proof wich is inspired by the proof of F.Berteloot is based on some scaling method.

4.1. The scaling method. We consider here a pseudoconvex region D = {ρ < 0} of finite D'Angelo type 2m in R 4 , where ρ has the following expression on a neighborhood U of the origin:

ρ (z 1 , z 2 ) = ℜez 2 + H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z .
where H 2m is a homogeneous subharmonic polynomial of degree 2m admitting a nonharmonic part.

Assume that p ν is a sequence of points in D ∩ U converging to the origin. For each p ν sufficiently close to ∂D, there exists a unique point p * ν ∈ ∂D ∩ U such that p * ν = p ν + (0, δ ν ) , with δ ν > 0. Notice that for large ν, the quantity δ ν is equivalent to dist (p ν , ∂D ∩ U ) and to |ρ (p ν ) |.

We consider a diffeomorphism Φ ν : R 4 → R 4 satisfying:

(1)

Φ ν (p * ν ) = 0 and Φ ν (p ν ) = (0, -δ ν ). (2) 
Φ ν converges to Id : R 4 → R 4 on any compact subset of R 4 in the C 2 sense.

(3) When we denote by D ν := Φ ν (D ∩ U ) which admits the defining function is

ρ ν := ρ • (Φ ν ) -1
and by J ν := (Φ ν ) * J, then ρ ν is given by:

ρ ν (z 1 , z 2 ) = ℜez 2 + 2m k=2lν P k (z 1 , z 1 , p * ν ) + O |z 1 | 2m+1 + |z 2 | z ,
where the polynomial P 2lν contains a nonharmonic part. Moreover J ν satisfies (2.2) and (2.3). This is done by considering first the translation T ν of R 4 given by z → z -p * ν . According to J.-F.Barraud and E.Mazzilli [START_REF] Barraud | Regular type of real hyper-surfaces in (almost) complex manifolds[END_REF] that the D'Angelo type is an upper semicontinuous function in a four dimensional almost complex manifold. Thus the D'Angelo type of points in a small enough neighborhood can only be smaller than at the point itself. Then we consider a (T ν ) * J-holomorphic disc u of maximal contact order 2l ν , where 2l ν ≤ 2m is the D'Angelo type of p * ν . We choose coordinates such that u is given by u (ζ) = (ζ, 0), and such that (T ν ) * J (z 1 , 0) = J st and T 0 (∂T ν (D)) ∩ J(0)T 0 (∂T ν (D)) = {z 2 = 0}. Then by considering the family of vectors (1, 0) at base points (0, t) for t = 0 small enough, we obtain a family of pseudoholomorphic discs u t such that u t (0) = (0, t) and d 0 u t (∂/∂ x ) = (0, 1). Due to the parameters dependance of the solution to the J ν -holomorphy equation, we straighten these discs into the lines {z 2 = t}. Next we consider a transversal foliation by pseudoholomorphic discs passing through (t, 0) and (t, -δ ν ) for t small enough and we straighten these lines into {z 1 = c}. This leads to the desired diffeomorphism Φ ν of R 4 . Now, we need to remove harmonic terms from the polynomial

2m-1 k=2lν P k (z 1 , z 1 , p * ν ) .
So we consider a biholomorphism (for the standard structure) of C 2 with the following form:

ϕ ν (z 1 , z 2 ) :=   z 1 , z 2 + 2m-1 k=2lν ℜe c k,ν z k 1   ,
where c k,ν are well chosen complex numbers. Then the diffeomorphism Φ ν := ϕ ν • Φ ν satisfies:

(1) Φ ν (p * ν ) = 0 and Φ ν (p ν ) = (0, -δ ν ). (2) Φ ν converges to Id : R 4 → R 4 on any compact subset of R 4 in the C 2 sense.

(3) If we denote by D ν := Φ ν (D ∩ U ) the domain with the defining function ρ ν := ρ • (Φ ν ) -1 , then ρ ν is given by:

ρ ν (z 1 , z 2 ) = ℜez 2 + 2m-1 k=2lν P * k (z 1 , z 1 , p * ν ) + P 2m (z 1 , z 1 , p * ν ) + O |z 1 | 2m+1 + |z 2 | z ,
where the polynomial

2m-1 k=2lν P * k (z 1 , z 1 , p * ν )
does not contain any harmonic terms. Moreover the polynomial P * 2lν is not idencally zero. Moreover, generically, J ν := (Φ ν ) * J is no more diagonal.

Since the origin is a boundary point of D'Angelo type 2m for D, it follows that, denoting by P * 2m the nonharmonic part of P 2m , we have P * 2m (., 0) = H * 2m = 0, where H * 2m is the nonharmonic part of H 2m . This allows to define for large ν:

(4.3) τ (p * ν , δ ν ) := min k=2lν ,••• ,2m δ ν P * k (., p * ν ) 1 k
.

Moreover the following inequalities hold:

(4.4) 1 C δ 1 2 ν ≤ τ (p * ν , δ ν ) ≤ Cδ 1 2m ν ,
where C is a positive constant. The right inequality comes from the fact that P * 2m (., p * ν ) ≥ C 1 > 0 for large ν. And the left one comes the fact that there exists a positive constant C 2 such that for every

2l ν ≤ k ≤ 2m we have P * k (., p * ν ) ≤ C 2 .
Now we consider the nonisotropic dilation Λ ν of C 2 :

Λ ν : (z 1 , z 2 ) → τ (p * ν , δ ν ) -1 z 1 , δ -1 ν z 2 .
We set Dν := Λ ν (D ν ) the domain admitting the defining function ρν

:= δ -1 ν ρ ν • Λ -1 ν and Jν := (Λ ν ) * (J ν ) the direct image of J ν under Λ ν .
The next lemma is devoted to describe ( Dν , Jν ) when passing at the limit. where P is a nonzero subharmonic polynomial of degree smaller than or equal to 2m which admits a nonharmonic part.

(2) In case the origin is of D'Angelo type four for D, the sequence of almost complex structures Jν converges on any compact subsets of C 2 in the C 2 sense to J st .

Proof. We first prove part 1. Due to inequalities (4.4), the defining function of Dν satisfies:

ρν = ℜez 2 + 2m k=2lν δ -1 ν τ (p * ν , δ ν ) k P * k (z 1 , z 1 , p * ν ) + δ -1 ν τ (p * ν , δ ν ) 2m P 2m (z 1 , z 1 , p * ν ) + O (τ (δ ν )) .
Passing to a subsequence, we may assume that the polynomial

2m k=2lν δ -1 ν τ (p * ν , δ ν ) k P * k (z 1 , z 1 , p * ν ) + δ -1 ν τ (p * ν , δ ν ) 2m P 2m (z 1 , z 1 , p * ν )
converges uniformly on compact subsets of C 2 to a nonzero polynomial P of degree ≤ 2m admitting a nonharmonic part. Since the pseudoconvexity is invariant under diffeomorphisms, it follows that the domains Dν are Jν -pseudoconvex, and then passing to the limit, the domain D is J st -pseudoconvex. Thus the polynomial P is subharmonic.

We next prove part 2. The complexification of the almost complex structure J ν is given by

(J ν ) C = 2 l=1 A l,l (z) dz l ⊗ ∂ ∂z l + B l,l (z) dz l ⊗ ∂ ∂z l + B l,l (z) dz l ⊗ ∂ ∂z l + A l,l (z) dz l ⊗ ∂ ∂z l + A 1,2 (z) dz 1 ⊗ ∂ ∂z 2 + B 1,2 (z) dz 1 ⊗ ∂ ∂z 2 + B 1,2 (z) dz 1 ⊗ ∂ ∂z 2 + A 1,2 (z) dz 1 ⊗ ∂ ∂z 2 , where                                                A l,l (z) = i + O   z 2 + 3 k=2 c k,ν z k 1 2   for l = 1, 2, B l,l (z) = O z 2 + 3 k=2 c k,ν z k 1 for l = 1, 2, A 1,2 (z) = 3 k=2 kc k,ν z k-1 1 O   z 2 + 3 k=2 c k,ν z k 1 2   , B 1,2 (z) = 3 k=2 k c k,ν z k-1 1 -c k,ν z k-1 1 O z 2 + 3 k=2 c k,ν z k 1 .
for some constant C ′′ > 0. It follows that:

h ν (0) -h ν ζ ′ ν ≤ rν 0 dh ν te iθν dt ≤ C ′ r ν -→ 0.
This contradiction proves Lemma 4.3.

Now we go on the proof of Theorem 4.1.

Proof of Theorem 4.1. Due to the localization of the Kobayashi pseudometric established in Proposition 3.4, it suffices to prove Theorem 4.1 in a neighborhood U of q ∈ ∂D. Choosing local coordinates z : U → B ⊂ R 4 centered at q, we may assume that D ∩ U = {ρ < 0} is a J-pseudonconvex region of (R 4 , J), that q = 0 ∈ ∂D and that J satisfies (2.2) and (2.3). We also suppose that the complex tangent space T 0 ∂D ∩ J(0)T 0 ∂D at 0 of ∂D is given by {z 2 = 0}. Moreover the defining function ρ is expressed by:

ρ (z) = ℜez 2 + H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z
For p ∈ D ∩ U be sufficiently close to the boundary ∂D, there exists a unique point p * ∈ ∂D ∩ U such that p * = p + (0, δ), with δ > 0. We define an infinitesimal pseudometric N on D ∩ U ⊆ R 4 by:

(4.5) N (p, v) := | (d p Φ p * v) 1 | τ (p * , |ρ (p) |) + | (d p Φ p * v) 2 | |ρ (p) | ,
for every p ∈ D ∩ U and every v ∈ T p R 4 , where Φ p * is defined as diffeomorphisms Φ ν (of previous subsection) for p * instead of p * ν .

To prove estimate (4.1) of Theorem 4.1, it suffices to find a positive constant C such that for any Jholomorphic disc u : ∆ → D ∩ U , we have:

(4.6) N (u (0) , d 0 u (∂/∂ x )) ≤ C.
Indeed, for a J-holomorphic disc u such that u (0) = p and d 0 u (∂/∂ x ) = rv, (4.6) leads to

1 r = N (p, v) N (u (0) , d 0 u (∂/∂ x )) ≥ N (p, v) C .
Suppose by contradiction that (4.6) is not true, that is, there is a sequence of J-holomorphic discs u ν : ∆ → D ∩ U such that N (u ν (0) , d 0 u ν (∂/∂ x )) ≥ ν 2 . Then we consider a sequence (y ν ) ν of points in ∆ 1/2 such that:

(1) |y ν | ≤ 2ν N (u ν (y ν ) , d yν u ν (∂/∂x)) , (2) N (u ν (y ν ) , d yν u ν (∂/∂x)) ≥ ν 2 , and (3) 
y ν + ∆ ν/N (uν (yν ),dy ν uν (∂/∂x)) ⊆ ∆ 1/2 for sufficiently large ν.

This allows to define a sequence of J-holomorphic discs g

ν : ∆ ν → D ∩ U by g ν (ζ) := u ν y ν + ζ 2N (u ν (y ν ) , d yν u ν (∂/∂x))
.

Consider the sequence g ν = u ν (y ν ) in D∩U . Since |y ν | ≤ 2/ν and since the C 1 norm of any J-holomorphic disc u ν is uniformally bounded it follows that g ν (0) converges to the origin.

We apply the scaling method to the sequence g ν (0). We denote by g ν (0) * the boundary point given by g ν (0) * := g ν (0) + (0, δ ν ). We set the scaled disc gν := Λ ν • Φ ν • g ν , where diffeomorphisms Λ ν and Φ ν are define in the subsection about the scaling method. In order to extract from gν a subsequence which converges to a Brody curve, we need the following Lemma.

Lemma 4.4.

There is a positive constant r 0 such that:

(1) There exists a positive constant C 1 such that

(4.7) gν (r 0 ∆ ν ) ⊂ ∆ C 1 × ∆ C 1 .
(2) There exists a positive constant C 2 such that for every large ν we have :

(4.8) d gν C 0 (r 0 ∆ν ) ≤ C 2 .
Proof. We prove the first part. We define a J

ν -holomorphic disc h ν (ζ) := Φ ν • g ν (νζ) from the unit disc ∆ to D ν . According to Lemma 4.3, since h ν (0) = Φ ν • g ν (0) = (0, -δ ν ), we have h ν (r 0 ∆) ⊆ Q (0, C 0 δ ν )
for some positive constants r 0 and C 0 . Hence

Φ ν • g ν (r 0 ∆ ν ) ⊆ Q (0, C 0 δ ν ) .
After dilations, this leads to (4.7).

Then we prove the second part. According to Lemma 4.2, the sequence of almost complex structures Jν converges on any compact subsets of C 2 in the C 2 sense to J st . Then for sufficiently large ν, the norm Jν -J st C 1 (∆ C 1 ×∆ C 1 ) is as small as necessary. So for large ν, and due to Proposition 2.3.6 of J.-C.Sikorav in [START_REF] Sikorav | Some properties of holomorphic curves in almost complex manifolds[END_REF] there exists C 2 > 0 such that (4.8) holds.

Hence according to Lemmas 4.2 and 4.4 we may extract from gν a subsequence, still denoted by gν wich converges in C 1 topology to a standard complex line g : C → ({Rez 2 + P (z 1 , z 1 ) < 0}, J st ) .

The polynomial P is subharmonic and contains a nonharmonic part; this implies that the domain ({Rez 2 + P (z 1 , z 1 ) < 0}, J st ) is Brody hyperbolic and so the complex line g is constant. To obtain a contradiction, we prove that the derivative of g at the origin is nonzero:

1 2 = N (g ν (0) , d 0 g ν (∂/∂ x )) = | (d 0 (Φ ν • g ν ) (∂/∂ x )) 1 | τ (g ν (0) * , |ρ (g ν (0)) |) + | (d 0 (Φ ν • g ν ) (∂/∂ x )) 2 | |ρ (g ν (0)) | .
Since |ρ (g ν (0)) | is equivalent to δ ν , it follows that for some positive constant C 3 and for large ν, we have:

1 2 ≤ C 3 | (d 0 (Φ ν • g ν ) (∂/∂ x )) 1 | τ (g ν (0) * , δ ν ) + | (d 0 (Φ ν • g ν ) (∂/∂ x )) 2 | δ ν = C 3 d 0 gν (∂/∂ x ) 1 .
Since gν converges to g in the C 1 sense, it follows that d 0 g (∂/∂ x ) = 0, providing a contradiction. This achieves the proof of Theorem 4.1.

Estimate (4.2) of the Kobayashi pseudometric allows to study the completness of the Kobayashi pseudodistance D. Corollary 4.5. Let D = {ρ < 0} be a relatively compact domain of finite D'Angelo type less than or equal to four in an almost complex manifold (M, J) of dimension four, where ρ is a defining function of D, Jplurisubharmonic in a neighborhood of D. Assume that (M, J) admits a global strictly J-plurisubharmonic function. Then (D, J) is complete hyperbolic.

Proof. The fact that (M, J) admits a global strictly J-plurisubharmonic function and estimate (3.1) of Proposition 3.4 leads to the Kobayashi hyperbolicity of D. Then estimate (4.2) of the Kobayashi pseudometric stated in Theorem 4.1 gives the completness of the metric space D, d (D,J) by a classical integration argument.

4.3.

Regions with noncompact automorphisms group. The next corollary is devoted to regions with noncompact automorphisms group. Corollary 4.6. Let D = {ρ < 0} be a relatively compact domain in a four dimensional almost complex manifold (M, J) of finite D'Angelo type less than or equal to four. Assume that ρ is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. If there is an automorphism of D with orbit accumulating at a boundary point then there exists a polynomial P of degree at most four, without harmonic part such that (D, J) is biholomorphic to ({ℜez 2 + P (z 1 , z 1 ) < 0}, J st ).

If the domain D is a relatively compact strictly J-pseudoconvex domain with noncompact automorphisms group then (D, J) is biholomorphic to a model domain. This was proved by H.Gaussier and A.Sukhov in [START_REF] Gaussier | Estimates of the Kobayashi metric on almost complex manifolds[END_REF] in dimension four and by K.H.Lee in [START_REF] Lee | Domains in almost complex manifolds with an automorphism orbit accumulating at a strongly pseudoconvex boundary point[END_REF] in arbitrary (even) dimension.

Sketch of the proof. We suppose that for some point p 0 ∈ D, there is a sequence f ν of automorphisms of (D, J) such that p ν := f ν (p 0 ) converges to 0 ∈ ∂D. We apply the scaling method to the sequence p ν . Still keeping notations of subsection 4.1, we set

F ν := Λ ν • Φ ν • f ν : f -1 ν (D ∩ U ) → Dν .
This sequence of biholomorphisms is such that :

(1) f -1 ν (D ∩ U ) ν converges to D. (2) Dν converges to a pseudoconvex domain D = {Rez 2 + P (z 1 , z 1 ) < 0}, where P is a nonzero subharmonic polynomial of degree ≤ 4 which contains a nonharmonic part. Changing D by applying a standard biholomorphism if necessary, we may suppose that P (z 1 , z 1 ) is without harmonic terms. (3) For any compact subset K ⊂ D, the sequence F ν C 1 (K) ν is bounded. Hence, we may extract from (F ν ) ν a subsequence converging, on any compact subset of D in the C ∞ sense, to a (J, J st )-holomorphic map F : D -→ D. Finally F is a (J, J st )-biholomorphism from D to D. 4.4. Nontangential approach in the general setting. In this subsection, refering to I.Graham [START_REF] Graham | Boundary behaviour of the Caratheodory and Kobayashi metrics on strongly pseudoconvex domains in C n with smooth boundary[END_REF], we give a sharp estimate of the Kobayashi pseudometric of a pseudoconvex region in a cone with vertex at a boundary point of arbitrary finite D'Angelo type. We denote by Λ := {-ℜez 2 > k z }, where 0 < k < 1, the cone with vertex at the origin and axis the negative real z 2 axis. For large ν, we have g ν (0) = u ν (y ν ) in D ∩ U ∩ Λ and g ν (0) converges to the origin. Set δ ν := dist (g ν (0) , ∂D) , and consider the following dilations of C 2 :

Λ ν : (z 1 , z 2 ) → δ -1 2m ν z 1 , δ -1 ν z 2 .
In order to extract from Λ ν • g ν a subsequence which converges to a Brody curve, we need the following Lemma.

Lemma 4.9. There exists a positive constant r 0 such that:

(1) there exists a positive constant C 1 such that:

(4.9) Λ ν • g ν (r 0 ∆ ν ) ⊂ ∆ C 1 × ∆ C 1 ,
(2) there is a positive constant C 2 such that for every large ν we have :

(4.10) d (Λ ν • g ν ) C 0 (r 0 ∆ν ) ≤ C 2 .
Proof. We first prove (4.9). We define a new J-holomorphic disc h ν (ζ) := g ν (νζ) from the unit disc ∆ to D ν . According to Lemma 4.8, we have

h ν (0) = g ν (0) ∈ {z ∈ C 2 : |z 1 | ≤ C 1 δ 1 2m ν , |z 2 | ≤ C 1 δ ν }.
This implies: After dilations, this leads to (4.9).

h ν (r 0 ∆) ⊆ {z ∈ C 2 : |z 1 | ≤ C 0 δ 1 2m ν , |z 2 | < C 0 δ ν },
The proof of (4.10) is similar to (4.8) of Lemma 4.4, since the sequence of structures (Λ ν ) * J converges on any compact subset of C 2 in the C 1 sense to J st because J is diagonal.

Hence according to Lemma 4.9 we may extract from Λ ν • g ν a subsequence, still denoted by Λ ν • g ν wich converges in the C 1 sense to a standard complex line g : C → ({Rez 2 + H 2m (z 1 , z 1 ) < 0}, J st ), where the domain ({Rez 2 + P (z 1 , z 1 ) < 0}, J st ) is Brody hyperbolic since H 2m (z 1 , z 1 ) contains a nonharmonic part. Then the standard complex line g is constant. To obtain a contradiction, we prove that the derivative of g is nonzero: Since |ρ (g ν (0)) | is equivalent to δ ν , it follows that for some positive constant C 3 we have for large ν:

1 2 ≤ C 3 |(d 0 (g ν )(∂/∂ x )) 1 | δ 1 2m ν + |(d 0 (g ν )(∂/∂ x )) 2 | δ ν = C 3 d 0 (Λ ν • g ν )(∂/∂ x ) 1 .
This provide a contradiction.

A direct computation leads to: The only order two terms in x 1 and y 1 of α -1 ν (J ν ) 3 1 (z) and of α -1 ν (J ν ) Vanishing these order two terms leads to: Since this 8 × 8 system of linear equations is not a Cramer system, it follows that there does not exist, generically, polynomials R 1,ν and S 1,ν such that there are no order three term in x 1 and y 1 in (J ν ) 3 1 (z) and (J ν ) 3 2 (z).

α -1 ν (J ν ) 3 1 (z) = (a ν 2 -a ν 1 ) Ψ -1 ν (z) x 1 -(c ν 1 + b ν 2 ) Ψ -1 ν (z) y 1 -y 1 ∂R 1,ν ∂x 1 -x 1 ∂R 1,
                  

Lemma 4. 2 . ( 1 )

 21 The domain Dν converges in the sense of local Hausdorff set convergence to a (standard) pseudoconvex domain D = {ρ < 0}, with ρ (z) = ℜez 2 + P (z 1 , z 1 ) ,

Theorem 4 . 7 .

 47 Let D = {ρ < 0} be a domain of finite D'Angelo type in R 4 , J , whereρ (z 1 , z 2 ) = ℜez 2 + H 2m (z 1 , z 1 ) + O |z 1 | 2m+1 + |z 2 | z ,is a C 2 defining function of D, J-plurisubharmonic on a neighborhood of D. We suppose that H 2m is a homogeneous subharmonic polynomial of degree 2m admitting a nonharmonic part. Then there exists a positive constant C such that for every p ∈ D ∩ Λ and every v ∈ T p M :K (D,J) (p, v) ≥ C |v 1

for positive constants r 0

 0 and C 0 , since Lemma 4.3 is true if we replace τ (p * ν , δ ν ) by δ 1 2mν . Henceg ν (r 0 ∆ ν ) ⊆ {z ∈ C 2 : |z 1 | < C 0 δ 1 2m ν , |z 2 | ≤ C 0 δ ν }.

1 2 =

 2 N (g ν (0), d 0 g ν (∂/∂ x )) = |(d 0 g ν (∂/∂ x )) 1 | |ρ(g ν (0))| 1 2m + |(d 0 g ν (∂/∂ x )) 2 | |ρ(g ν (0))| .

R 1 ,ν = r 5 ,ν x 2 1 -2s 5 ,ν x 1 y 1 -r 5 ,ν y 2 1 + r 1 ,ν x 3 1 + r 2 ,ν x 2 1 y 1 + r 3 ,ν x 1 y 2 1 + r 4 ,ν y 3 1 +O |z 1 | 4 + y 2 2 +S 1 ,ν = s 5 ,ν x 2 1 + 2s 5 ,ν x 1 y 1 -s 5 ,ν y 2 1 + s 1 ,ν x 3 1 + s 2 ,ν x 2 1 y 1 + s 3 ,ν x 1 y 2 1 + s 4 ,ν y 3 1 +O |z 1 | 3 + y 2 2 +

 151515111213141142151515111213141132 |y 2 | z |y 2 | z .

By a direct computation, the complexification of Jν is equal to:

According to (4.4) and since c k,ν converges to zero when ν tends to +∞ for k = 2, 3, it follows that Jν converges to J st . This proves part (2).

Complete hyperbolicity in D'Angelo type four condition.

In this subsection we prove Theorem 4.1.

Keeping notations of the previous subsection; we start by establishing the following lemma which gives a precise localization of pseudoholomorphic discs in boxes.

Lemma 4.3. Assume the origin ∈ ∂D is a point of D'Angelo type four. There are positive constants C 0 , δ 0 and r 0 such that for any 0 < δ < δ 0 , for any large ν and for any J ν -holomorphic disc g ν : ∆ → D ν we have : Lemma 4.3. Assume by contradiction that there are a sequence (C ν ) ν that tends to +∞ as ζ ν converges to 0 in ∆, and J ν -holomorphic discs g ν : ∆ → D ν such that g ν (0) = (0, -δ ν ) and

where r is a positive constant to be fixed. We set

uniformly on any compact subset of C 2 and Jr ν converges to J st , uniformly on any compact subset of C 2 . According to the stability of the Kobayashi pseudometric stated in Proposition 3.7, there exist a positive constant C and a neighborhood V of the origin in R 4 , such that for every large ν, for every q ∈ Dν ∩ V and every v ∈ T q R 4 :

Therefore, there exists a constant C ′ > 0 such that 

Before proving Theorem 4.7 we need the following crucial lemma.

Lemma 4.8. There exist a neighborhood U of the origin and a positive constant

Proof. According to the fact that dist (z, ∂D) is equivalent to |ρ (z) | = -ℜez 2 + O z 2 and to the definition of the cone Λ, we have:

This implies the existence of a positive constant C 1 such that

for p ∈ D ∩ Λ sufficiently close to the origin.

The proof of Theorem 4.7 is similar and easier than proof of Theorem 4.1. For convenience, we write it.

Proof of Theorem 4.7. Let U be a neighborhood of the origin. We define an infinitesimal pseudometric N on D ∩ U ⊆ R 4 by:

We have to find a positive constant C such that for every J-holomorphic disc u : ∆ → D ∩ U , such that if u (0) ∈ Λ then:

Suppose by contradiction that this inequality is not true, that is, there exists a sequence of J-holomorphic

Then consider a sequence (y ν ) ν of points in

Then we define a sequence of J-holomorphic discs g ν : ∆ ν → D ∩ U by

.

APPENDIX : CONVERGENCE OF THE STRUCTURES INVOLVED BY THE SCALING METHOD.

In this appendix, we prove that, generically, the convergence of the sequence of structures involved by the scaling method to the standard structure J st occurs only on a neighborhood of boundary points of D'Angelo type less than or equal to four.

Let D = {ρ < 0} be a pseudoconvex region of finite D'Angelo type 2m in R 4 , where ρ has the following expression on a neighborhood U of the origin:

where H 2m is a homogeneous subharmonic polynomial of degree 2m admitting a nonharmonic part. Assume that p ν is a sequence of points in D ∩ U converging to the origin, and, for large ν, consider the sequence of diffeomorphisms Φ ν : R 4 → R 4 given in the scaling method. We suppose that the function ρ ν = ρ • (Φ ν ) -1 is given by:

Moreover the structure J ν := (Φ ν ) * J satisfies (2.2) and (2.3). To fix notations, we set:

Now, consider the following diffeomorphism of R 4 defined by:

(5.1)

) converging to the identity and such that d 0 Ψ -1 ν = Id. We suppose that R k,ν and S k,ν , for k = 1, 2 are real functions depending smoothly on x 1 , y 1 and y 2 and that R 2,ν and S 2,ν are given by: (5.2)

Then we define

And we consider the following anisotropic dilations of C 2 :

If we write J ν := (Ψ ν ) * J ν as:

then we have:

We have generically the following situation:

Proposition 5.1. The sequence of structures (Λ ν ) * J ν converges to the standard structure J st if and only if the D'Angelo type of the origin is less than or equal to four.

Proof. We notice that (Λ ν ) * J ν converges to J st if and only if

which converges to the zero 2 by 2 matrix since τ ν ≤ δ

ν and since C 1,ν tends to the zero 2 by 2 matrix.

We have proved in Lemma 4.2 that when the origin is a point of D'Angelo type four, then

In case the D'Angelo type of the origin is greater than four, we cannot guarantee the convergence of τ ν δ -1 ν C ν 1 (τ ν z 1 , δ ν z 2 ) when we only remove harmonic terms. So we need to find a more general sequence of diffeomorphisms Ψ ν defined by (5.1), (5.2) and (5.3) and such that

Claim. There are no polynomial R 1,ν , S 1,ν , R 2,ν and S 2,ν such that C 1,ν does not contain any order three terms in x 1 and y 1 .

Then it follows that:

and that

Since J ν satisfies (2.3), we have:

where H 3,ν (x 1 , y 1 ) and H ′ 3,ν (x 1 , y 1 ) are real homogeneous polynomials of degree three in x 1 and y 1 which are generically non identically zero. Since we cannot insure the convergence of α ν τ ν δ -1 ν H 3,ν (τ ν x 1 , τ ν y 1 ) = α ν τ 4 ν δ -1 ν H 3,ν (x 1 , y 1 ) and α ν τ ν δ -1 ν H ′ 3,ν (τ ν x 1 , τ ν y 1 ) = α ν τ 4 ν δ -1 ν H ′ 3,ν (x 1 , y 1 ) , we want to cancel polynomials H 3,ν (x 1 , y 1 ) and H ′ 3,ν (x 1 , y 1 ) by order three terms in x 1 and y Finally, vanishing order three terms in x 1 and y 1 of α -1 ν (J ν ) 3 1 (z) and of α -1 ν (J ν ) 3 2 (z) involve the following system of linear equations:

3 0 2 0 0 1 0 0 3 0 0 0 0 -1 0 0 0 1 0 0 3 0 0 0 0 2 0 3 0 0 -1 0 0 1 0 0 -3 0 -2 0 0 0 1 0 0 0 0 -3 0 0 1 0 0 2 0 3 0 0 0 3 0