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Abstract

We describe in this paper two applications of Eulerian level set methods to fluid-structure
problems arising in biophysics. The first one is concerned with three-dimensional equilibrium shapes
of phospholipidic vesicles. This is a complex problem which can be recast as the minimization of
the curvature energy of an immersed elastic membrane, under a constant area constraint. The
second deals with isolated cardiomyocyte contraction. This problem corresponds to a generic
incompressible fluid-structure coupling between an elastic body and a fluid. By the choice of these
two quite different situations, we aim to bring evidences that Eulerian methods provide efficient
and flexible computational tools in biophysics applications.

1 Introduction

Biophysics and biomechanics are two fields where Fluid-Structure interactions play an important role,
both from the modeling and computing points of view. In many 3D applications, flow and solid models
coexist with biochemical systems. For such problems it is desirable to have at hand computing tools
wich readily couple models of different nature (typically Eulerian for fluids, Lagrangian for solids),
easily enforce continuity conditions at the interface and enable to handle reaction-diffusion systems.

In a series of papers [4, 5, 6] such models where derived to compute the interaction of 3D incom-
pressible fluids with elastic membranes or bodies. These models are based on Eulerian formulations
of elasticity and rely on the use of level set functions, both to capture the fluid-solid interfaces and
to measure the elastic stresses. Interface conditions are implicitly enforced through the elastic forces
acting on the flow equations. They can be seen as alternative to more conventional ALE methods
where Eulerian and Lagrangian formulations of the fluid and the solid are coupled through explicit
enforcement of interface conditions.

The goal of the present paper is to present applications of this method to two types of problems
arising in biophysics. The first problem is the computation of equilibrium shape of biological vesicles.
In this case the fluid structure model is a dynamical model for shape optimization, in the spirit of
[12], in contrast with more classical geometric approaches [21, 7]. Elastic stresses and immersion of
the vesicle in an incompressible fluids are used to enforce constraints of constant area and volume.
In the second problem we are concerned with numerical simulations of spontaneous cardiomoyocyte
contractions. In that case, the model couples an incompressible anisotropic medium with a reaction-
diffusion system for the calcium concentrations. This coupling is through a calcium dependent active
stress in the elastic medium. Our approach differs from that in [24, 16] by the fact that no remeshing of
the structure is needed during the cell deformation. This leads to substancial computational savings.

An outline of the paper is as follows. In section 2 we focus on the problem of equilibrium shapes for
biological vesicles. We present our level set formulation for the shape optimization and show numerical

1



results for biological vesicles. In section 3 we turn to the elastic deformation of a cardiomyocyte. We
recall the level set Eulerian formulation derived in [6] for a transverse isotropic elastic body. We couple
this model with the reaction diffusion model [8] and show numerical results illustrating the association
of cell contraction with calcium waves. Section 4 is devoted to some concluding remarks.

2 Equilibrium shapes of 3D phospholipidic vesicles

Phospholipidic vesicles are routinely considered as physical models in particular for red blood cells.
Their membrane is a bilayer made of a fixed amount of molecules. As a result, it only responds to
change of area or breakup. Taking into account the hydrodynamics is necessary in order to be able
to study the behavior of these 3D cells when they are immersed in a flowing fluid. Phase-field models
have been developed and used in 2D simulations, but 3D simulation of vesicles dynamics in shear flow
is still a challenging problem. As a first step in this direction we consider here the problem of finding
equilibrium shapes of these vesicles, constrained to have a fixed volume and area. An important
parameter is the volume ratio

η =
3V (4π)1/2

A3/2
(1)

where V is the volume and A is the area, which measures the ratio between the volume of the cell and
the volume of the sphere having the same area.

Our computational approach mimics the underlying biophysical dynamics, in the sense that we
assume that the cell is moving in an incompressible fluid and is subject to a very stiff elastic stress
localized on the membrane. The curvature energy that the vesicle is supposed to minimize is used to
derive an external force driving it towards its equilibrium.

2.1 Level set formulation

In this section we give a level set formulation for the curvature driven dynamics of elastic membranes
immersed in an incompressible fluid. Consider a domain Ω of R3 containing some incompressible fluid
into which a vesicle is immersed. This vesicle is considered to be an elastic surface. One way to
describe the motion of this surface is to introduce a function ϕ whose zero level set is the surface [17].
Given a signed distance function ϕ0 such that the initial interface is given by

Γ0 =
{
x ∈ Ω, ϕ0(x) = 0

}
,

the problem of localizing the structure is reduced to an advection of the function ϕ by the fluid velocity
u. The velocity is solution to a Navier-Stokes system with a singular source term which accounts for
the elastic forces acting on the fluid. As observed in [4], when u is incompressible, the change of area
of {ϕ = 0} is recorded in |∇ϕ|. Following [5], this makes it possible to express the area energy in
terms of ϕ alone:

Ea[ϕ] =
∫

Ω
E(|∇ϕ|)1

ε
ζ(
ϕ

ε
)dx

and the associated force is given by

fa[ϕ] =
{

P∇ϕ⊥
(
∇[E′(|∇ϕ|)]

)
− E′(|∇ϕ|)κ(ϕ)

∇ϕ
|∇ϕ|

}
|∇ϕ|1

ε
ζ(
ϕ

ε
). (2)

In this formula ζ is a cut-off function classically used in level set method to spread the singular force
on the mesh. The given function r → E′(r) describes the response of the membrane to a change of
area. As we already pointed out, in the present application the membrane is nearly inextensible, and
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choose E′(r) = λ(r − 1) for large values of λ. This somehow corresponds to penalizing the change of
area.

In order to account for curvature effects, we next introduce the following energy:

Ec[ϕ] =
∫

Ω
G(κ(ϕ))|∇ϕ|1

ε
ζ(
ϕ

ε
)dx

where κ(ϕ) is the mean curvature. A common choice for G(r) = 1
2r

2 but terms identification is made
easier in the following by keeping a general function G. The strategy to compute the curvature force
is to take the time derivative of the energy and identify it with the power of the generated force:

dEc
dt

= −
∫

Ω
fc · udx.

Let us first compute the differential of Ec:

dEc[ϕ](δ) =
∫

Ω
G′(κ(ϕ)) div

(
∇δ
|∇ϕ|

− ∇ϕ · ∇δ
|∇ϕ|3

)
|∇ϕ|1

ε
ζ(
ϕ

ε
)dx

+
∫

Ω
G(κ(ϕ))

∇ϕ · ∇δ
|∇ϕ|

1
ε
ζ(
ϕ

ε
) +G(κ(ϕ))|∇ϕ| 1

ε2
ζ ′(
ϕ

ε
)δdx.

The two terms in the second integral may be combined: upon integrating the first one by parts, one
obtains

−
∫

Ω
G(κ(ϕ))κ(ϕ)

1
ε
ζ(
ϕ

ε
)δ +G(κ(ϕ))

∇ϕ
|∇ϕ|

1
ε2
ζ ′(
ϕ

ε
)∇ϕδ +∇G(κ(ϕ)) · ∇ϕ

|∇ϕ|
1
ε
ζ(
ϕ

ε
)δ.

Therefore

dEc[ϕ](δ) =
∫

Ω
G′(κ(ϕ)) div

(P∇ϕ⊥(∇δ)
|∇ϕ|

)
|∇ϕ|1

ε
ζ(
ϕ

ε
)−G(κ(ϕ))κ(ϕ)

1
ε
ζ(
ϕ

ε
)δ−∇G(κ(ϕ))· ∇ϕ

|∇ϕ|
1
ε
ζ(
ϕ

ε
)δdx

which from the expression of the mean curvature κ(ϕ) also reads

dEc[ϕ](δ) =
∫

Ω
G′(κ(ϕ)) div

(P∇ϕ⊥(∇δ)
|∇ϕ|

)
|∇ϕ|1

ε
ζ(
ϕ

ε
)− div(G(κ(ϕ))

∇ϕ
|∇ϕ|

)
1
ε
ζ(
ϕ

ε
)δdx.

Since P∇ϕ⊥(∇δ) · ∇ϕ = 0 the first term may be integrated by parts to give

−
∫

Ω
∇
[
|∇ϕ|G′(κ(ϕ))

]
· P∇ϕ⊥(∇δ) 1

|∇ϕ|
1
ε
ζ(
ϕ

ε
) = −

∫
Ω

P∇ϕ⊥
[
|∇ϕ|∇G′(κ(ϕ))

]
· ∇δ
|∇ϕ|

1
ε
ζ(
ϕ

ε
)dx

where the symmetry of the projector on ∇ϕ⊥ has been used. Integrating once more by parts we find

dEc[ϕ](δ) =
∫

Ω
div
[
−G(κ(ϕ))

∇ϕ
|∇ϕ|

+
1
|∇ϕ|

P∇ϕ⊥
(
∇[|∇ϕ|G′(κ(ϕ))]

)] 1
ε
ζ(
ϕ

ε
)δdx.

Let us now compute the time derivative of the energy. Using the advection equation on ϕ,

d

dt
Ec[ϕ] = dEc[ϕ](ϕt) = dEc[ϕ](−u · ∇ϕ) = −

∫
Ω
fc(x, t) · udx (3)

which by identification gives:

fc[ϕ] = div
[
−G(κ(ϕ))

∇ϕ
|∇ϕ|

+
1
|∇ϕ|

P∇ϕ⊥
(
∇[|∇ϕ|G′(κ(ϕ))]

)] 1
ε
ζ(
ϕ

ε
)∇ϕ. (4)
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A more general derivation of curvature driven level set models for shape optimization will be given in
[11].

The two forces (2) and (4) are finally inserted as forcing terms in the Navier-Stokes equations,
leading to the following model: given and initial velocity field u0 and an initial interface ϕ0, find (u, ϕ)
solution to 

ρ(ϕ)(ut + u · ∇u)− div(µ(ϕ)D(u)) +∇p = fa[ϕ] + fc[ϕ] on Ω×]0, T [
div u = 0 on Ω×]0, T [
ϕt + u · ∇ϕ = 0 on Ω×]0, T [
u = u0 ϕ = ϕ0 on Ω× {0}

where ρ and µ are the, possibly varying, density and viscosity of the complex fluid. The boundary
condition to be enforced at the boudary of the computational box Ω plays a marginal role. For
simplicity we in general choose homogeneous Dirichlet boundary condtions.

Note that for this model the following energy equality holds for all t ∈ [0, T ]:

1
2

∫
Ω
ρ(ϕ)u2 dx+

∫
Ω
E(|∇ϕ|)1

ε
ζ(
ϕ

ε
) dx+

∫
Ω
G(κ(ϕ))|∇ϕ|1

ε
ζ(
ϕ

ε
)dx+

1
2

∫ t

0

∫
Ω
µ(ϕ)D(u)2 dx dt

=
1
2

∫
Ω
ρ(ϕ0)u2

0 dx+
∫

Ω
E(|∇ϕ0|)

1
ε
ζ(
ϕ0

ε
) dx+

∫
Ω
G(κ(ϕ0))|∇ϕ0|

1
ε
ζ(
ϕ0

ε
)dx

which shows that the spreading of elastic and curvature forces inherent to the level set method
does not introduce any energy dissipation. We also remark that the resolution of the full prob-
lem fluid/membrane, while not mandatory to obtain equilibrium shapes (but mandatory to study the
dynamical behavior of vesicles in shear flow), brings some advantages from the viewpoint of volume
conservation: indeed we will use a projection method which will ensure this conservation at the dis-
crete level. Note that in order to solve the minimization problem without any fluid, it is necessary to
add a volume constraint which is usually enforced through a Lagrange multiplier approach. This may
result in a loss of accuracy for volume conservation.

2.2 Numerical results

The numerical results presented here show two typical situations of optimal shapes for 3D vesicles. The
final shape depends on the volume ratio coefficient η defined in (1). The first test case corresponds to
η = 0.8, giving a peanut minimizing shape (figure 1, top pictures). The second one to η = 0.586 looks
like a real red blood cell (figure 1, bottom pictures). In each series of pictures we have represented
a sequence of shapes from the initialization stage (left pictures) to the steady-state optimal shapes
(right pictures). These shapes qualitatively agree with those observed for corresponding η values ([19]).
Ongoing works deal with the extension of the present method to simulate the dynamical behavior of
3D vesicles in shear flows.

The numerical resolution of Navier-Stokes equations is performed using a finite differences solver
(projection method) on a MAC mesh [1] of size 1283. In order to ensure volume conservation which
is crucial in this problem, the level set function is advected using a fifth order WENO scheme. Since
the level set function is used through its gradient to compute the stretching, we do not perform the
usual redistancing operation on the level set function [17]. Instead, we use the renormalization ϕ

|∇ϕ|
to measure the distance to interface. This approach was proved in [5] to be efficient from the point of
view of both volume conservation and interface force calculations.
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FIGURE 1: Shape optimization for equilibrium shapes of biological shapes. Top pictures: η = 0.8,
bottom pictures: η = 0.586. Initialization to steady-state from left to right.

3 Eulerian three-dimensional modelisation and simulation of car-
diomyocytes contraction induced by calcium waves

In a recent article, Okada and al [16] investigated the mechanism of calcium wave propagation in
connection with cardiomyocyte contraction. They developped a 3D simulator using the model of [22]
for the Ca2+dynamics and relying on the Negroni and Lascano’s contraction model [14] which couples
Ca2+concentration with force generation. For the elastic part an isotropic Saint-Venant hyperelastic
model was assumed and myofibrills, Z-lines sarcolemma, cytoskeleton and cytoplasm were represented
by various finite elements famillies. In our paper we adopt a similar approach in an Eulerian frame-
work: following [6] we use a level set approach of the fluid-structure coupling the surrounding fluid and
the cardiomyocyte, considering these two as an unique incompressible continuous medium. The mi-
croscopic internal structure of the cardiomyocyte is not described: the passive property of the myocyte
is given by nonlinear elasticity, with a transverse isotropy assumption accounting for the topology of
sarcolemma. The calcium dynamics is coupled through an active stress law given by Stuyvers and al.
[23], as described in Tracqui and al. [24]. While our model does not pretend to reproduce the internal
structure as precisely as in [16] , it is more realistic in some respects in the elastic part. In particular
it is worth noticing that the Saint-Venant constitutive law considered in [16] should not be used for
the large deformations observed in myocytes.

3.1 Description of the model

In this section we rely on the level set framework developed in [6] for anisotropic elastic bodies in
interaction with incompressible fluids and couple this model with a differential system for the Calcium
concentration responsible for the active stress.

3.1.1 Eulerian formulation of the passive continuous medium

The cardiomyocyte is immersed in a fluid which lies in a bounded domain Ω ⊂ R3. We denote by u
the divergence-free velocity field of the whole continuous medium, assumed to be C1 and to vanish on
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the boundary ∂Ω.
(H) u ∈ C1(Ω× [0, T ]) and u = 0 on ∂Ω× [0, T ]

The interface between the cardiomyocyte and the fluid is captured by a level set function ψ0. Note
that ψ0 needs not be a sign function. In our calculations it was obtained from experimental data,
specifically by confocal miscroscopy [25]. Let us introduce the characteristics of the vector field u. We
denote by s→ X(s;x, t) ∈ R3 the solution of the differential system

∂X

∂s
= u(X, s)

with ”initial” condition X(t;x, t) = x. Classically, under the assumptions (H), the map x→ X(s;x, t)
is a C1 diffeomorphism from Ω to Ω. Since u is incompressible, one has div u = 0 and thus the Jacobian
of X, denoted by J , is equal to 1. Following [6], to compute X in an Eulerian fashion, we use the
following transport equation satisfied by X as a funtion of t, x :

Xt(s;x, t) + u(x, t) · ∇X(s;x, t) = 0 (5)

still with the same initial condition on t = s. Once X is computed at time t (for s = 0), several
quantities can be easily obtained. The cardiomyocyte boundary position is given by the zero level set
of ψ(x, t) = ψ0(X(0;x, t)). The left Cauchy-Green tensor is given by ([2], p. 15, [3], p. 43)

B = FF t where F (x, t) = (∇X)(t;X(0;x, t), 0) = (∇X)−1(0;x, t)

the last equality being obtained by differentiation of X(t;X(0, x, t), 0) = x. For an elastic material
whose response is frame-independent and isotropic at point ξ = X(0;x, t), the Cauchy stress tensor
at x is given by ([2], p. 50, [3], p. 115)

T (x) = TD(x,B(x, t)).

If this material is incompressible, then this constitutive equation becomes ([10], p. 45, or [3], p. 259
after applying a Piola transform):

σS(x) = TD(x,B(x, t))− p(x)I

where I is the identity. If we describe the surrounding fluid as Newtonnian, the stress tensor in this
part of the continuous medium is given by

σF (x) = −p(x)I + µD(u)

where µ stands for the viscosity and D(u) = 1
2(∇u+∇ut). The conservation of momentum may thus

be written as
ρ(ut + u · ∇u)− div σ +∇p = f

where σ = σSχ{ψ<0} + σFχ{ψ>0} and σS = TD(x,B(x, t)), σF = µD(u). Of course the momentum
equation has to be understood in the sense of distributions. For computational purposes, a regu-
larization of χ using the level set function ψ must be introduced. If we denote by r → H( rε) an
approximation of the Heaviside function, the regularized stress

σε = σS(1−H(
ψ

ε
)) + σFH(

ψ

ε
)

varies smoothly across the interface ψ = 0 and the momentum equation may be understood in the
classical sense.
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3.1.2 Transverse isotropy

In the myocardic tissue, cells are assembled along fibres and bundled by collagen, and in each myocyte
the sarcolemma are parallel to this direction. Thus anisotropy is expected. More precisely, following
[13], p. 80, the myocardic tissue can be considered as transverse isotropic [15]. Let τ be the preferred
direction for the cardiomyocyte, i.e. its long axis at rest. Such a material can be characterized with
a strain energy which depends on F and τ ⊗ τ . The stress tensor has then the following general
expression

σS = −pI + 2α1B + 2α2(tr(B)B −B2) + 2α4Fτ ⊗ Fτ + 2α5(Fτ ⊗BFτ +BFτ ⊗ Fτ) (6)

where αi is the derivative of the strain energy with respect to the invariant number i, with

I1 = tr(B), I2 =
1
2

[tr(B)2 − tr(B2)], I4 = |Fτ |2, I5 = (BFτ) · (Fτ). (7)

While I
1
2
4 stands for the fibre elongation (prefered direction), I

1
2
5 measure the elongation in the direction

normal to the unprefered directions. For the sake of simplicity we will restrict ourselves in this paper
to the case where α5 = 0. As the quantity computed by resolution of (5) is (x, t)→ X(0;x, t), we have
to express the stress law in terms of its components Xi(0;x, t), i = 1, 2, 3. As F = (∇X)−1(0;x, t),
and detF = 1 by incompressibility, this is easily done:

F (x, t) = cof∇Xt =

X,x2 ×X,x3

X,x3 ×X,x1

X,x1 ×X,x2

 =
(
∇X2 ×∇X3 ∇X3 ×∇X1 ∇X1 ×∇X2

)
where X,xi × X,xj are row vectors, and ∇Xi × ∇Xj column vectors. The components of B = FF t

are thus obtained from two-by-two scalar products of the X,xi × X,xj . For the invariants I1 and I2

involved in (7), after some elementary computations, there holds

I1 = tr(B) = |X,x2 ×X,x3 |2 + |X,x3 ×X,x1 |2 + |X,x1 ×X,x2 |2 = | cof∇X|2

tr(B2) = tr(B)2 − 2(|X,x1 |2 + |X,x2 |2 + |X,x3 |2), I2 = |X,x1 |2 + |X,x2 |2 + |X,x3 |2 = |∇X|2 (8)

After some tedious yet elementary algebra, using (X,x1 × X,x2) · X,x3 = 1, (trB)B − B2 has the
following simple expression:

(trB)B −B2 =

|X,x2 |2 + |X,x3 |2 −X,x1 ·X,x2 −X,x1 ·X,x3

−X,x1 ·X,x2 |X,x1 |2 + |X,x3 |2 −X,x2 ·X,x3

−X,x1 ·X,x3 −X,x2 ·X,x3 |X,x1 |2 + |X,x2 |2


and α1, α2, α4 are functions of | cof∇X|2, |∇X|2, | cof∇Xtτ |2.

3.1.3 Active contraction and final model

We now come to the coupling of the elastic properties with the biochemistry taking place inside the
cell. For the active behavior of the cardiomyocyte, we follow [24] where the active stress is added to
σS . With our notations it corresponds to adding in (6) the term

T0γ(Z(x, t))

to α4, where Z is the intracellular Ca2+concentration, and γ is the following Hill function [23]:

γ(Z) =
ZnH

ZnH
50 + ZnH

7



The constant T0 was fixed to 5.5kPa such that predicted and experimental amplitudes match. The
calcium dynamics is given by the following reaction-diffusion system [22, 8]:

∂Y

∂t
= ν2(Z)− ν3(Y, Z)− kfY (9)

∂Z

∂t
= ν0 + ν1β − ν2(Z) + ν3(Y, Z) + kfY − kZ +∇ · (D∇Z) (10)

Z(r, t0) = Z0; Y (r, t0) = Y0 (11)

where the diffusion tensor is diagonal. As experimentally abserved by [22], we considered a ratio
D33
D11

= D22
D11

= 0.5 between diffusion along the sarcolemma direction and the transverse directions. The
calcium fluxes ν2 and ν3 are given by the following Michaelis-Menten functions:

ν2 = VM2

Zn

Kn
2 + Zn

(12)

ν3 = VM3

Y m

Km
R + Y m

Zp

Kp
A + Zp

(13)

We refer to [24] for precise biological meaning of constants and function appearing in (9)-(13), and to
table 2 for the values used in the forthcoming numerical simulations.

The final model consists of the following set of equations:

ρ(ut + u · ∇u)− div σε +∇p = f

σε = σS(1−H(
ψ

ε
)) + σFH(

ψ

ε
)

with σS = −pI + 2α1B+ 2α2(tr(B)B−B2) + 2(α4 +T0γ(Z(x, t)))Fτ ⊗Fτ and σF = µD(u), coupled
with the system (9-11).

Parameter Value Unit
ν0 0.45 µM.s−1

k 2.2 s−1

ν1 4 µM.s−1

VM2 65 µM.s−1

VM3 500 µM.s−1

K2 1.2 µM
KA 0.92 µM
KR 3.5 µM
Y0 0.1 µM
Z0 10 µM
Z50 2.5 µM
β 0.05 –
D11 300 µm2s−1

D22 150 µm2s−1

D33 150 µm2s−1

T0 5.5 kPa

Table 2: Parameters values used in numerical simulations
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FIGURE 2: Geometry of a cardiomyocyte obtained by confocal imagery [25] as used to initialize the
level set function ψ

3.2 Numerical results

For the Navier-Stokes and advection equations we used the finite-difference method described in section
2.2. The reaction-diffusion system was solved on the same mesh using a three-points discretisation of
the (diagonal) diffusive terms. We considered two cases. In the first case the calcium concentration
is homogeneous in the cell. In the second case the calcium concentration si initialized randomly and
produces after some transient a coherent wave propagating across the cardiomyocyte. In both case
the cardiomyocyte geometry was acquired from data obtained in [25] using confocal microscopy (see
figure 2).

In all our calculation we used a grid of 1283 points in a box surrounding the cell (the cell itself
represented about 50% of the computational box). However, to obtain a better quality visualisation
we ran a better resolved transport equation for the level set using velocity values interpolated form
the low resolution results. Calcium concentration where represented on the fine mesh by interpolation
form the lower resolution calculations.

3.2.1 Uniform contraction

In this first test case (figure 3), the coefficient β which controls the source of calcium is set constant
in space. This results in an homogeneous calcium release and in a uniform contraction along the
whole body of the cardiomyocyte. Note that this leads to a nonlinear elasticity problem with large
displacemements. The cardiomyocyte is discretized on a 3843 grid for the advection equation, while
the fluid-structure equations are solved on a 1283 grid.

3.2.2 Coupling with a calcium wave

In this case, the coefficient β is a spatially localized function. This triggers a calcium wave which is
starting on the left front of the cell and is propagating towards the other end (see figure 4). Note
that the propagation is faster along the fiber direction, due to the higher diffusion coefficient in the
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FIGURE 3: Uniform contraction of a cardiomyocyte resulting form an homogeneous calcium release

reaction-diffusion CICR system (see table). In that case the calcium peaks come with a deformation
in a plane transverse to the principal axis of the cell. The efficiency, in terms of contraction along the
principal axis, is clearly much lower than in the previous case. Note that for clarity, in this experiment
as in the previous one, the fluid is not represented.

4 Conclusion

We have presented level set methods based on Eulerian representation of elasticity to deal with fluid-
structure interactions. Two biophysical examples were provided to illustrate our method in this field,
for vesicles shape optimization and cardiomyocyte contraction. These examples focus on interaction
of a fluid with an immersed membrane, or an anisotropic elastic material. Both involve elasticity with
large displacements, which would be very time consuming to deal with in the classical ALE method.
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