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Introduction

Biophysics and biomechanics are two fields where Fluid-Structure interactions play an important role, both from the modeling and computing points of view. In many 3D applications, flow and solid models coexist with biochemical systems. For such problems it is desirable to have at hand computing tools wich readily couple models of different nature (typically Eulerian for fluids, Lagrangian for solids), easily enforce continuity conditions at the interface and enable to handle reaction-diffusion systems.

In a series of papers [START_REF] Cottet | A level-set formulation of immersed boundary methods for fluidstructure interaction problems[END_REF][START_REF] Cottet | A level-set method for fluid-structure interactions with immersed surfaces[END_REF][START_REF] Cottet | Eulerian formulation and level set models for incompressible fluid-structure interaction[END_REF] such models were derived to compute the interaction of 3D incompressible fluids with elastic membranes or bodies. These models are based on Eulerian formulations of elasticity and rely on the use of level set functions, both to capture the fluid-solid interfaces and to measure the elastic stresses. Interface conditions are implicitly enforced through the elastic forces acting on the flow equations. They can be seen as alternative to more conventional ALE methods where Eulerian and Lagrangian formulations of the fluid and the solid are coupled through explicit enforcement of interface conditions.

The goal of the present paper is to present applications of this method to two types of problems arising in biophysics. The first problem is the computation of equilibrium shapes of biological vesicles. In this case the fluid structure model is a dynamical model for shape optimization, in the spirit of [START_REF] Biben | An advected field approach to the dynamics of fluid interfaces[END_REF], in contrast with more classical geometric approaches [START_REF] Simon | Existence of surfaces minimizing the Willmore functional[END_REF][START_REF] Du | A phase field formulation of the Willmore problem[END_REF]. Elastic stresses and immersion of the vesicle in an incompressible fluid are used to enforce constraints of constant area and volume.

In the second problem we are concerned with numerical simulations of spontaneous cardiomoyocyte contractions. In that case, the model couples an incompressible anisotropic medium with a reactiondiffusion system for the calcium concentrations. This coupling is through a calcium dependent active stress in the elastic medium. Our approach differs from that in [START_REF] Pustoc'h | Finite element modelling of the calcium-induced contraction cardiomyocytes based on time-lapse videomicroscopy[END_REF][START_REF] Okada | Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method[END_REF] by the fact that no remeshing of the structure is needed during the cell deformation. This leads to significant computational savings.

An outline of the paper is as follows. In Section 2 we focus on the problem of equilibrium shapes for biological vesicles. We present our level set formulation for the shape optimization and show numerical results for biological vesicles. In Section 3 we turn to the elastic deformation of a cardiomyocyte. We recall the level set Eulerian formulation derived in [START_REF] Cottet | Eulerian formulation and level set models for incompressible fluid-structure interaction[END_REF] for a transverse isotropic elastic body. We couple this model with the reaction diffusion model [START_REF] Goldbeter | Minimal model for signal-induced Ca 2+ oscillations and for their frequency encoding through protein phosphorylation[END_REF] and show numerical results illustrating the association of cell contraction with calcium waves. Section 4 is devoted to some concluding remarks.

Equilibrium shapes of 3D phospholipidic vesicles

Phospholipidic vesicles are routinely considered as physical models in particular for red blood cells. Their membrane is a bilayer made of a fixed amount of molecules. As a result, it only responds to change of area or breakup. Taking into account the hydrodynamics is necessary in order to be able to study the behavior of these 3D cells when they are immersed in a flowing fluid. Phase-field models have been developed and used in 2D simulations, but 3D simulation of vesicles dynamics in shear flow is still a challenging problem. As a first step in this direction we consider here the problem of finding equilibrium shapes of these vesicles, constrained to have a fixed volume and area. An important parameter is the volume ratio

η = 3V (4π) 1/2 A 3/2 (1)
where V is the volume and A is the area, which measures the ratio between the volume of the cell and the volume of the sphere having the same area. Our computational approach mimics the underlying biophysical dynamics, in the sense that we assume that the cell is moving in an incompressible fluid and is subject to a very stiff elastic stress localized on the membrane. The curvature energy that the vesicle is supposed to minimize is used to derive an external force driving it towards its equilibrium.

Level-set formulation

In this section we give a level set formulation for the curvature driven dynamics of elastic membranes immersed in an incompressible fluid. Consider a domain Ω of R 3 containing some incompressible fluid into which a vesicle is immersed. This vesicle is considered to be an elastic surface. One way to describe the motion of this surface is to introduce a function ϕ whose zero level-set is the surface [START_REF] Osher | Level set methods and Dynamic Implicit Surfaces[END_REF]. Given a signed distance function ϕ 0 such that the initial interface is given by Γ 0 = x ∈ Ω, ϕ 0 (x) = 0 , the problem of localizing the structure is reduced to an advection of the function ϕ by the fluid velocity u. The velocity is solution to a Navier-Stokes system with a singular source term which accounts for the elastic forces acting on the fluid. As observed in [START_REF] Cottet | A level-set formulation of immersed boundary methods for fluidstructure interaction problems[END_REF], when u is incompressible, the change of area of {ϕ = 0} is recorded in |∇ϕ|. Following [START_REF] Cottet | A level-set method for fluid-structure interactions with immersed surfaces[END_REF], this makes it possible to express the area energy in terms of ϕ alone:

E a [ϕ] = Ω E(|∇ϕ|) 1 ε ζ( ϕ ε )dx
and the associated force is given by

f a [ϕ] = P ∇ϕ ⊥ ∇[E (|∇ϕ|)] -E (|∇ϕ|)κ(ϕ) ∇ϕ |∇ϕ| |∇ϕ| 1 ε ζ( ϕ ε ). (2) 
In this formula ζ is a cut-off function classically used in level-set methods to spread the singular force on the mesh, P ∇ϕ ⊥ is the orthogonal projector on ∇ϕ ⊥ and κ(ϕ) = div ∇ϕ |∇ϕ| is the mean curvature. The constitutive law r → E (r) describes the response of the membrane to a change of area. As we already pointed out, in the present application the membrane is nearly inextensible, and we choose E (r) = λ(r -1) for large values of λ. This somehow corresponds to penalizing the change of area.

In order to account for curvature effects, we next introduce the following energy:

E c [ϕ] = Ω G(κ(ϕ))|∇ϕ| 1 ε ζ( ϕ ε )dx
where |∇ϕ| 1 ε ζ( ϕ ε )dx is an approximation of the surface measure. A common choice is G(r) = 1 2 r 2 but terms identification is made easier in the following by keeping a general function G. The strategy to compute the curvature force is to take the time derivative of the energy and identify it with the power of the generated force:

dE c dt = - Ω f c • udx.
Let us first compute the differential of E c :

dE c [ϕ](δ) = Ω G (κ(ϕ)) div ∇δ |∇ϕ| - ∇ϕ • ∇δ |∇ϕ| 3 |∇ϕ| 1 ε ζ( ϕ ε )dx + Ω G(κ(ϕ)) ∇ϕ • ∇δ |∇ϕ| 1 ε ζ( ϕ ε ) + G(κ(ϕ))|∇ϕ| 1 ε 2 ζ ( ϕ ε )δdx.
The two terms in the second integral may be combined: upon integrating the first one by parts, one obtains

- Ω G(κ(ϕ))κ(ϕ) 1 ε ζ( ϕ ε )δ + G(κ(ϕ)) ∇ϕ |∇ϕ| 1 ε 2 ζ ( ϕ ε )∇ϕδ + ∇G(κ(ϕ)) • ∇ϕ |∇ϕ| 1 ε ζ( ϕ ε )δ.
Therefore

dE c [ϕ](δ) = Ω G (κ(ϕ)) div P ∇ϕ ⊥ (∇δ) |∇ϕ| |∇ϕ| 1 ε ζ( ϕ ε )-G(κ(ϕ))κ(ϕ) 1 ε ζ( ϕ ε )δ-∇G(κ(ϕ))• ∇ϕ |∇ϕ| 1 ε ζ( ϕ ε )δdx
which from the expression of the mean curvature κ(ϕ) also reads

dE c [ϕ](δ) = Ω G (κ(ϕ)) div P ∇ϕ ⊥ (∇δ) |∇ϕ| |∇ϕ| 1 ε ζ( ϕ ε ) -div(G(κ(ϕ)) ∇ϕ |∇ϕ| ) 1 ε ζ( ϕ ε )δdx.
Since P ∇ϕ ⊥ (∇δ) • ∇ϕ = 0 the first term may be integrated by parts to give

- Ω ∇ |∇ϕ|G (κ(ϕ)) • P ∇ϕ ⊥ (∇δ) 1 |∇ϕ| 1 ε ζ( ϕ ε ) = - Ω P ∇ϕ ⊥ |∇ϕ|∇G (κ(ϕ)) • ∇δ |∇ϕ| 1 ε ζ( ϕ ε )dx
where the symmetry of the projector on ∇ϕ ⊥ has been used. Integrating once more by parts we find

dE c [ϕ](δ) = Ω div -G(κ(ϕ)) ∇ϕ |∇ϕ| + 1 |∇ϕ| P ∇ϕ ⊥ ∇[|∇ϕ|G (κ(ϕ))] 1 ε ζ( ϕ ε )δdx.
Let us now compute the time derivative of the energy. Using the advection equation on ϕ,

d dt E c [ϕ] = dE c [ϕ](ϕ t ) = dE c [ϕ](-u • ∇ϕ) = - Ω f c (x, t) • udx (3) 
which by identification gives:

f c [ϕ] = div -G(κ(ϕ)) ∇ϕ |∇ϕ| + 1 |∇ϕ| P ∇ϕ ⊥ ∇[|∇ϕ|G (κ(ϕ))] 1 ε ζ( ϕ ε )∇ϕ. (4) 
A more general derivation of curvature driven level set models for shape optimization will be given in [START_REF] Maitre | A comparison between level-set and classical shape optimization for curvature dependent functionals[END_REF].

The two forces ( 2) and ( 4) are finally inserted as forcing terms in the Navier-Stokes equations, leading to the following model: given and initial velocity field u 0 and an initial interface ϕ 0 , find (u, ϕ) solution to

           ρ(ϕ)(u t + u • ∇u) -div(µ(ϕ)D(u)) + ∇p = f a [ϕ] + f c [ϕ] on Ω×]0, T [ div u = 0 on Ω×]0, T [ ϕ t + u • ∇ϕ = 0 on Ω×]0, T [ u = u 0 ϕ = ϕ 0 on Ω × {0}
where, in the case of homogeneous interior and exterior fluids we have

µ(ϕ) = µ 1 H( ϕ ε ) + µ 2 (1 -H( ϕ ε )) and ρ(ϕ) = ρ 1 H( ϕ ε ) + ρ 2 (1 -H( ϕ ε )) + ν 1 ε ζ( ϕ ε )
where ν is the membrane surface density (in its reference state) and

H(r) = r -∞ ζ(s)ds.
The boundary condition to be enforced on ∂Ω plays a marginal role. For simplicity we in general choose homogeneous Dirichlet boundary conditions.

Note that for this model the following energy equality holds for all t ∈ [0, T ]:

1 2 Ω ρ(ϕ)u 2 dx + Ω E(|∇ϕ|) 1 ε ζ( ϕ ε ) dx + Ω G(κ(ϕ))|∇ϕ| 1 ε ζ( ϕ ε )dx + 1 2 t 0 Ω µ(ϕ)D(u) 2 dx dt = 1 2 Ω ρ(ϕ 0 )u 2 0 dx + Ω E(|∇ϕ 0 |) 1 ε ζ( ϕ 0 ε ) dx + Ω G(κ(ϕ 0 ))|∇ϕ 0 | 1 ε ζ( ϕ 0 ε )dx
which shows that the spreading of elastic and curvature forces inherent to the level-set method does not introduce any energy dissipation. We also remark that the resolution of the full problem fluid/membrane, while not mandatory to obtain equilibrium shapes (but mandatory to study the dynamical behavior of vesicles in shear flow), brings some advantages from the viewpoint of volume conservation: indeed we will use a projection method which will ensure this conservation at the discrete level. Note that in order to solve the minimization problem without any fluid, it is necessary to add a volume constraint which is usually enforced through a Lagrange multiplier approach. This may result in a loss of accuracy for volume conservation.

Numerical results

The numerical results presented here show two typical situations of optimal shapes for 3D vesicles. The final shape depends on the volume ratio coefficient r defined in [START_REF] Brown | Accurate Projection Methods for the Incompressible Navier-Stokes Equations[END_REF]. The first test case corresponds to r = 0.8, giving a peanut minimizing shape (figure 1, top pictures). The second one to r = 0.586 looks like a real red blood cell (figure 1, bottom pictures). In each series of pictures we have represented a sequence of shapes from the initialization stage (left pictures) to the steady-state optimal shapes (right pictures). These shapes qualitatively agree with those observed for corresponding η values ( [START_REF] Seifert | Shape transformations of vesicles: phase diagram for spontaneous curvature and bilayer coupling model[END_REF]).

Ongoing works deal with the extension of the present method to simulate the dynamical behavior of 3D vesicles in shear flows.

The numerical resolution of Navier-Stokes equations is performed using a finite differences solver (projection method) on a MAC mesh [START_REF] Brown | Accurate Projection Methods for the Incompressible Navier-Stokes Equations[END_REF] of size 128 3 . In order to ensure volume conservation which is crucial in this problem, the level-set function is advected using a fifth order WENO scheme. Since the level-set function is used through its gradient to compute the stretching, we do not perform the usual redistancing operation on the level-set function [START_REF] Osher | Level set methods and Dynamic Implicit Surfaces[END_REF]. Instead, we use the renormalization ϕ |∇ϕ| to measure the distance to interface. This approach was proved in [START_REF] Cottet | A level-set method for fluid-structure interactions with immersed surfaces[END_REF] to be efficient from the point of view of both volume conservation and interface force calculations. 

Eulerian three-dimensional modelisation and simulation of cardiomyocyte contraction induced by calcium waves

In a recent article, Okada et al. [START_REF] Okada | Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method[END_REF] investigated the mechanism of calcium wave propagation in connection with cardiomyocyte contraction. They developped a 3D simulator using the model of [START_REF] Subramanian | Underlying mechanisms of symetric calcium wave propagation in rat ventricular myocytes[END_REF] for the Ca 2+ dynamics and relying on the Negroni and Lascano's contraction model [START_REF] Negroni | A cardiac muscle model relating sarcomere dynamics to calcium kinetics[END_REF] which couples Ca 2+ concentration with force generation. For the elastic part an isotropic Saint Venant-Kirchhoff hyperelastic model was assumed and myofibrills, Z-lines, sarcolemma, cytoskeleton and cytoplasm were represented by various finite element families. In our paper we adopt a similar approach in an Eulerian framework: following [START_REF] Cottet | Eulerian formulation and level set models for incompressible fluid-structure interaction[END_REF] we use a level set approach of the fluid-structure coupling that occurs between the surrounding fluid and the cardiomyocyte, considering these two as a unique incompressible continuous medium. The microscopic internal structure of the cardiomyocyte is not described: the passive property of the myocyte is given by nonlinear elasticity, with a transverse isotropy assumption accounting for the topology of the sarcolemma. The calcium dynamics is coupled through an active stress law given by Stuyvers et al. [START_REF] Stuyvers | Effect of stimulation rate, sarcomere length and Ca 2+ on force generation by mouse cardiac muscle[END_REF], as described in Tracqui et al. [START_REF] Pustoc'h | Finite element modelling of the calcium-induced contraction cardiomyocytes based on time-lapse videomicroscopy[END_REF]. While our model does not pretend to reproduce the internal structure as precisely as in [START_REF] Okada | Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method[END_REF], it is more realistic in some respects in the elastic part. In particular it is worth noticing that the Saint Venant-Kirchhoff constitutive law considered in [START_REF] Okada | Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method[END_REF] should not be used for the large deformations observed in myocytes.

Description of the model

In this section we rely on the level set framework developed in [START_REF] Cottet | Eulerian formulation and level set models for incompressible fluid-structure interaction[END_REF] for anisotropic elastic bodies in interaction with incompressible fluids and couple this model with a differential system for the Calcium concentration responsible for the active stress.

Eulerian formulation of the passive continuous medium

The cardiomyocyte is immersed in a fluid which lies in a bounded domain Ω ⊂ R 3 . We denote by u the divergence-free velocity field of the whole continuous medium, assumed to be C 1 and to vanish on the boundary ∂Ω.

(H) u ∈ C 1 (Ω × [0, T ]) and u = 0 on ∂Ω × [0, T ]
The interface between the cardiomyocyte and the fluid is captured by a level set function ψ 0 . Note that ψ 0 needs not be a signed distance function. In our calculations it was obtained from experimental data, specifically by confocal miscroscopy [START_REF] Usson | Method for the study of the threedimensional orientation of the nuclei of myocardial cells in fetal human heart by means of confocal scanning laser microscopy[END_REF]. Let us introduce the characteristics of the vector field u. We denote by s → X(s; x, t) ∈ R 3 the solution of the differential system ∂X ∂s = u(X, s)

with "initial" condition X(t; x, t) = x. Classically, under the assumptions (H), the map x → X(s; x, t) is a C 1 diffeomorphism from Ω to Ω. Since u is incompressible, one has div u = 0 and thus the Jacobian of X, denoted by J, is equal to 1. Following [START_REF] Cottet | Eulerian formulation and level set models for incompressible fluid-structure interaction[END_REF], to compute X in an Eulerian fashion, we use the following transport equation satisfied by X as a funtion of t, x :

X t (s; x, t) + u(x, t) • ∇X(s; x, t) = 0 (5)
still with the same initial condition on t = s. Once X is computed at time t (for s = 0), several quantities can be easily obtained. The cardiomyocyte boundary position is given by the zero level set of ψ(x, t) = ψ 0 (X(0; x, t)). The left Cauchy-Green tensor is given by ([2], p. 15, [START_REF]Ciarlet Mathematical elasticity[END_REF], p. 43) B = F F T where F (x, t) = (∇X)(t; X(0; x, t), 0) = (∇X) -1 (0; x, t)

the last equality being obtained by differentiation of X(t; X(0, x, t), 0) = x. For an elastic material whose response is isotropic at point ξ = X(0; x, t), the Cauchy stress tensor at x is given by ([2], p. 50, [START_REF]Ciarlet Mathematical elasticity[END_REF], p. 115) T (x) = T D (X(0; x, t), B(x, t)).

If this material is incompressible, then this constitutive equation becomes ( [START_REF] Gurtin | Topics in finite elasticity[END_REF], p. 45, or [START_REF]Ciarlet Mathematical elasticity[END_REF], p. 259 after applying a Piola transform):

-p(x)I + T D (X(0; x, t), B(x, t))

where I is the identity. If we describe the surrounding fluid as Newtonian, the stress tensor in this part of the continuous medium is given by -p(x)I + µD(u) where µ stands for the viscosity and D(u) = 1 2 (∇u + ∇u T ). The conservation of momentum may thus be written as

ρ(u t + u • ∇u) -div σ + ∇p = f
where σ = σ S χ {ψ<0} + σ F χ {ψ>0} and σ S = T D (X(0; x, t), B(x, t)), σ F = µD(u). Of course the momentum equation has to be understood in the sense of distributions. For computational purposes, a regularization of χ using the level set function ψ must be introduced. If we denote as above by r → H( r ε ) an approximation of the Heaviside function, the regularized stress

σ ε = σ S (1 -H( ψ ε )) + σ F H( ψ ε )
varies smoothly across the interface ψ = 0 and the momentum equation may be understood in the classical sense.

Transverse isotropy

In the myocardic tissue, cells have a rod-like shape and are assembled along fibres and bundled by collagen. Thus anisotropy is expected. More precisely, following [START_REF] Mourad | Description topologique de l'architecture fibreuse et modlisation mcanique du myocarde[END_REF], p. 80, the myocardic tissue can be considered as transverse isotropic [START_REF] Ogden | Nonlinear elasticity, anisoptropy, material staility and residual stresses in soft tissue, Biomechanics of Soft Tissue in Cardiovascular Systems[END_REF]. Let τ be the preferred direction for the cardiomyocyte, i.e. its long axis at time t = 0. Such a material can be characterized with a strain energy which depends on F and τ ⊗ τ . The stress tensor has then the following general expression

σ S = -pI + 2α 1 B + 2α 2 (tr(B)B -B 2 ) + 2α 4 F τ ⊗ F τ + 2α 5 (F τ ⊗ BF τ + BF τ ⊗ F τ ) (6) 
where α i is the derivative of the strain energy with respect to the invariant number i, with

I 1 = tr(B), I 2 = 1 2 [tr(B) 2 -tr(B 2 )], I 4 = |F τ | 2 , I 5 = (BF τ ) • (F τ ). (7) 
While I 1 2

4 stands for the fibre elongation (preferred direction), I 1 2

5 carries also an information on the elongation in the direction normal to the unpreferred directions. For the sake of simplicity we will restrict ourselves in this paper to the case where α 5 = 0. As the quantity computed by resolution of ( 5) is (x, t) → X(0; x, t), we have to express the stress law in terms of its components X i (0; x, t), i = 1, 2, 3. As F = (∇X) -1 (0; x, t), and det F = 1 by incompressibility, this is easily done:

F (x, t) = cof ∇X T =   X ,x 2 × X ,x 3 X ,x 3 × X ,x 1 X ,x 1 × X ,x 2   = ∇X 2 × ∇X 3 ∇X 3 × ∇X 1 ∇X 1 × ∇X 2
where X ,x i × X ,x j are row vectors, and ∇X i × ∇X j column vectors. The components of B = F F T are thus obtained from two-by-two scalar products of the X ,x i × X ,x j . For the invariants I 1 and I 2 involved in [START_REF] Du | A phase field formulation of the Willmore problem[END_REF], after some elementary computations, there holds

I 1 = tr(B) = |X ,x 2 × X ,x 3 | 2 + |X ,x 3 × X ,x 1 | 2 + |X ,x 1 × X ,x 2 | 2 = | cof ∇X| 2 tr(B 2 ) = tr(B) 2 -2(|X ,x 1 | 2 + |X ,x 2 | 2 + |X ,x 3 | 2 ), I 2 = |X ,x 1 | 2 + |X ,x 2 | 2 + |X ,x 3 | 2 = |∇X| 2 (8)
After some tedious yet elementary algebra, using (X ,x 1 × X ,x 2 ) • X ,x 3 = 1, (tr B)B -B 2 has the following simple expression:

(tr B)B -B 2 =   |X ,x 2 | 2 + |X ,x 3 | 2 -X ,x 1 • X ,x 2 -X ,x 1 • X ,x 3 -X ,x 1 • X ,x 2 |X ,x 1 | 2 + |X ,x 3 | 2 -X ,x 2 • X ,x 3 -X ,x 1 • X ,x 3 -X ,x 2 • X ,x 3 |X ,x 1 | 2 + |X ,x 2 | 2   and α 1 , α 2 , α 4 are functions of | cof ∇X| 2 , |∇X| 2 , | cof ∇X T τ | 2 .

Active contraction and final model

We now come to the coupling of the elastic properties with the biochemistry taking place inside the cell. For the active behavior of the cardiomyocyte, we follow [START_REF] Pustoc'h | Finite element modelling of the calcium-induced contraction cardiomyocytes based on time-lapse videomicroscopy[END_REF] where the active stress is added to σ S . With our notations it corresponds to adding in (6) the term

T 0 γ(Z(x, t))
to α 4 , where Z is the intracellular Ca 2+ concentration, and γ is the following Hill function [START_REF] Stuyvers | Effect of stimulation rate, sarcomere length and Ca 2+ on force generation by mouse cardiac muscle[END_REF]:

γ(Z) = Z n H Z n H 50 + Z n H
The constant T 0 was fixed to 5.5kP a such that predicted and experimental amplitudes match. The calcium dynamics is given by the following reaction-diffusion system [START_REF] Subramanian | Underlying mechanisms of symetric calcium wave propagation in rat ventricular myocytes[END_REF][START_REF] Goldbeter | Minimal model for signal-induced Ca 2+ oscillations and for their frequency encoding through protein phosphorylation[END_REF]:

∂Y ∂t = ν 2 (Z) -ν 3 (Y, Z) -k f Y (9) 
∂Z ∂t = ν 0 + ν 1 β -ν 2 (Z) + ν 3 (Y, Z) + k f Y -kZ + ∇ • (D∇Z) (10) 
Z(r, t 0 ) = Z 0 ; Y (r, t 0 ) = Y 0 (11) 
where the diffusion tensor is diagonal. As experimentally observed by [START_REF] Subramanian | Underlying mechanisms of symetric calcium wave propagation in rat ventricular myocytes[END_REF], we considered a ratio

D 33 D 11 = D 22
D 11 = 0.5 between diffusion along the sarcolemma direction and the transverse directions. The calcium fluxes ν 2 and ν 3 are given by the following Michaelis-Menten functions:

ν 2 = V M 2 Z n K n 2 + Z n (12) 
ν 3 = V M 3 Y m K m R + Y m Z p K p A + Z p (13) 
We refer to [START_REF] Pustoc'h | Finite element modelling of the calcium-induced contraction cardiomyocytes based on time-lapse videomicroscopy[END_REF] for precise biological meaning of constants and function appearing in ( 9)-( 13), and to table 2 for the values used in the forthcoming numerical simulations.

The final model consists of the following set of equations:

ρ(u t + u • ∇u) -div σ ε + ∇p = f, div u = 0 X t + u • ∇X = 0, F = cof ∇X T , B = F F T σ ε = σ S (1 -H( ψ ε )) + σ F H( ψ ε )
with σ S = 2α 1 B + 2α 2 (tr(B)B -B 2 ) + 2(α 4 + T 0 γ(Z(x, t)))F τ ⊗ F τ and σ F = µD(u), coupled with the system [START_REF] Gurtin | An introduction to continuum mechanics[END_REF][START_REF] Gurtin | Topics in finite elasticity[END_REF][START_REF] Maitre | A comparison between level-set and classical shape optimization for curvature dependent functionals[END_REF]. 

Parameter Value Unit ν 0 0.45 µM.s -1 k 2.2 s -1 ν 1 4 µM.s -1 V M 2 65 µM.s -1 V M 3 500 µM.s -1 K 2 1.2 µM K A 0.92 µM K R 3.5 µM Y 0 0.

Numerical results

For the Navier-Stokes and advection equations we used the finite-difference method described in Section 2.2. The reaction-diffusion system was solved on the same mesh using a seven-point discretisation of the (diagonal) diffusive terms. We considered two cases. In the first case the calcium concentration is homogeneous in the cell. In the second case the calcium concentration is initialized randomly and produces after some transient period a coherent wave propagating across the cardiomyocyte. In both cases the cardiomyocyte geometry was acquired from data obtained in [START_REF] Usson | Method for the study of the threedimensional orientation of the nuclei of myocardial cells in fetal human heart by means of confocal scanning laser microscopy[END_REF] using confocal microscopy (see figure 2). In all our calculation we used a grid of 128 3 points in a box surrounding the cell (the cell itself represented about 50% of the computational box). However, to obtain a better quality visualisation we ran a better resolved transport equation for the level set using velocity values interpolated from the low resolution results. Calcium concentration where represented on the fine mesh by interpolation from the lower resolution calculations.

Uniform contraction

In this first test case (figure 3.2.1), the coefficient β which controls the source of calcium is set constant in space. This results in an homogeneous calcium release and in a uniform contraction along the whole body of the cardiomyocyte. Note that this leads to a nonlinear elasticity problem with large displacements. The cardiomyocyte is discretized on a 384 3 grid for the advection equation, while the fluid-structure equations are solved on a 128 3 grid.

Coupling with a calcium wave

In this case, the coefficient β is a spatially localized function. This triggers a calcium wave which is starting on the left front of the cell and is propagating towards the other end (see figure 3.2.2). Note that the propagation is faster along the fiber direction, due to the higher diffusion coefficient in the FIGURE 3: Uniform contraction of a cardiomyocyte resulting from an homogeneous calcium release reaction-diffusion CICR system (see table). In that case the calcium peaks come with a deformation in a plane transverse to the principal axis of the cell. The efficiency, in terms of contraction along the principal axis, is clearly much lower than in the previous case. Note that for clarity, in this experiment as in the previous one, the fluid is not represented.

Conclusion

We have presented level set methods based on Eulerian representation of elasticity to deal with fluidstructure interactions. Two biophysical examples were provided to illustrate our method in this field, for vesicles shape optimization and cardiomyocyte contraction. These examples focus on interaction of a fluid with an immersed membrane, or an anisotropic elastic material. Both involve elasticity with large displacements, which would be very time consuming to deal with in the classical ALE method. 

FIGURE 1 :

 1 FIGURE 1: Shape optimization for equilibrium shapes of biological shapes. Top pictures: η = 0.8, bottom pictures: η = 0.586. Initialization to steady-state from left to right. Computations made by Thomas Milcent.

FIGURE 2 :

 2 FIGURE 2: Geometry of a cardiomyocyte obtained by confocal imagery [25] as used to initialize the level set function ψ

FIGURE 4 :

 4 FIGURE 4: Calcium wave propagating into a cardiomyocyte. The color codes for the calcium concentration. Total simulation time: 1s

Table 2 :

 2 Parameters values used in numerical simulations

		1	µM
	Z 0	10	µM
	Z 50	2.5	µM
	β	0.05	-
	D 11	300	µm 2 s -1
	D 22	150	µm 2 s -1
	D 33	150	µm 2 s -1
	T 0	5.5	kP a
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