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On the projective geometry of the supercircle: a unified construction of the super cross-ratio and Schwarzian derivative
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We consider the standard contact structure on the supercircle, S 1|1 , and the supergroups E(1|1), Aff(1|1) and SpO(2|1) of contactomorphisms, defining the Euclidean, affine and projective geometry respectively. Using the new notion of p|q-transitivity, we construct in synthetic fashion even and odd invariants characterizing each geometry, and obtain an even and an odd super cross-ratios.

Starting from the even invariants, we derive, using a superized Cartan formula, one-cocycles of the group of contactomorphisms, K(1), with values in tensor densities F λ (S 1|1 ). The even cross-ratio yields a K(1) one-cocycle with values in quadratic differentials, Q(S 1|1 ), whose projection on F 3 2 (S 1|1 ) corresponds to the super Schwarzian derivative arising in superconformal field theory. This leads to the classification of the cohomology spaces H 1 (K(1), F λ (S 1|1 )).

The construction is extended to the case of S 1|N . All previous invariants admit a prolongation for N > 1, as well as the associated Euclidean and affine cocycles. The super Schwarzian derivative is obtained from the even cross-ratio, for N = 2, as a projection to F 1 (S 1|2 ) of a K(2) one-cocycle with values in Q(S 1|2 ). The obstruction to obtain, for N ≥ 3, a projective cocycle is pointed out.

Introduction

The cross-ratio is the fundamental object of projective geometry; it is a projective invariant of the circle S 1 (or, rather, of RP 1 ). The main objective of this article is to propose and justify from a group theoretical analysis a super-analogue of the cross-ratio in the case of the supercircle S 1|N , and to deduce then, from the Cartan formula (1.2), the associated Schwarzian derivative for N = 1, 2.

It is well-known that the circle, S 1 , admits three different geometries, namely the Euclidean, affine and projective geometries, as highlighted by Ghys [START_REF] Ghys | Groups acting on the circle[END_REF]. They are defined by the groups (R, +), Aff(1, R) and PGL(2, R), or equivalently by their characteristic invariants, the distance, the distance ratio, and the cross-ratio. From these invariants we can obtain, using Cartan-like formulae, three 1-cocycles of Diff + (S 1 ) with coefficients in some tensorial density modules F λ (S 1 ) with λ ∈ R; see [START_REF] Duval | The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet[END_REF]. They are the generators of the three nontrivial cohomology spaces H 1 (Diff + (S 1 ), F λ ), with λ = 0, 1, 2, as proved in [START_REF] Fuks | Cohomology of infinite-dimensional Lie algebras[END_REF].

The purpose of this article is to extend these results to the supercircle, S 1|N , endowed with its standard contact structure. To that end, we use the embedding of the quotient, PC(2|N) = SpO(2|N)/{±Id}, of the orthosymplectic supergroup SpO(2|N), into the group, K(N), of contactomorphisms of S 1|N . The supergroup PC(2|N) is the projective conformal supergroup introduced by Manin in [START_REF] Yu | Topics in noncommutative geometry[END_REF], extending PSL(2, R).

The two main objects of super projective geometry, namely the cross-ratio and the Schwarzian derivative, have, indeed, already been introduced in the general context of superstring theories, though in a somewhat independent fashion. This was mainly done in the framework of super Riemann surfaces, or in terms of the so-called SUSY structures. On the one hand, the even and odd cross-ratios, for N = 1, have been originally put forward by Aoki [START_REF] Aoki | Heat kernels and super determinants of Laplace operators on super Riemann surfaces[END_REF], and Nelson [START_REF] Nelson | Lectures on supermanifolds and strings[END_REF], respectively; these two references have opened the way to subsequent work of, e.g., Giddings [START_REF] Giddings | Punctures on super Riemann surfaces[END_REF], and Uehara and Yasui [START_REF] Uehara | The Weil-Petersson Kähler form on the super Teichmüller space[END_REF]. On the other hand, the super Schwarzian derivative has been introduced, in the framework of superconformal field theory, by Friedan [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF], for N = 1, and by Cohn [START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF], for N = 2.

Quite independently, and from a more mathematical point of view, Manin [START_REF] Yu | Topics in noncommutative geometry[END_REF] introduced the even and odd cross-ratios, for N = 1, 2, by resorting to linear super-symplectic algebra. Also did Radul [START_REF] Radul | Superanalogue of Schwarz derivations and Bott cocycles[END_REF][START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF] discover the formulae for the super Schwarzian K(N) 1-cocycles, for N = 1, 2, 3, using the transformation laws of the super Sturm-Liouville operators on S 1|N . Our first objective is to construct, in a systematic manner, invariants characterizing each supergroup E + (1|N) ⊂ Aff + (1|N) ⊂ PC(2|N) acting on the supercircle S 1|N . To this end, we introduce the new notion of p|q-transitivity, well-adapted to supergroups, and state a general theorem, providing a way to build up characteristic invariant of a simply p|q-transitive group action. Applying this theorem to the three preceding supergroups, we obtain Euclidean, affine, and projective invariants, respectively I e , I a and I p , with their even and odd part. In the case N = 1, the two components of I p are, unsurprisingly, the even and odd above-mentioned super cross-ratios. Let us emphasize that, for arbitrary N, the even cross-ratio turns out to be given by the superfunction

[t 1 , t 2 , t 3 , t 4 ] = [t 1 , t 3 ][t 2 , t 4 ] [t 2 , t 3 ][t 1 , t 4 ] (1.1)
of a quadruple of "points" (t 1 , t 2 , t 3 , t 4 ) of S 1|N , with even coordinates x i , and odd ones (ξ 1 i , . . . , ξ N i ), for i = 1, . . . , 4; note that in (1.1) the two-point superfunction [t i , t j ] = x j -x i -ξ j • ξ i is the Euclidean even invariant. The supergroups preserving I e , I a and I p are respectively E + (1|N), Aff + (1|N) and PC(2|N), as expected.

Our second objective, is to link the three even parts of the previously found invariants to 1-cocycles of K(N), by means of a natural superized version of the Cartan formula. It culminates in the projective case, where we get the super Schwarzian derivative (3.11) from the even cross-ratio. Let us go into some more details. Given a flow, φ ε = Id + εX + O(ε 2 ), we posit t i+1 = φ iε (t 1 ), for i = 0, . . . , 3. We contend that the Cartan formula [START_REF] Cartan | Leçons sur la théorie des espaces à connexion projective[END_REF][START_REF] Ovsienko | Projective differential geometry old and new: from the Schwarzian derivative to the cohomology of diffeomorphism groups[END_REF] can be consistently superized for N = 1, and N = 2, using the cross-ratio (1.1), namely by

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = εX ⊗ εX, S(Φ) + O(ε 3 ), (1.2) 
hence, providing us with a definition of the Schwarzian derivative, S(Φ), of a contactomorphism Φ. In doing so, we naturally obtain a 1-cocycle of K(N), for N = 1, 2

respectively, with values in the module, Q(S 1|N ), of quadratic differentials. Their projections onto the modules F 3 2 (S 1|1 ) and F 1 (S 1|2 ), for K(1) and K(2) respectively, yield the expressions of the super Schwarzian derivatives given in [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF][START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF][START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF]. Remarkably enough, our formula allows us to recover the classical Schwarzian derivative on the circle, S 1 , which would not be the case, had we started with Friedan's, Cohn's, and

Radul's formulae. Much in the same way, we define the Euclidean and affine 1-cocycles of K(N) for any N, with the help of the Cartan-like formulae (5.4), and (5.5). Using the results of Agrebaoui et al. [START_REF] Agrebaoui | On the cohomology of the lie superalgebra of contact vector fields on S 1|1[END_REF] on the cohomology of the Lie superalgebra of contact vector field on S 1|1 , we can claim that our three 1-cocycles on K(1) are, indeed, the generators of the three nontrivial cohomology spaces H 1 (K(1), F λ ), where λ = 0, 1 2 , 3 2 . The paper is organized as follows.

In Section 2, we recall the main definitions and facts related to the geometry of the supercircle S 1|1 , in particular its canonical contact structure and the action of the (special) orthosymplectic group SpO + (2|1) ∼ = PC(2|1), as a subgroup of the group, K(1), of contactomorphisms of S 1|1 .

In Section 3, we review the main results of this article, namely the form of the invariants, and of the associated 1-cocycles of K(1), obtained for each of the three above-mentioned geometries. This section also gives the classification of the cohomology spaces H 1 (K(1), F λ ), for λ ∈ C. Sections 4 and 5 provide the proofs of the main results announced in Section 3.

We first define the notion of p|q-transitivity and state the general Theorem 4.3, leading to the construction of the Euclidean, affine, and projective invariants, from the action of the corresponding subgroups of K [START_REF] Agrebaoui | On the cohomology of the lie superalgebra of contact vector fields on S 1|1[END_REF]. Those invariants are then shown to yield, via a Taylor expansion, the sought 1-cocycles; in particular the Cartan formula readily leads to a new expression for the Schwarzian derivative, S(Φ), of a contactomorphism, Φ, with values in the module of quadratic differentials, Q(S 1|1 ). The link with Friedan's and Radul's Schwarzian derivative is elucidated. The kernels of the three above 1-cocycles are shown to be, indeed, isomorphic to E(1|1), Aff(1|1), and SpO + (2|1) respectively.

In Section 6, we present a detailed treatment of the general case, N > 1, along the same lines as before. As mentioned in Section 3, there is hardly no change in the construction and the resulting expressions of the invariants. The Euclidean and affine 1-cocycles of K(N) are explicitly derived, as well as the Schwarzian derivative obtained as a 1-cocycle of K(2) with values in the module Q(S 1|2 ) of quadratic differentials. Upon projection of Q(S 1|2 ) onto the K(2)-module F 1 (S 1|2 ) of 1-densities, we obtain Cohn's and Radul's formula for the Schwarzian derivative. Specific difficulties encountered in deriving the projective 1-cocycles for N > 2 are pointed out, together with those arising in the determination of the kernels of the Euclidean and affine 1-cocycles. At last, the kernel of the Schwarzian 1-cocycle of K( 2) is shown to be isomorphic to PC(2|2).

Section 7 gives us the opportunity to sum up the content of this article, and to draw several conclusions. It opens perspectives for future work related to the link between discrete projective invariants of the supercircle, and the cohomology of the group of its contactomorphisms.

2 The supercircle S 1|1 and its contactomorphisms:

A compendium

We briefly define in this section the geometrical objects on S 1|1 that will be needed for our purpose. This includes the basics of super differential geometry [START_REF] Leites | Introduction to the theory of supermanifolds[END_REF][START_REF] Yu | Gauge field theory and complex geometry[END_REF][START_REF] Deligne | Notes on supersymmetry[END_REF],

the standard contact structure on the supercircle [START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF], and the orthosymplectic group SpO(2|1), see [START_REF] Yu | Topics in noncommutative geometry[END_REF].

The supercircle S 1|1

The supercircle S 1|1 can be defined as the circle, S 1 , endowed with the sheaf of the supercommutative associative algebra of superfunctions

C ∞ (S 1|1 ) = C ∞ (S 1 )[ξ]
. Thus, S 1|1 admits local coordinates t = (x, ξ), where x is a local coordinate on S 1 , and ξ is an odd (Grassmann) coordinate, i.e., such that ξ 2 = 0 and xξ = ξx. Then, a superfunction is of the form

f (x, ξ) = f 0 (x) + ξf 1 (x) (2.1) with f 0 , f 1 ∈ C ∞ (S 1
). There exists a Z 2 -grading on superfunctions, f 0 being the even part and ξf 1 the odd part of f . The parity is denoted by p, with the convention p(f 0 ) = 0 and p(ξf 1 ) = 1. We define the projection

π : C ∞ (S 1|1 ) → C ∞ (S 1 ) (2.2)
by quotienting by the ideal of nilpotent elements; this gives an embedding of the circle into the supercircle.

Denote by Diff(S 1|1 ) the group of diffeomorphisms of S 1|1 , i.e., the group of auto-

morphisms of C ∞ (S 1|1 ). Let Φ ∈ Diff(S 1|1 ), then Φ(x, ξ) = (ϕ(x, ξ), ψ(x, ξ)) (2.3)
where ϕ is an even superfunction and ψ an odd one, so Φ preserves parity and (ϕ(x, ξ), ψ(x, ξ)) become new coordinates on S 1|1 . For any morphism, i.e., algebra morphism preserving parity, the following diagram is commutative

C ∞ (S 1|1 ) π / / C ∞ (S 1 ) C ∞ (S 1|1 ) Φ O O π / / C ∞ (S 1 ) Π(Φ) O O (2.4) 
So, every morphism of C ∞ (S 1|1 ) induces a morphism of C ∞ (S 1 ), and we have a canonical morphism Π : Diff(S 1|1 ) → Diff(S 1 ).

A super vector field, X, on S 1|1 is a superderivation of C ∞ (S 1|1 ), i.e., a linear operator satisfying super Leibniz rule, X(f g) = X(f )g+(-1) p(f )p(X) f X(g), for homogeneous elements. As in ordinary differential geometry, X can be locally written in terms of partial derivatives as

X = f (x, ξ)∂ x + g(x, ξ)∂ ξ (2.5)
where f, g ∈ C ∞ (S 1|1 ), with p(∂ x ) = 0 and p(∂ ξ ) = 1. The space, Vect(S 1|1 ), of vector fields on S 1|1 is thus a left-module over C ∞ (S 1|1 ). It has the structure of a super Lie

algebra, Vect(S 1|1 ) = Vect(S 1|1 ) 0 ⊕ Vect(S 1|1 ) 1 , whose superbracket is denoted by [ • , • ],
and [X, Y ] = XY -(-1) p(X)p(Y ) Y X, for homogeneous elements.

Since the group Diff(S 1|1 ) of diffeomorphisms preserves parity, we can define the flow of X ∈ Vect(S 1|1 ), namely ϕ ε = Id + εX + O(ε 2 ), only if p(εX) = 0. For odd vector fields, X, the parameter ε must therefore be odd, see [START_REF] Deligne | Notes on supersymmetry[END_REF].

We can now define the C ∞ (S 1|1 ) right-module Ω 1 (S 1|1 ) of 1-forms on S 1|1 , as the dual of the C ∞ (S 1|1 ) left-module Vect(S 1|1 ). The 1-forms dx and dξ will constitute the dual basis of ∂ x and ∂ ξ , that is ∂ x , dx = ∂ ξ , dξ = 1 and ∂ ξ , dx = ∂ x , dξ = 0. Then p is extended naturally to Ω 1 (S 1|1 ) by p(dx) = 0 and p(dξ) = 1. Using the exterior product we construct Ω * (S 1|1 ), the space of all differential forms on S 1|1 , graded by Z with | • | the cohomological degree. Parity being also defined on this space, we have two choices for the Sign Rule, viz.,

α ∧ β = (-1) (p(α)+|α|) (p(β)+|β|) β ∧ α (2.6) α ∧ β = (-1) |α||β|+p(α)p(β) β ∧ α (2.7)
where α, β are homogeneous elements of Ω * (S 1|1 ). The second convention corresponds to a bigrading Z × Z 2 , and, following [START_REF] Deligne | Notes on supersymmetry[END_REF][START_REF] Kostant | Graded manifolds, graded Lie theory, and prequantization[END_REF], we will choose it from now on.

2.2

The contact structure on S 1|1 and its automorphisms

The standard contact structure on S 1|1 is given by the conformal class of the 1-form

α = dx + ξdξ (2.8) 
which satisfies α ∧ dα = 0. This contact structure is equivalently defined by the kernel of α, spanned by the odd vector field

D = ∂ ξ + ξ∂ x , (2.9) 
whose square (2.10)

D 2 = 1 2 [D, D] = ∂ x is
where f ′ = ∂ x f . The contact structure being given by the direction of α, it is therefore

preserved by Φ ∈ Diff(S 1|1 ) iff Φ * α = E Φ α (2.11)
for some superfunction E Φ , which, following [START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF], we call the multiplier of Φ. We denote by K(1) the subgroup of Diff(S 1|1 ) preserving the contact structure, its elements are called contactomorphisms. From (2.3) and (2.8) we find Φ

* α = dϕ + ψdψ = α(ϕ ′ + ψψ ′ ) + β(Dϕ -ψDψ). Proposition 2.1. Let Φ = (ϕ, ψ) be a diffeomorphism of S 1|1 ; then Φ ∈ K(1) iff Dϕ -ψDψ = 0. (2.
12)

The multiplier of Φ is then given by E Φ = ϕ ′ + ψψ ′ , i.e., by

E Φ = Φ * α α = (Dψ) 2 .
(2.13) Since α and β set up a basis of the

C ∞ (S 1|1 )-module Ω 1 (C ∞ (S 1|1
)), we will also need the expression of the action of K(1) on the odd 1-form β; it reads

Φ * β = αψ ′ + βDψ. (2.14)
We might, as well, define K(1) as the group of diffeomorphisms preserving the horizontal distribution spanned by D, denoted by D . In the complex setting, D is interpreted as the covariant derivative of a super Riemann surface [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF][START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF], and K(1

)
as the superconformal group; the distribution D is also often referred to as a SUSY structure [START_REF] Yu | Topics in noncommutative geometry[END_REF][START_REF] Deligne | Notes on supersymmetry[END_REF]. See also [START_REF] Guieu | L'algèbre et le Groupe de Virasoro[END_REF] for a review.

Using (2.11), we find that the transformation law (2.14) entails

Φ * D = 1 Dψ D, (2.15) 
which makes sense as Dψ = 0 for any diffeomorphism Φ.

Remark 2.2. If Φ = (ϕ, ψ) ∈ K(1), see (2.
3), we put ϕ(x, ξ) = ϕ 0 (x) + ξϕ 1 (x), and ψ(x, ξ) = ψ 1 (x) + ξψ 0 (x), with an index 0 for even functions and 1 for odd functions.

The constraint (2.12) then reads ϕ ′ 0 = ψ 2 0 -ψ 1 ψ ′ 1 and ϕ 1 = ψ 0 ψ 1 . Using the natural projection Π : K(1) → Diff(S 1 ), defined in (2.4), we note that Φ gives rise to a diffeomorphism of S 1 , which is actually orientation-preserving since Π(Φ)

′ = π(ϕ ′ 0 ) = π(ψ 0 ) 2 > 0.
From the constraint (2.12), we can obtain an interesting property of contactomorphisms: they are essentially determined by their even part. Lemma 2.3. Let Φ = (ϕ, ψ) ∈ K(1) and Φ = ( ϕ, ψ) ∈ K(1), be two contactomorphisms such that their even part coincide, ϕ = ϕ. We then have ψ = ±ψ. This can be checked by a direct calculation.

The super Lie algebra, k(1), of contact vector fields

In view of the definition (2.11) of contactomorphisms, we will call X ∈ Vect(S 1|1 ) a contact vector field, X ∈ k(1), if

L X α = e X α (2.16)
for some superfunction e X . The Lie derivative is still given by the derivative of the flow, so k(1) is the Lie algebra of K(1), and e is the derivative of E at the identity.

Let us now recall the following classic result [START_REF] Grozman | Lie superalgebras of string theories[END_REF][START_REF] Gargoubi | Differential operators on supercircle: conformally equivariant quantization and symbol calculus[END_REF]: if X ∈ k(1), there exists a unique superfunction f (x, ξ) = a(x) -2ξb(x), called the contact Hamiltonian, such that X = X f , where

X f = a(x)∂ x + 1 2 a ′ (x)ξ∂ ξ + b(x)(∂ ξ -ξ∂ x ) (2.17)
so that the associated (infinitesimal) multiplier is given by

e X f = f ′ . (2.18)

Tensor densities, 1-forms and quadratic differentials of S 1|1

Let us introduce now a 1-parameter family, F λ (S 1|1 ) or F λ for short, of K(1)-modules, which define the λ-densities associated with the contact structure, λ ∈ C. As vector spaces, these modules are isomorphic to C ∞ (S 1|1 ), the K(1) anti-action (Φ → Φ λ ) on

F λ (S 1|1
) being given by

Φ λ f = (E Φ ) λ Φ * f, (2.19) 
where f ∈ C ∞ (S 1|1 ). We may thus write a λ-density F ∈ F λ , symbolically, as F = f α λ .

We will thus write (Φ → Φ * ) the K(1) anti-action on F λ with this identification.

Remark 2.4. In view of (2.13) and (2.15), we will regard, in conformity with the definition (2.19), the odd vector field D as a (-1 2 )-density.

There is an isomorphism of K(1)-modules:

Vect(S 1|1 ) ∼ = F -1 ⊕ F -1 2
, where F -1 corresponds to k(1) and F -1 2 to the vector fields f D, with f ∈ C ∞ (S 1|1 ) and D as in (2.9). See [START_REF] Grozman | Lie superalgebras of string theories[END_REF][START_REF] Gargoubi | Differential operators on supercircle: conformally equivariant quantization and symbol calculus[END_REF]. The space of 1-forms Ω 1 (S 1|1 ) is generated, as C ∞ (S 1|1 )-module, by α and β.

Similarly the space Q(S 1|1 ) of quadratic differentials is generated, as a C ∞ (S 1|1 )module by

α 2 = α ⊗ α and αβ = 1 2 (α ⊗ β + β ⊗ α), (2.20) 
where the tensor product is understood as the supersymmetric tensor product constructed via the commutativity isomorphism given by the Sign Rule [START_REF] Deligne | Notes on supersymmetry[END_REF]. This notation will be used throughout this paper.

Proposition 2.5. The two K(1)-modules Ω 1 (S 1|1 ) and Q(S 1|1 ), admit the following decomposition into K(1)-submodules, namely

Ω 1 (S 1|1 ) ∼ = F 1 2 ⊕ F 1 , (2.21) 
Q(S 1|1 ) ∼ = F 3 2 ⊕ F 2 . (2.22)
The summands F 1 (resp. F 2 ) are naturally K(1)-submodules of Ω 1 (S 1|1 ) (resp. Q(S 1|1 )).

The projections

Ω 1 (S 1|1 ) → F 1 2 (resp. Q(S 1|1 ) → F 3 2
) are given by α 1 2 D, • , and the corresponding sections by α

1 2 L D (resp. 2 3 α 1 2 L D ).
Proof. We have α 

The orthosymplectic group SpO(2|1)

To define the supergroup SpO(2|1) and its action on the supercircle we will introduce the notion of functor of points, following [START_REF] Deligne | Notes on supersymmetry[END_REF]. Let A be a supermanifold, an A-point of the supercircle is a morphism of supermanifolds A → S 1|1 ; we will denote by S 1|1 (A) the set of A-points of S 1|1 . The assignation A → (A-points) is the functor of points.

An A-point of S 1|1 is given by the image of the generators (x, ξ) of C ∞ (S 1|1 ) in O A , the sheaf of functions defining A, see [START_REF] Deligne | Notes on supersymmetry[END_REF][START_REF] Leites | Introduction to the theory of supermanifolds[END_REF]. By Yoneda's lemma, giving f ∈ Diff(S 1|1 ) is equivalent to giving, functorially in A, a map f A on S 1|1 (A).

For A any commutative superalgebra, GL p,q (A) is the well-known group of even invertible linear transformation of the free A-module of dimension p|q, see [START_REF] Leites | Introduction to the theory of supermanifolds[END_REF]. We define then the supergroup GL(p|q) by its functor of points, GL(p|q)(A) = GL p,q (O A ), and this functor is representable by a supermanifold, GL(p|q). By Yoneda's lemma the action of GL(p|q) on R p|q can be given by the action of GL(p|q)(A) on R p|q (A).

If we restrict ourselves to the supermanifolds A whose underlying manifold is a point, then O A is a Grassmann algebra, and we obtain the supermanifolds defined by Rogers [START_REF] Rogers | Supermanifolds. Theory and applications[END_REF] or the A-manifolds of Tuynman [START_REF] Tuynman | Supermanifolds and supergroups. Basic theory[END_REF].

From now on we will speak of points instead of A-points, and of the action of a supergroup on points, instead of the action of A-points of a supergroup on A-points.

The contact structure on S 1|1 (or rather on RP 1|1 ) defined by α, see (2.8), does stem from the 1-form on R 2|1 given by ̟ = 1 2 (pdq -qdp + θdθ), via the formula ̟ = 1 2 p 2 α, with p = 0, expressed in affine coordinates x = q/p and ξ = θ/p. We define the orthosymplectic group [START_REF] Grozman | Lie superalgebras of string theories[END_REF][START_REF] Yu | Topics in noncommutative geometry[END_REF], denoted by SpO(2|1), via its functor of points; SpO(2|1)(A) is the group of all linear transformations of R 2|1 (A), viz.,

h =   a b γ c d δ α β e   (2.23)
preserving the symplectic form d̟, i.e., such that [START_REF] Yu | Topics in noncommutative geometry[END_REF]:

ad -bc -αβ = 1, (2.24) 
e 2 + 2γδ = 1, (2.25) 
αe -aδ + cγ = 0, (2.26)

βe -bδ + dγ = 0. (2.27)
We easily find that SpO(2|1) also preserves ̟. Since ̟ = 1 2 p 2 α, the orthosymplectic group acts by contactomorphisms, SpO(2|1) → K(1), via the following projective action on S 1|1 , namely (in terms of A-points)

h(x, ξ) = ax + b + γξ cx + d + δξ , αx + β + eξ cx + d + δξ (2.28)
where h ∈ SpO(2|1).

The Berezinian of h is Ber(h) = e + αβe -1 , see [START_REF] Yu | Topics in noncommutative geometry[END_REF]. We introduce the special orthosymplectic group SpO + (2|1) as the subgroup of SpO(2|1) of Berezinian 1, or as the quotient, PC(2|1), of SpO(2|1) by the kernel of the projective action (2.28), or as the connected component of the identity of SpO(2|1). So, SpO + (2|1) is a super-extension of Sp(2, R) = SL(2, R). We have the following (local) group-factorization

SpO + (2|1) ∋ h =   1 0 0 c 1 δ δ 0 1     ã 0 0 0 ã-1 0 0 0 1     ǫ b - β 0 ǫ 0 0 ǫ β 1   (2.29)
where (ã, b, c, β, δ) ∈ R 3|2 , with ǫ 2 = 1, and ã > 0. Thus, as read off in (2.29), every homography is the composition of an inversion, a dilatation and a translation.

We will denote by E(1|1) the subgroup of translations and by Aff(1|1) the subgroup generated by translations and dilatations. The connected component of the identity of these subgroups of SpO + (2|1), characterized by ǫ > 0, will be denoted by E + (1|1) and

Aff + (1|1), and referred to as special supergroups.

Main results

We expound in this section the two main results of this paper regarding the case of S 1|1 ; the first one gives the invariants of the action on S 1|1 of the special supergroups E + (1|1),

Aff + (1|1) and SpO + (2|1), and the second one provides, by means of a super version of the Cartan formula, the associated K(1)-cocycles. These results will be extended (whenever possible) to the case of S 1|N in Section 6.

Super Euclidean, affine and projective invariants

Let t 1 , t 2 , t 3 , t 4 be four generic points of S 1|1 , t i = (x i , ξ i ).

Theorem 3.1. The following three couples, I e , I a and I p , of superfunctions are the invariants of the action of Euclidean, affine and projective special supergroups on S 1|1 :

• Euclidean invariant: I e (t 1 , t 2 ) = ([t 1 , t 2 ], {t 1 , t 2 }) with [t 1 , t 2 ] = x 2 -x 1 -ξ 2 ξ 1 , (3.1 
)

{t 1 , t 2 } = ξ 2 -ξ 1 . (3.2) • Affine invariant, I a (t 1 , t 2 , t 3 ) = ([t 1 , t 2 , t 3 ], {t 1 , t 2 , t 3 }), where, if x 1 < x 2 , [t 1 , t 2 , t 3 ] = [t 1 , t 3 ] [t 1 , t 2 ] , (3.3 
)

{t 1 , t 2 , t 3 } = [t 1 , t 2 , t 3 ] 1 2 {t 1 , t 3 } [t 1 , t 3 ] 1 2 
.

(3.4)

• Projective invariant, I p (t 1 , t 2 , t 3 , t 4 ) = ([t 1 , t 2 , t 3 , t 4 ], ±{t 1 , t 2 , t 3 , t 4 })
, where, when

ord(t 1 , t 2 , t 3 ) = 1, see (4.9), [t 1 , t 2 , t 3 , t 4 ] = [t 1 , t 3 ][t 2 , t 4 ] [t 2 , t 3 ][t 1 , t 4 ] , (3.5 
)

{t 1 , t 2 , t 3 , t 4 } = [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 , t 4 }[t 1 , t 2 ] -{t 1 , t 2 }[t 2 , t 4 ] ([t 1 , t 2 ][t 2 , t 4 ][t 1 , t 4 ]) 1 2 
.

(3.6)

If a bijective transformation of S 1|1 preserves one of these three couples of superfunctions, it can be identified with the action of an element of the corresponding super-

group, E + (1|1), Aff + (1|1) or SpO + (2|1). Moreover, if a contactomorphism Φ ∈ K(1)
preserves the even part of one of the invariants I e , I a , or I p , respectively, then Φ = h for some h in E(1|1), Aff(1|1), or SpO + (2|1), respectively.

This theorem summarizes Theorems 4.8, 4.14, and 4.19 given below, as well as their corollaries. Their proofs rely on the p|q-transitivity of the action of these supergroups on S 1|1 ; all details are given in Section 4.

Remark 3.2. The super cross-ratio, i.e., the even part (3.5) of the projective invariant, I p , has already been introduced by Nelson [START_REF] Nelson | Lectures on supermanifolds and strings[END_REF], and used by Giddings [START_REF] Giddings | Punctures on super Riemann surfaces[END_REF] while studying the punctured super Riemann sphere, and also by Uehara and Yasui [START_REF] Uehara | The Weil-Petersson Kähler form on the super Teichmüller space[END_REF] to define coordinates on the super Teichmüller space. It has also been put forward by Manin in [START_REF] Yu | Topics in noncommutative geometry[END_REF] from a somewhat different standpoint that we can summarize as follows in our formalism. Using the even symplectic form d̟

= dp ∧ dq + 1 2 dθ ∧ dθ on R 2|1 one defines a SpO + (2|1)-invariant pairing Z i , Z j = d̟(Z i , Z j ) = p i p j [t j , t i ], for Z i = (p i q i θ i ) ∈ R 2|1 , where t i = (q i /p i , θ i /p i ). Positing [Z 1 , Z 2 , Z 3 , Z 4 ] = Z 3 ,Z 1 Z 4 ,Z 2 Z 3 ,Z 2 Z 4 ,Z 1
, one obtains a four-point function, not only SpO + (2|1)-invariant, but also invariant under rescalings of each variable. We then have

[Z 1 , Z 2 , Z 3 , Z 4 ] = [t 1 , t 2 , t 3 , t 4 ], see (3.5).
Remark 3.3. The odd part (3.6) of the projective invariant, I p , can clearly be reduced to a three-point (almost) invariant function, corresponding to J p given below in (4.15).

The latter was already introduced by D'Hoker and Phong [START_REF] Hoker | The geometry of string perturbation theory[END_REF] and used in [START_REF] Giddings | Punctures on super Riemann surfaces[END_REF][START_REF] Uehara | The Weil-Petersson Kähler form on the super Teichmüller space[END_REF] on the same footing as the super cross-ratio. We have written J p as function of the Euclidean invariants, but it can be recast into the form

J p (t 1 , t 2 , t 3 ) = ± ξ 1 [t 2 , t 3 ] + ξ 2 [t 3 , t 1 ] + ξ 3 [t 1 , t 2 ] -ξ 1 ξ 2 ξ 3 ([t 1 , t 3 ][t 3 , t 2 ][t 2 , t 1 ]) 1 2 , (3.7) 
which precisely corresponds to the expression originally given in [START_REF] Aoki | Heat kernels and super determinants of Laplace operators on super Riemann surfaces[END_REF][START_REF] Hoker | The geometry of string perturbation theory[END_REF], where the cyclic symmetry is obvious. This invariant, J p , has also been introduced by Manin in [START_REF] Yu | Topics in noncommutative geometry[END_REF],

using a construction akin to that developed by us in Section 4.

Remark 3.4. If we apply the projection π :

C ∞ (S 1|1 ) → C ∞ (S 1 ), see (2.
2), to each invariant I e , I a and I p , we obtain the usual Euclidean, affine and projective invariant, namely the distance, the distance-ratio and the cross-ratio.

The associated 1-cocycles of K(1)

Let Φ ∈ Diff(S 1 ) be a diffeomorphism of the circle, and φ ε = Id + εX + O(ε 2 ) be the flow of a vector field X on the circle. We set t i = φ (i-1)ε (t 1 ) for i = 1, 2, 3, 4. Then, the Schwarzian derivative can be defined in terms of the cross-ratio, as the quadratic differential S(Φ) ∈ Q(S 1 ) appearing in the Cartan formula, see [START_REF] Cartan | Leçons sur la théorie des espaces à connexion projective[END_REF][START_REF] Ovsienko | Projective differential geometry old and new: from the Schwarzian derivative to the cohomology of diffeomorphism groups[END_REF]:

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = εX ⊗ εX, S(Φ) + O(ε 3 ). (3.8)
For the group of contactomorphisms of S 1|1 , we will proceed by analogy with this method. Starting from the super cross-ratio (3.5), we will deduce the super Schwarzian derivative, S(Φ) ∈ Q(S 1|1 ), as a K(1)-cocycle with kernel SpO + (2|1). Euclidean and affine K(1)-cocycles will, likewise, be obtained from the even Euclidean and affine invariants. We recall that Ω 1 (S 1|1 ) is the space of 1-forms, Q(S 1|1 ) the space of quadratic differentials of the supercircle, and • the Euclidean cocycle E : K(1) → F 0 (S 1|1 ):

E Φ = Φ * α α = (Dψ) 2 , see Subsection 2.2.
E(Φ) = log E Φ = log(Dψ) 2 , (3.9) 
• the affine cocycle A : K(1) → Ω 1 (S 1|1 ):

A(Φ) = dE(Φ), (3.10) 
• the projective Schwarzian cocycle S : K(1) → Q(S 1|1 ):

S(Φ) = 2 3 α 1 2 L D S(Φ), (3.11) 
where L D stands for the Lie derivative with respect to the vector field D, and S(Φ) is given by Equation (3.13) below. Moreover, using the projections on tensor densities defined in Proposition 2.5, we obtain two new affine and projective 1-cocycles, namely

• the projection of the affine cocycle, A :

K(1) → F 1 2 (S 1|1 ): A(Φ) = α 1 2 D, A(Φ) = DE Φ E Φ α 1 2 , (3.12) 
• the projection of the Schwarzian cocycle, S :

K(1) → F 3/2 (S 1|1 ): S(Φ) = α 1 2 D, S(Φ) = 1 4 D 3 E Φ E Φ - 3 2 
DE Φ D 2 E Φ E 2 Φ α 3/2 . (3.13)
We will give the proof of this theorem in Section 5.

Remark 3.6. As in the case of the Schwarzian cocycle (3.11), using Proposition 2.5, we can express the affine cocycle A in terms of its projection A, namely

A(Φ) = α 1 2 L D A(Φ). (3.14) Remark 3.7. 1) The projection π : C ∞ (S 1|1 ) → C ∞ (S 1 ), see (2.
2), can be extended naturally to differential forms and quadratic differentials, sending α to dx and β to 0.

So, we can project the K(1)-cocycle S(Φ) given by (3.11) on Q(S 1 ), and as the result depends only on f = Π(Φ), see (2.4), we easily recover the classical Schwarzian

derivative S 0 : Diff + (S 1 ) → Q(S 1 ), namely S 0 (f ) = f ′′′ f ′ - 3 2 f ′′ f ′ 2 dx 2 , (3.15) 
using the expression (5.9) where π(E Φ ) = f ′ . See, e.g., [START_REF] Cartan | Leçons sur la théorie des espaces à connexion projective[END_REF][START_REF] Duval | The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet[END_REF][START_REF] Ovsienko | Projective differential geometry old and new: from the Schwarzian derivative to the cohomology of diffeomorphism groups[END_REF]. The projections of the two other K(1)-cocycles, E and A, lead to the Euclidean and affine cocycle of

Diff + (S 1 ), namely E 0 (f ) = f ′ and A 0 (f ) = f ′′ f ′ dx.
2) The K(1)-cocycle, S, given in (3.13), is the super Schwarzian derivative, independently introduced by Friedan [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF] and Radul [START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF]. Recall that E Φ = (Dψ) 2 , see (2.13), so we can also write

S(Φ) = D 4 ψ Dψ -2 D 2 ψ D 3 ψ (Dψ) 2 α 3/2 . (3.16)
This is the form of the super Schwarzian derivative used in superconformal field theories [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF], see also [START_REF] Yu | Topics in noncommutative geometry[END_REF]. Gieres and Theisen use it in [START_REF] Gieres | Superconformally covariant operators and super-W -algebras[END_REF], as well as the affine cocycle A, to construct superconformal covariant operators.

It is well-known that the classical Schwarzian derivative (3.15) can be expressed

in terms of the classical affine cocycle A 0 (f ) = (f ′′ /f ′ )dx on S 1 , viz., S 0 (f ) = dx L ∂x A 0 (f ) - 1 2 A 0 (f ) 2 , (3.17) 
where f ∈ Diff + (S 1 ). A formula relating, in the super case, the expression of S and A can be found in [START_REF] Gieres | Superconformally covariant operators and super-W -algebras[END_REF]. The next proposition gives another formula for the 1-cocycle S in a form akin to (3.17 

S(Φ) = 1 4 α 1 2 D, (α 1 2 L D ) 2 A(Φ) - 1 2 A(Φ) 2 . (3.18) 3.3 The determination of H 1 (K(1), F λ )
The following corollary of Theorem 3.5 is straightforward; its proof relies on the expression (2.18) of the Euclidean 1-cocycle of k(1), the Lie superalgebra of infinitesimal contactomorphisms of S 1|1 .

Corollary 3.9. The Lie algebra 1-cocycles associated with the K(1)-cocycles E, A, and S, read

c i : k(1) → F i/2 (S 1|1 ), with c i (X f ) = (D i+2 f ) α i/2 , (3.19) 
where i = 0, 1, 3.

We recover, in this way, three of the four nontrivial 1-cocycles of k(1) with coefficients in F λ (see [START_REF] Agrebaoui | On the cohomology of the lie superalgebra of contact vector fields on S 1|1[END_REF] for a classification). The fourth one, c0 : k(1) → F 0 (S 1|1 ), defined by c0 (X f ) = f -1 2 ξ∂ ξ f , does not integrate as a group 1-cocycle, just like the Vect(S 1 )-cocycle X f → f . Indeed, suppose that c0 does integrate as a K(1)-cocycle, C0 .

Then ∂ x ∈ k(1) induces, using an angular coordinate x, the flow Φ t (x, ξ) = (x + t, ξ), and as c0 (∂ x ) = 1, we have C0 (Φ t ) = 1 2 t, see e.g. [START_REF] Souriau | Structure des systèmes dynamiques[END_REF]. But this is inconsistent with the periodicity condition Φ t = Φ t+2π . This is a straightforward generalization to the super-algebraic framework of the observation [START_REF] Ovsienko | Generalization of Virasoro group and Virasoro algebra through extensions by modules of tensor-densities on S 1[END_REF] that the only Vect(S 1 ) 1-cocycles that integrate as Diff + (S 1 )-cocycles are those which are Euclidean-basic; see also [START_REF] Guieu | L'algèbre et le Groupe de Virasoro[END_REF].

Here, one checks that c0 is not E(1|1)-basic.

As the derivation of Lie group cocycle is an injection from the Lie group cocycle into the Lie algebra cocycle, we obtain the complete classification of the nontrivial 1-cocycles of K( 1) with values in F λ . Theorem 3.10.

1. The cohomology spaces H 1 (K(1), F λ ) are given by

H 1 (K(1), F λ ) = R if λ = 0, 1 2 , 3 2 {0} otherwise. (3.20) 
These three cohomology spaces are respectively generated by E, A and S.

2. Moreover, the two cohomology spaces

H 1 (K(1), Ω 1 (S 1|1 )) = R, (3.21) 
H 1 (K(1), Q(S 1|1 )) = R, (3.22) 
are respectively generated by A and S.

Proof. We have already proved (3.20) in the course of the above discussion. Let us now derive (3.21). Suffice it to notice that Proposition 2.5 yields the decom-

position Ω 1 (S 1|1 ) = F 1 2 ⊕ F 1 into K(1)-submodules. The classification (3.20) then
shows that the image by the section α

1 2 L D of the generator A of H 1 (K(1), F 1 2 
) spans

H 1 (K(1), Ω 1 (S 1|1
)). The same argument holds for the proof of (3.22).

Let us end up with the following synthesis of the results obtained in this section.

Remark 3.11. We have thus established a 1-1 correspondence between the set of nontrivial cohomology spaces

H 1 (K(1), F λ ) (or H 1 (K(1), M), with M = Ω 0 (S 1|1 ), Ω 1 (S 1|1 ), Q(S 1|1
)) and the "natural" geometries of the supercircle, namely the Euclidean, affine, and projective geometries of S 1|1 . These geometries are defined by the kernels of the corresponding 1-cocycles E, A, S. These groups, in turn, give rise to the invariants I e , I a , I p . At last, these invariants lead us back to the generators of the above cohomology spaces, with the help of the Cartan-like formulae (5.4), (5.5), and (3.8).

4 Super Euclidean, affine and projective invariants of S 1|1

In this section we construct the Euclidean, affine and projective invariants given by Theorem 3.1. We introduce an extension of the notion of transitivity, allowing us to formulate a theorem giving the sought invariants when applied to each supergroup:

E + (1|1), Aff + (1|1), and SpO + (2|1).
Let us first introduce an equivalence relation, on the n-tuples of a product set

E = E 0 ×E 1 .
We denote by p 0 and p 1 the two canonical projections. Let s = (s 1 , . . . , s n ) and t = (t 1 , . . . , t n ) be two n-tuples of E, we will say that s and t are p|q equivalent,

s p|q = t, where n = max(p, q), iff ∀i ∈ 1, p , p 0 (s i ) = p 0 (t i ) and ∀i ∈ 1, q , p 1 (s i ) = p 1 (t i ). (4.1)
We will use the notation [t] for the class of t for this equivalence relation.

Definition 4.1. Let G be a group acting on a set E = E 0 × E 1 by (g → g). The action of G on E is p|q-transitive, n = max(p, q), if for any n-tuples s and t of distinct points, there exists an element h ∈ G such that h(t) p|q = s. If h is unique the action is said to be simply p|q-transitive.

In particular a p|q-transitive action is min(p, q)-transitive. To prove n-transitivity, we usually prove that any n-tuple t can be sent to a given n-tuple m. To prove p|qtransitivity we need an extra condition, this is specified by the next proposition. Proof. Let t and s be two n-tuples of E. We look for those k ∈ G such that k(t)

p|q = s.
By assumption, there exist h, g ∈ G such that h(t) p|q = m and g(s) p|q = m. Then, as 

h(t) ∈ [m] and G.[s] ⊇ [m], there exist s ′ p|q = s and g ′ ∈ G such that g ′ (s ′ ) = h(t). Finally g ′ -1 ( h(t)) p|q = s.
I [m] (t 1 , . . . , t n+1 ) = h(t n+1 ) (4.2)
where h(t) p|q = m, and t = (t 1 , . . . , t n ) is a n-tuple of distinct points of E. This function enjoys the following properties:

1. I [m] is G-invariant. 2. If Φ ∈ E! preserves I [m]
, then Φ = g for some g ∈ G.

3. Let l be a n-tuple of E and g ∈ G, then g

[m] = [l] iff I [l] = g • I [m] .
The first two properties assert that I [m] is a characteristic invariant of the action of G.

Moreover, if n = p > q, we can define n-point invariant functions with values in E 1

J [m],j (t) = p 1 ( h(t j )) (4.3) 
for j ∈ q + 1, p . Any Proof. We first prove that

I [m] ( g(t 1 ), . . . , g(t n+1 )) = I [m] (t 1 , . . . , t n+1 ) for all g ∈ G, i.e., I [m] is G-invariant. Since h(t) p|q = m, we have h • g -1 ( g(t)) p|q = m. It follows that I [m] ( g(t 1 ), . . . , g(t n+1 )) = h • g -1 ( g(t n+1 )) = h(t n+1 ), hence the result. The proof of the G-invariance of J [m],j is identical.
Secondly, we show that

I [m] is a characteristic G-invariant. Let Φ be a bijection of E, such that Φ * I [m] = I [m]
, we have to prove that Φ comes from an element of G.

There exist h, g ∈ G, depending on t such that, h(t) p|q = m and g(Φ(t))

p|q = m. Since Φ * I [m] = I [m]
, we have g(Φ(t n+1 )) = h(t n+1 ) for all t n+1 ∈ E, and thus Φ = k , with 

k = g -1 h.
= l. It follows that g[m] ⊆ [l]
, and as we also have

g -1 • I [l] = I [m] , then g -1 [l] ⊆ [m], leading to the result g[m] = [l].
Fourthly, let I be an arbitrary (n + 1)-point invariant function. For any n-tuple t there exists some h ∈ G such that

I(t 1 , . . . , t n+1 ) = I(m ′ 1 , . . . , m ′ n , h(t n+1 )) with h(t) = m ′ p|q = m. Now I [m] (t 1 , . . . , t n+1 ) = h(t n+1
) and since m ′ depends only on m and on J [m],j , the result follows. given by Theorem 4.3. In particular, the invariant I l , for l another n-tuple, can be factorized

I l = g • I m , with g ∈ G such that g(m) = l.
Remark 4.5. In the definition of p|q-transitivity and in this theorem, we consider n-tuples of distinct points. The notion of distinct points of E = E 0 × E 1 is well-known, but we will strengthen it by assuming distinct even coordinates when dealing with supergroups acting on the supercircle.

As direct and classical application of our result, the action of PGL(2, R) by homographies on the circle S 1 , viewed as RP 1 , is simply 3-transitive, and choosing m = (∞, 0, 1) as the distinguished triple of points, we obtain the usual cross-ratio:

I(x 1 , x 2 , x 3 , x 4 ) = (x 1 -x 3 )(x 2 -x 4 ) (x 2 -x 3 )(x 1 -x 4 ) .

Euclidean invariants

We introduce the subgroups E(1|1) and E + (1|1) of SpO + (2|1) which act on S 1|1 by translations in an affine coordinate system. 

I e (t 1 , t 2 ) = ([t 1 , t 2 ] , {t 1 , t 2 }) = (x 2 -x 1 -ξ 2 ξ 1 , ξ 2 -ξ 1 ) (4.5) 
where t 1 = (x 1 , ξ 1 ) and t 2 = (x 2 , ξ 2 ).

Proof. Following Theorem 4.3, we have to show that for any point t 1 of S 1|1 , there exists a unique h ∈ E + (1|1) such that h(t 1 ) = (0, 0), and then to compute

h(t 2 ) = ([t 1 , t 2 ] , {t 1 , t 2 }) for another point t 2 .
The action of any h ∈ E + (1|1) is given by h(x, ξ) = (x + b -βξ, β + ξ). Hence h(t 1 ) = (0, 0) is equivalent to x 1 +b-βξ 1 = 0 and β +ξ 1 = 0, i.e., β = -ξ 1 and b = -x 1 .

So, h is uniquely determined, and h(t 2 ) = (x 2 -x 1 -ξ 2 ξ 1 , ξ 2 -ξ 1 ), as announced.

The choice of the point e = (0, 0) is immaterial, see Remark 4.4.

Remark 4.9. The even Euclidean invariant [t 1 , t 2 ] is the discretized version of the contact form α = dx + ξdξ, while the odd Euclidean invariant {t 1 , t 2 } is that of β = dξ.

This will be specified in Lemma 5.1.

Corollary 4.10. The even part of I e is invariant under E(1|1), and characterizes this

subgroup of K(1), namely if Φ ∈ K(1) satisfies Φ * [t 1 , t 2 ] = [t 1 , t 2 ], then Φ = h for some h ∈ E(1|1).
Proof. Let ι ∈ K(1) be defined by ι : (x, ξ) → (x, -ξ). Identifying E(1|1) with its

image in K(1) we have E(1|1) = E + (1|1) ⊔ ι(E + (1|1)). Since [t 1 , t 2 ] is invariant under E + (1|1)
as well as under the action of ι, this is a E(1|1)-invariant.

Let Φ = (ϕ, ψ) ∈ K(1) be such that Φ * [t 1 , t 2 ] = [t 1 , t 2 ]
. There exists t 1 such that Φ(t 1 ) = (0, 0), and

h ∈ E + (1|1) such that h(t 1 ) = Φ(t 1 ). Since Φ leaves [t 1 , t 2 ] invariant, we have ϕ(t 2 ) = [Φ(t 1 ), Φ(t 2 )] = [t 1 , t 2 ] = h 0 (t 2 ) in view of (4.
2); hence ϕ = h 0 , with h = ( h 0 , h 1 ). Using Lemma 2.3, we obtain Φ = h or Φ = ι( h), and Φ is then a (super) translation.

Affine invariants

Let us start with the definitions of Aff(1|1) and Aff + (1|1) and with their action on S 1|1 .

Definition 4.11. The affine supergroup, Aff(1|1), is the subgroup of GL(2|1) whose elements are of the form

g =   a ab -aβ 0 a -1 0 0 β 1   (4.6)
where (a, b, β) ∈ R 2|1 , and a = 0. This supergroup acts on R 1|1 ⊂ S 1|1 by translations and dilatations, g(x, ξ) = (a 2 x + a 2 b -a 2 βξ, aβ + aξ). We will denote by Aff + (1|1) the connected component of the identity, characterized by a > 0.

Remark 4.12. The affine groups can be defined in an alternative manner, in terms of the transformation laws of the 1-forms α and β, and then directly as subgroups of K(1). The group Aff(1|1) is the subgroup of those Φ ∈ K(1) which satisfy Φ * β = F Φ β, with F Φ a superfunction; restricting to π(F Φ ) > 0 we obtain the subgroup Aff + (1|1).

Acting by contactomorphisms on S 1|1 , Aff + (1|1) preserves the orientation of the underlying circle, see Remark 2.2. Moreover, two points on the supercircle t 1 and t 2 define an orientation given by the sign of x 2 -x 1 (in the chosen affine coordinate system). Hence, the action of Aff + (1|1) cannot be 2|1-transitive, but for all couples s and t defining the same orientation there exists a unique h ∈ Aff + (1|1) such that Proof. Let a 1 = (0, 0), a 2 = (1, ζ) and t 1 , t 2 be two distinct points of S 1|1 , with x 1 < x 2 , a condition which can always been satisfied, using the transformation r, if necessary.

We look for h ∈ Aff + (1|1) such that h((t 1 , t 2 ))

2|1

= (a 1 , a 2 ). We thus have to solve the system: a 2 x 1 + a 2 b -a 2 βξ 1 = 0, aβ + aξ 1 = 0 and a 2 x 2 + a 2 b -a 2 βξ 2 = 1. In doing so, we obtain β = -ξ 1 , b = -x 1 and a 2 = [t 1 , t 2 ] -1 , see (4.5). This entails that h is uniquely determined and h(t

3 ) = [t 1 ,t 3 ] [t 1 ,t 2 ] , {t 1 ,t 3 } [t 1 ,t 2 ] 1 2
for any point t 3 of S 1|1 . Here, p 1 is the projection to the odd component, hence

p 1 ( h(t 2 )) is given by {t 1 ,t 2 } [t 1 ,t 2 ] 1 2 
. The function 

p 1 • h is thus surjective from [t] onto R 0|1
I a (t 1 , t 2 , t 3 ) = ([t 1 , t 2 , t 3 ] , {t 1 , t 2 , t 3 }) = [t 1 , t 3 ] [t 1 , t 2 ] , {t 1 , t 3 } [t 1 , t 2 ] 1 2 . (4.7)
We, likewise, have a two-point odd invariant, defined, for x 1 < x 2 , by

J a (t 1 , t 2 ) = {t 1 , t 2 } [t 1 , t 2 ] 1 2 , (4.8)
which is fundamental in that it generates all other two-point invariants.

Proof. The action of Aff + (1|1) being simply 2|1-transitive, we can apply Theorem 4.3.

Let t = (t 1 , t 2 ) be a couple; if x 1 < x 2 , we obtain, resorting to the proof of the last lemma,

I a (t 1 , t 2 , t 3 ) = [t 1 ,t 3 ] [t 1 ,t 2 ] , {t 1 ,t 3 } [t 1 ,t 2 ] 1 2 and J a (t 1 , t 2 ) = {t 1 ,t 2 } [t 1 ,t 2 ] 1 2
. For x 1 < x 2 , I a and J a are invariants (with all properties given in Theorem 4.3) of the subgroup of Aff + (1|1)

preserving the condition x 1 < x 2 , i.e., Aff + (1|1).

For x 2 < x 1 , we can easily show that I a and J a are simply obtained by exchanging t 1 and t 2 . Remark 4.16. We can rewrite the odd three-point invariant, p 1 (I a ), as

{t 1 , t 2 , t 3 } = [t 1 , t 2 , t 3 ] 1 2 {t 1 ,t 3 } [t 1 ,t 3 ] 1 2
, showing that it is a function of the odd two-point invariant function, J a , and of the even three-point invariant, p 0 (I a ). Hence, every affine three-point invariant function is a function of J a and p 0 (I a ).

Corollary 4.17. The even part, p 0 (I a ), of I a is invariant under Aff(1|1), and characterizes this subgroup of K(1), namely if

Φ ∈ K(1) satisfies Φ * [t 1 , t 2 , t 3 ] = [t 1 , t 2 , t 3 ],
then Φ = h for some h ∈ Aff(1|1).

The proof is identical to that of Corollary 4.10, in the Euclidean case.

Projective invariants

Once more, we will follow the previous method, and derive the super cross-ratio as the even part of the SpO + (2|1)-invariant given by Theorem 4.3.

We begin by the introduction of an orientation index, ord, on the oriented circle, defined on triples of distinct points by

ord(x 1 , x 2 , x 3 ) = +1 if x 2 ∈ [x 1 , x 3 ] (4.9) = -1 if x 2 ∈ [x 3 , x 1 ].
It is uniquely preserved by orientation-preserving diffeomorphisms of the circle and enjoys the property: ord(σ(x 1 ), σ(x 2 ), σ(x 3 )) = ε(σ)ord(x 1 , x 2 , x 3 ) for any permutation σ whose parity is denoted by ε(σ), see [START_REF] Barge | Cocycles d'Euler et de Maslov[END_REF]. This index, ord, can be extended to triples of points of the supercircle by ord(t 1 , t 2 , t 3 ) = ord(x 1 , x 2 , x 3 ).

As 

= ι • k + , with ι : (x, ξ) → (x, -ξ).
Proof. Assume first that the triple t = (t 1 , t 2 , t 3 ) be such that x 1 < x 2 < x 3 , even if it means to apply r and an element of SpO + (2|1) inducing a cyclic permutation on t. Then, Proposition 4.14 insures that there exists a unique g ∈ Aff + (1|1) such that: g(t 2 ) = (0, 0), and g(t

3 ) = (1, ζ ′ ), with ζ ′ = {t 2 ,t 3 } [t 2 ,t 3 ] 1 2 
. Since g ∈ SpO + (2|1), we just have to determine all h ∈ SpO + (2|1) such that h(0, 0) = (0, 0), p 0 ( h(1, ζ ′ )) = 1, and h( g(t 1 )) = (∞, 0), implying that hg = k are the sought transformations such that hg(t)

3|2 = p.
As h is an element of SpO + (2|1), h is of the form h(x, ξ) = ax+b+γξ cx+d+δξ , αx+β+eξ cx+d+δξ , with the relations (2.24) to (2.27). Since h(0, 0) = (0, 0), we have b = β = 0, and the relations become ad = 1, e 2 = 1, αe = aδ and γ = 0; now e = 1 since we restrict us to special transformations, i.e., of Berezinian 1. The equation h( g(t 1 )) = (∞, 0) gives

ac [t 2 ,t 1 ] [t 2 ,t 3 ] + 1 + α {t 2 ,t 1 } [t 2 ,t 3 ] 1 2 = 0 and α [t 2 ,t 1 ] [t 2 ,t 3 ] + {t 2 ,t 1 } [t 2 ,t 3 ] 1 2
= 0, where we have used the fact that g(t 1 ) = I a (t 2 , t 3 , t 1 ) as given by (4.7). Hence, we have

α = - {t 1 , t 2 } [t 2 , t 3 ] 1 2 [t 2 , t 3 ] [t 1 , t 2 ] and ac = [t 2 , t 3 ] [t 1 , t 2 ] . (4.10)
There is one extra equation to satisfy, namely

p 0 ( h(1, ζ ′ )) = 1; it yields explicitly a 2 = ac + 1 + αζ ′ , giving a 2 = [t 2 ,t 3 ] [t 1 ,t 2 ] + 1 -{t 1 ,t 2 }{t 2 ,t 3 } [t 1 ,t 2 ]
, since ζ ′ = J a (t 2 , t 3 ), see (4.3), as given by (4.8). We then get, with the help of the identity [t

2 , t 3 ] + [t 1 , t 2 ] -{t 1 , t 2 }{t 2 , t 3 } = [t 1 , t 3 ], a 2 = [t 1 , t 3 ] [t 1 , t 2 ] , (4.11) 
so a is determined up to an overall sign. We have proved that h is therefore given by

h(x, ξ) = a 2 x acx + 1 + αξ , a(αx + ξ) acx + 1 + αξ , (4.12)
the sign of a = 0 remaining unspecified. This proves the existence and uniqueness of h ± , as stated above. Moreover, J p (t which characterizes the group SpO + (2|1) within the diffeomorphisms of S 1|1 .

We also have an odd projective invariant, namely, if ord(t 1 , t 2 , t 3 ) = 1,

J p (t 1 , t 2 , t 3 ) = ± {t 2 , t 3 }[t 1 , t 2 ] -{t 1 , t 2 }[t 2 , t 3 ] ([t 1 , t 2 ][t 2 , t 3 ][t 1 , t 3 ]) 1 2 . (4.15)
which is fundamental in that it generates all other three-point invariants.

Proof. Assume that ord(t We then compute the odd part of h ± ( g(t 4 )), which is determined up to global sign governed by the sign of a (see proof of Lemma 4.18). For a > 0, we find, using (4.12),

{t 1 , t 2 , t 3 , t 4 } = a (α[t 2 , t 3 , t 4 ] + {t 2 , t 3 , t 4 }) ac[t 2 , t 3 , t 4 ] + 1 + α{t 2 , t 3 , t 4 } = ([t 1 , t 2 ][t 1 , t 3 ]) 1 2 - {t 1 , t 2 } [t 2 , t 3 ] 1 2 [t 2 , t 4 ] [t 1 , t 2 ] + {t 2 , t 4 } [t 2 , t 3 ] 1 2 [t 1 , t 4 ] = [t 1 , t 2 , t 3 , t 4 ] 1 2 [t 1 , t 2 , t 4 ] -1 2 {t 2 , t 4 } [t 2 , t 4 ] 1 2 -[t 4 , t 2 , t 1 ] -1 2 {t 1 , t 2 } [t 1 , t 2 ] 1 2
, with the help of the equalities (4.10) and (4.11). For x 1 < x 2 < x 3 , we can write

{t 1 , t 2 , t 3 , t 4 } = [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 , t 4 }[t 1 , t 2 ] -{t 1 , t 2 }[t 2 , t 4 ] ([t 1 , t 2 ][t 2 , t 4 ][t 1 , t 4 ]) 1 2 , (4.16)
which is the announced result, viz., Equation (4.14).

For the more general case ord(t 1 , t 2 , t 3 ) = 1, we still have to compute k ± (t 4 ) for x 3 < x 1 < x 2 and x 2 < x 3 < x 1 . Let us introduce the homography c(x, ξ) = ( x-1+ζξ

x , ζx-ξ x ), which cyclically permutes (0, 0), (∞, 0) and (1, ζ). Start with the case x 3 < x 1 < x 2 ; we can assume that x 3 < 0 < x 1 < x 2 , even if it means to apply a translation, and then c(x 1 ) < c(x 2 ) < c(x 3 ). As I p is invariant under the action of SpO + (2|1), we have I p = c * I p , and using the above results, we deduce that

k ± (t 4 ) = c * [t 1 ,t 3 ][t 2 ,t 4 ] [t 2 ,t 3 ][t 1 ,t 4 ] , [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 ,t 4 }[t 1 ,t 2 ]-{t 1 ,t 2 }[t 2 ,t 4 ] ([t 1 ,t 2 ][t 2 ,t 4 ][t 1 ,t 4 ]) 1 2 
. The Euclidean invariants are transformed by c as follows c * [t i , t j ] =

[t i ,t j ]

x i x j and c * {t i , t j } = t i x i -t j

x j , we then have

k ± (t 4 ) = [t 1 ,t 3 ][t 2 ,t 4 ] [t 2 ,t 3 ][t 1 ,t 4 ] , [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 ,t 4 }[t 1 ,t 2 ]-{t 1 ,t 2 }[t 2 ,t 4 ] ([t 1 ,t 2 ][t 2 ,t 4 ][t 1 ,t 4 ]) 1 2 
. The case x 2 < x 3 < x 1 is similar, except for the fact that we have to apply c 2 instead of c.

For ord(t then Φ = h for some h ∈ SpO + (2|1).

The proof is the same as in the Euclidean case, except for the fact that SpO + (2|1) contains now the transformation ι : (x, ξ) → (x, -ξ). The cross-ratio can also be defined following Theorem 4.3, leading to the classical expression

[x 1 , x 2 , x 3 , x 4 ] = (x 1 -x 3 )(x 2 -x 4 ) (x 2 -x 3 )(x 1 -x 4 )
, which is invariant under PSL(2, R) only. The PGL(2, R)invariant is given either by this last expression or by the same expression where x 1 and x 2 have been exchanged, depending on ord(x 1 , x 2 , x 3 ). Remark 4.22. Again, the odd four-point invariant p 1 (I p ) is a function of the odd three-point invariant J p and of the even four-point invariant p 0 (I p ). So every fourpoint invariant is a function of these two invariants.

The Schwarzian derivative from the Cartan formula

This section provides the proof of Theorem 3.5. We will begin by two preliminary lemmas and then give the proof for the Euclidean and affine cases, and, finally, for the projective one.

Preparation

Let us first recall the formula for the Taylor expansion of a smooth superfunction

f ∈ C ∞ (S 1|1
) as given in [START_REF] Leites | Introduction to the theory of supermanifolds[END_REF][START_REF] Deligne | Notes on supersymmetry[END_REF], namely

f (t 2 ) -f (t 1 ) = n i=1 1 i! (x 2 -x 1 ) i ∂ i x f (t 1 ) + i(ξ 2 -ξ 1 )(x 2 -x 1 ) i-1 ∂ i-1 x ∂ ξ f (t 1 ) +O((x 2 -x 1 ) n+1 , (ξ 2 -ξ 1 )(x 2 -x 1 ) n ) = n i=1 1 i! [t 1 , t 2 ] i ∂ i x f (t 1 ) + i{t 1 , t 2 }[t 1 , t 2 ] i-1 ∂ i-1 x Df (t 1 ) +O((x 2 -x 1 ) n+1 , (ξ 2 -ξ 1 )(x 2 -x 1 ) n ). (5.1) 
The following lemma linking discrete variations and forms, will enable us to write

Taylor expansions in terms of the differential forms α and β. We will skip its straightforward proof.

Lemma 5.1. Let X ∈ Vect(S 1|1 ), and φ ε the associated flow. Putting t 2 = φ ε (t 1 ), we have

[t 1 , t 2 ] = εX, α (t 1 ) + O(ε 2 ), and {t 1 , t 2 } = εX, β (t 1 ) + O(ε 2 ). (5.2) 
The next result is of central importance in the subsequent proof of Theorem 3.5.

Lemma 5.2. Let Φ = (ϕ, ψ) ∈ K(1) be a contactomorphism of S 1|1 , and let

t 2 = φ ε (t 1 ),
where φ ε is the flow of a vector field X, then

Φ * [t 1 , t 2 ] E Φ (t 1 )[t 1 , t 2 ] = 1 + 1 2 [t 1 , t 2 ] E ′ Φ E Φ (t 1 ) + {t 1 , t 2 } DE Φ E Φ (t 1 ) + εX ⊗ εX, α 2 A 6E Φ + αβ B 2E Φ (t 1 ) + O(ε 3 ) (5.3)
where A = ϕ ′′′ + ψψ ′′′ and B = Dϕ ′′ -ψDψ ′′ , α 2 and αβ being as in (2.20).

Proof. We have Φ

* [t 1 , t 2 ] = [Φ(t 1 ), Φ(t 2 )] = ϕ(t 2 ) -ϕ(t 1 ) -(ψ(t 2 ) -ψ(t 1 ))ψ(t 1 )
, by virtue of (4.5). Using Taylor's formula (5.1), we obtain

Φ * [t 1 , t 2 ] = {t 1 , t 2 }(Dϕ -ψDψ)(t 1 ) + [t 1 , t 2 ](ϕ ′ + ψψ ′ )(t 1 ) +[t 1 , t 2 ] 1 2 [t 1 , t 2 ](ϕ ′′ + ψψ ′′ )(t 1 ) + {t 1 , t 2 }(Dϕ ′ -ψDψ ′ )(t 1 ) +[t 1 , t 2 ] 1 6 [t 1 , t 2 ] 2 (ϕ ′′′ + ψψ ′′′ )(t 1 ) + 1 2 {t 1 , t 2 }[t 1 , t 2 ](Dϕ ′′ -ψDψ ′′ )(t 1 )
+O(ε 4 ).

Then, as Φ ∈ K(1), Proposition 2.1 yields Dϕ -ψDψ = 0, and ϕ ′ + ψψ ′ = E Φ . This entails that ϕ ′′ + ψψ ′′ = E ′ Φ , and Dϕ ′ -ψDψ ′ = 1 2 DE Φ . Lemma 5.1 then leads to the result.

At first order in ε we obtain simply:

Φ * [t 1 ,t 2 ] [t 1 ,t 2 ] = E Φ + 1 2 εX, dE Φ (t 1 ) + O(ε 2 ).
5.2 Proof of Theorem 3.5

Euclidean and affine K(1)-cocycles, E, A

The Cartan formula (3.8) yields a privileged means to define the Schwarzian derivative via a Taylor expansion of the cross-ratio. Much in the same way, we will construct 1-cocycles via the Euclidean and affine even invariants. Thanks to the last lemma, we

have Φ * [t 1 , t 2 ] [t 1 , t 2 ] = E Φ (t 1 ) + O(ε). (5.4) 
Hence, E : Φ → log(E Φ ) is a 1-cocycle of K(1), with values in F 0 (S 1|1 ); this justifies (3.9). Note that log(E Φ ) is well-defined since the reduced function π(E Φ ) = π(Dψ) 2 , see (2.2), is positive.

For the affine even invariant (4.7), we have, putting t 2 = φ ε (t 1 ) and

t 3 = φ 2ε (t 1 ), Φ * [t 1 , t 2 , t 3 ] [t 1 , t 2 , t 3 ] -1 = 1 + 1 2 2εX, d(log E Φ ) (t 1 ) + O(ε 2 ) 1 + 1 2 εX, d(log E Φ ) (t 1 ) + O(ε 2 ) -1 = 1 2 εX, d(log E Φ ) (t 1 ) + O(ε 2 ). ( 5.5) 
This implies that A : Φ → d(log E Φ ) is a 1-cocycle of the group K(1) of contactomorphisms, with values in the space, Ω 1 (S 1|1 ), of 1-forms on S 1|1 . Using the projection on half-densities F 1 2 (S 1|1 ) given by α 1 2 D, • , see Proposition 2.5, we still obtain an affine 1-cocycle: A : Φ → α

1 2 D, d(log E Φ ) = DE Φ E Φ α 1 2
. The justification of (3.10) and (3.12) is complete.

The Schwarzian derivative, S

We will now resort, verbatim, to the Cartan formula (3.8) in order to derive the expression of the Schwarzian derivative (3.11) of a diffeomorphism Φ ∈ K(1). This formula involves the cross-ratio [t 1 , t 2 , t 3 , t 4 ] of four close by points; we will, hence, posit t 2 = φ ε (t 1 ), t 3 = φ 2ε (t 1 ), and t 4 = φ 3ε (t 1 ), where

φ ε = Id + εX + O(ε 2 ) is the flow of a vector field X of S 1|1 .
Let us then expand in powers of ε the following expression:

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = Φ * [t 1 , t 3 ] E Φ (t 1 )[t 1 , t 3 ] Φ * [t 2 , t 4 ] E Φ (t 2 )[t 2 , t 4 ] - Φ * [t 2 , t 3 ] E Φ (t 2 )[t 2 , t 3 ] Φ * [t 1 , t 4 ] E Φ (t 1 )[t 1 , t 4 ] 1 + O(ε) . (5.6) 
We note that the terms

Φ * [t 1 ,t 3 ] E Φ (t 1 )[t 1 ,t 3 ] and Φ * [t 1 ,t 4 ] E Φ (t 1 )[t 1 ,t 4 ]
, with base point t 1 , are explicitly given by Lemma 5.2. The remaining terms, with base point t 2 , will be computed separately, using again Equation (5.3) and the Taylor formula (5.1), viz.,

f (t 2 ) = f (t 1 ) + [t 1 , t 2 ]f ′ (t 1 ) + {t 1 , t 2 }Df (t 1 ) + O(ε 2 ), (5.7) 
for a superfunction f ∈ C ∞ (S 1|1 ).

We have

Φ * [t 2 , t 3 ] E Φ (t 2 )[t 2 , t 3 ] = 1 + 1 2 [t 2 , t 3 ] E ′ Φ E Φ (t 1 ) + {t 2 , t 3 } DE Φ E Φ (t 1 ) + 1 2 [t 1 , t 2 ] [t 2 , t 3 ] E ′ Φ E Φ ′ (t 1 ) + {t 2 , t 3 } DE Φ E Φ ′ (t 1 ) + 1 2 {t 1 , t 2 } [t 2 , t 3 ]D E ′ Φ E Φ (t 1 ) + {t 2 , t 3 }D DE Φ E Φ (t 1 ) + εX ⊗ εX, α 2 A 6E Φ + αβ B 2E Φ (t 1 ) + O(ε 3 ),
where the terms A and B are defined in Lemma 5.2. The other term

Φ * [t 2 ,t 4 ] E Φ (t 2 )[t 2 ,t 4 ]
is, likewise, obtained by replacing in the latter expression t 3 by t 4 , and εX by 2εX.

From Lemma 5.1 and Taylor's formula (5.7), we get [t 2 , t 3 ] = εX, α (t 1 ) + O(ε 2 ) and {t 2 , t 3 } = εX, β (t 1 ) + O(ε 2 ). In particular {t 2 , t 3 }{t 1 , t 2 } is thus of third order in ε, since εX, β is an odd superfunction. We finally have

Φ * [t 2 , t 3 ] E Φ (t 2 )[t 2 , t 3 ] = 1 + 1 2 [t 2 , t 3 ] E ′ Φ E Φ (t 1 ) + {t 2 , t 3 } DE Φ E Φ (t 1 ) + 1 2 εX ⊗ εX, α 2 E ′ Φ E Φ ′ + 2αβ DE Φ E Φ ′ (t 1 ) + εX ⊗ εX, α 2 A 6E Φ + αβ B 2E Φ (t 1 ) + O(ε 3 ).
This formula and Lemma 5.2 help us find the contribution of the first order terms of each product in the numerator of Equation (5.6); this contribution is found as

([t 1 , t 3 ]+[t 2 , t 4 ]-[t 2 , t 3 ]-[t 1 , t 4 ]) E ′ Φ 2E Φ (t 1 )+({t 1 , t 3 }+{t 2 , t 4 }-{t 2 , t 3 }-{t 1 , t 4 }) DE Φ 2E Φ (t 1 ) = (ξ 1 -ξ 2 )(ξ 3 -ξ 4 ) E ′ Φ 2E Φ (t 1 ), which is of third order in ε, since ξ 3 -ξ 4 = ξ 1 -ξ 2 + O(ε 2 ).
The right-hand side of (5.6) is of second order in ε and we now compute it. We find

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = 1 4 εX, α E ′ Φ E Φ + β DE Φ E Φ 2 (t 1 ) + 1 2 εX ⊗ εX, α 2 E ′ Φ E Φ ′ + 2αβ DE Φ E Φ ′ (t 1 ) -2 εX ⊗ εX, α 2 A 6E Φ + αβ B 2E Φ (t 1 ) + O(ε 3 ).
Collecting the terms involving α 2 and αβ, we put the latter expression in a nicer form, namely

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = εX ⊗ εX, α 2 E ′′ Φ 2E Φ - A 3E Φ - 1 4 
E ′ Φ E Φ 2 (t 1 ) + εX ⊗ εX, αβ DE ′ Φ E Φ - B E Φ - E ′ Φ DE Φ 2E 2 Φ (t 1 ). (5.8)
Since Dϕ = ψDψ and E Φ = (Dψ) 2 , see Proposition 2.1, we calculate the terms A and B whose expression is given in Lemma 5.2; we find

A = ϕ ′′′ +ψψ ′′′ = (E Φ -ψψ ′ ) ′′ +ψψ ′′′ = E ′′ Φ -ψ ′ ψ ′′ , together with B = Dϕ ′′ -ψDψ ′′ = ψ ′′ Dψ + 2ψ ′ Dψ ′ = 1 2 D 3 E Φ + 1 4 E ′ Φ DE Φ E Φ .
Plugging these quantities into (5.8), we obtain

Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = εX ⊗ εX, α 2 1 6 E ′′ Φ E Φ - 1 4 E ′ Φ E Φ 2 + 1 3 ψ ′ ψ ′′ E Φ (t 1 ) + εX ⊗ εX, αβ 1 2 DE ′ Φ E Φ - 3 4 
E ′ Φ DE Φ E 2 Φ (t 1 ).
(5.9)

Upon defining

S(Φ) = DE ′ Φ E Φ - 3 2 
E ′ Φ DE Φ E 2 Φ , (5.10) 
we find D S(Φ) =

E ′′ Φ E Φ -3 2 E ′ Φ E Φ 2 -1 2 DE ′ Φ DE Φ E 2 Φ
. We also have

DE ′ Φ DE Φ = -4ψ ′ ψ ′′ E Φ .
Inserting the latter result into (5.9) and using the Cartan formula (3.8) to define the Schwarzian derivative, S(Φ), of the contactomorphism Φ, we obtain 

S(Φ) = 1 6 α 2 D S(Φ) + 1 2 αβ S(Φ). ( 5 
DE ′ Φ E Φ - 3 2 
E ′ Φ DE Φ E 2 Φ α 3/2 .
(5.12)

This ends the proof of (3.13).

Equation (3.11) can now be deduced from (5.11) and (5.12). Indeed, using

L D α = 2β, (5.13) 
we find α

1 2 L D S(Φ) = 1 4 α 1 2 L D ( S(Φ)α 3 
2 ) = 3 2 S(Φ).

The kernels of the K(1)-cocycles E, A, S

-The subgroup of those Φ ∈ K(1) such that E(Φ) = 0 is characterized by the equation (3.9). Writing Φ = (ϕ, ψ), and using (2.13), we find Dψ = ǫ, with ǫ 2 = 1.

E Φ = 1, see
This entails that ψ(x, ξ) = ǫ(β + ξ), with β ∈ R 0|1 . The constraint (2.12) then leads to ϕ(x, ξ) = x + b -βξ, with b ∈ R. This proves that ker(E) = E(1|1).

-The kernel of the 1-cocycle A, given by (3.10), is determined by the equation

E Φ = a 2
, with a ∈ R * . The kernel of A is given by the same equation, hence is equal to the kernel of A. The same computation as before clearly leads to Φ(x, ξ) = (a 2 x + a 2 b -a 2 βξ, aβ + aξ). Hence, ker(A) = ker(A) = Aff(1|1).

-The kernels of the 1-cocycles S and S, given respectively by (3.11), and (3.13),

clearly coincide. Suffice it to determine ker(S). Let us consider Φ ∈ K(1), then its Schwarzian derivative (3.13) reads alternatively

S(Φ) = - 1 2 E 1 2 Φ D 3 (E -1 2 Φ ) α 3/2 . (5.14) Hence, S(Φ) = 0 iff ∂ x D(E -1 2 
Φ ) = 0. As ∂ x Dχ 0 = 0 implies, for χ 0 an even superfunction,

χ 0 = c ′ x + d ′ + δ ′ ξ, where (c ′ , d ′ , δ ′ ) ∈ R 2|1 ; we obtain E Φ = (c ′ x + d ′ + δ ′ ξ) -2 .
Consider now h ∈ SpO + (2|1), whose action is given by (2.28), then E h = (cx+d+δξ) -2 .

We thus have E Φ = E h for some h ∈ SpO + (2|1), so that Φ = h • g with g ∈ E(1|1) in view of the above result; this implies that Φ ∈ SpO + (2|1). The conclusion, ker(S) = SpO + (2|1), easily follows.

The proof of Theorem 3.5 is complete.

Proof of Proposition 3.8

With the help of (2.10), the affine cocycle A, given by (3.10), can be recast into the

form A(Φ) = E -1 Φ dE Φ = αE -1 Φ E ′ Φ + βE -1 Φ DE Φ .
Using Equation (5.13), we obtain (α

1 2 L D ) 2 = αL D 2 + βL D .
Straightforward calculation yields the expressions of L D A, L D 2 A, and A 2 , so that (α

1 2 L D ) 2 A(Φ) - 1 2 A(Φ) 2 = α 2 D S(Φ) - 1 2 DE Φ DE ′ Φ E 2 Φ + 2αβ S(Φ). (5.15) 
and of the Schwarzian derivative for N = 2. For N ≥ 3, the cross-ratio is badly transformed by contactomorphisms, which prevents the construction of a Schwarzian derivative along the same lines as before (see Remark 6.6 below).

Let us define the notation used throughout this section. Except if otherwise stated, all indices i, j of odd objects will run from 1 to N, and Einstein's summation convention will be freely used. The space of superfunctions C ∞ (S 1|N ), defining S 1|N , is the superalgebra C ∞ (S 1 )[ξ 1 , . . . , ξ N ] where the ξ i are odd indeterminates. It is topologically generated, as an algebra, by the coordinates (x, ξ) with ξ = (ξ 1 , . . . , ξ N ). The diffeomorphisms retain the form Φ = (ϕ, ψ), with ψ = (ψ 1 , . . . , ψ N ) and ϕ,

ψ j ∈ C ∞ (S 1|N ), such that (ϕ, ψ) is a new coordinate system. Let F, G ∈ C ∞ (S 1|N
) N , we denote their pairing with values in C ∞ (S 1|N ) by

F • G = F i G i (6.1)
where F i and G i are the i-th components of F and G, and F i = δ ij F j (with the choice of an Euclidean signature). The C ∞ (S 1|N )-module Ω 1 (S 1|N ) is generated by the 1-forms

α = dx + ξ i dξ i = dx + ξ • dξ and β i = dξ i , (6.2) 
with dual vectors ∂ x and

D i = ∂ ξ i + ξ i ∂ x . For f ∈ C ∞ (S 1|N
) we therefore have

df = αf ′ + β i D i f, (6.3) 
see (2.10). We furthermore denote by K(N) the group of contactomorphisms, Φ, characterized by Φ * α = E Φ α for some superfunction E Φ . Let Φ = (ϕ, ψ) ∈ K(N),

then Φ * α = dϕ+ψ •dψ = α(ϕ ′ +ψ •ψ ′ )+β i (D i ϕ-ψ •D i ψ). It follows that Φ ∈ K(N) iff D i ϕ -ψ • D i ψ = 0, (6.4) 
for all i = 1, . . . , N. The multiplier of Φ is then given by E Φ = ϕ ′ + ψ • ψ ′ , i.e., by

E Φ = Φ * α α = (D i ψ) 2 (6.5) 
for any i = 1, . . . , N. The expression (D i ψ) 2 stands for D i ψ • D i ψ. This has been first developed in the framework of super Riemann surfaces by Cohn [START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF]; we will nevertheless refer to work of Radul [START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF], whose geometric approach, in terms of contact structure, is closer to our viewpoint. See also [START_REF] Guieu | L'algèbre et le Groupe de Virasoro[END_REF]. Proposition 6.1. Let Φ ∈ K(N), then

D j D i ϕ + ψ • D j D i ψ = D i ψ • D j ψ = E Φ δ ij . (6.6)
Hence (E

-1 2 Φ D i ψ) i=1,.
..,N is an "orthonormal basis" for the pairing (6.1) on C ∞ (S 1|N ) N .

Proof. As Φ ∈ K(N), we have

D j D i ϕ = D j (ψ • D i ψ) = D j ψ • D i ψ -ψ • D j D i ψ, in view
of (6.4); by exchanging i and j, we deduce D i ψ • D j ψ = 0 if i = j. For i = j, the result is given by (6.5) and the equality

E Φ = ϕ ′ + ψ • ψ ′ .

Euclidean, affine and projective invariants

We now extend to S 1|N , where N ≥ 2, the content of Subsection 2.3. Now, α (6.2) stems from the 1-form on R 2|N given by ̟ = 1 2 (pdq -qdp + θ i dθ i ), via the formula ̟ = 1 2 p 2 α (p = 0), expressed in affine coordinates x = q/p and ξ i = θ i /p. We define the orthosymplectic group [START_REF] Grozman | Lie superalgebras of string theories[END_REF][START_REF] Yu | Topics in noncommutative geometry[END_REF], SpO(2|N), as the supergroup whose A-points are all linear transformations of O

2|N A , see Subsection 2.3, h =   a b γ c d δ α β e   (6.7) 
preserving the symplectic form d̟. If we demand that these linear transformations preserve the direction of d̟, only, we end up with the conformal supergroup C(2|N), see [START_REF] Yu | Topics in noncommutative geometry[END_REF]. In the expression (6.7), the entries a, b, c, d are even elements, α, β are odd column vectors of size N, while δ, γ are odd row vectors of size N, and e is an even matrix of size N × N. Moreover, as d̟ is preserved, we have

ad -bc -α t β = 1, (6.8) 
e t e + 2γ t δ = 1, (6.9)

α t e -aδ + cγ = 0, (6.10)

β t e -bδ + dγ = 0, (6.11) 
where the superscript t denotes transposition. We easily find that SpO(2|N) also preserves ̟. Again, since ̟ = 1 2 p 2 α, the orthosymplectic group acts by contactomorphisms, SpO(2|N) → K(N), via the following projective action on S 1|N , namely

h(x, ξ) = ax + b + γξ cx + d + δξ , αx + β + eξ cx + d + δξ , (6.12) 
where h ∈ SpO(2|N), and ξ is understood as a column vector. 

] = x 2 -x 1 -ξ 2 • ξ 1 , {t 1 , t 2 } = ξ 2 -ξ 1 . (6.14) • Affine invariant: I a (t 1 , t 2 , t 3 ) = ([t 1 , t 2 , t 3 ], {t 1 , t 2 , t 3 }), where, if x 1 < x 2 , [t 1 , t 2 , t 3 ] = [t 1 , t 3 ] [t 1 , t 2 ] , {t 1 , t 2 , t 3 } = {t 1 , t 3 } [t 1 , t 2 ] 1 2 
. (6.15)

• Projective invariant:

I p (t 1 , t 2 , t 3 , t 4 ) = ([t 1 , t 2 , t 3 , t 4 ], O(N).{t 1 , t 2 , t 3 , t 4 }), where, if ord(t 1 , t 2 , t 3 ) = 1, [t 1 , t 2 , t 3 , t 4 ] = [t 1 , t 3 ][t 2 , t 4 ] [t 2 , t 3 ][t 1 , t 4 ] , (6.16 
)

{t 1 , t 2 , t 3 , t 4 } = [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 , t 4 }[t 1 , t 2 ] -{t 1 , t 2 }[t 2 , t 4 ] ([t 1 , t 2 ][t 2 , t 4 ][t 1 , t 4 ]) 1 2 
. (6.17) Lemma 6.5. Let Φ = (ϕ, ψ) ∈ K(N), and t 2 = φ ε (t 1 ), with φ ε the flow of a vector field X, and t 1 a point of S 1|N ; we then have

Φ * [t 1 , t 2 ] = [t 1 , t 2 ]E Φ (t 1 ) 1 + 1 2 [t 1 , t 2 ] E ′ Φ E Φ (t 1 ) + 1 2 {t 1 , t 2 } i D i E Φ E Φ (t 1 ) (6.19) +[t 1 , t 2 ] εX ⊗ εX, α 2 A 6 + αβ i B i 2 + β i β j C ij 2 (t 1 ) + 1 6 εX ⊗ εX ⊗ εX, β i β j β k [D k D j D i ϕ -ψ • D k D j D i ψ] (t 1 ) + O(ε 4 ), where A = ϕ ′′′ + ψ • ψ ′′′ , B i = D i ϕ ′′ -ψ • D i ψ ′′ and C ij = D j D i ϕ ′ + ψ • D j D i ψ ′ .
Proof. By definition we have: Φ

* [t 1 , t 2 ] = ϕ(t 2 ) -ϕ(t 1 ) -(ψ(t 2 ) -ψ(t 1 )) • ψ(t 1
). Using the formula (5.1), trivially extended to the case N ≥ 2, we obtain

Φ * [t 1 , t 2 ] = [t 1 , t 2 ] E Φ + 1 2 [t 1 , t 2 ](ϕ ′′ + ψ • ψ ′′ ) + 1 2 {t 1 , t 2 } i D i (ϕ ′ + ψ • ψ ′ ) (t 1 ) + 1 2 {t 1 , t 2 } i {t 1 , t 2 } j [D j D i ϕ + ψ • D j D i ψ] (t 1 ) +[t 1 , t 2 ] 1 6 [t 1 , t 2 ] 2 (ϕ ′′′ + ψ • ψ ′′′ ) + 1 2 {t 1 , t 2 } i [t 1 , t 2 ](D i ϕ ′′ -ψ • D i ψ ′′ ) (t 1 ) + 1 2 [t 1 , t 2 ]{t 1 , t 2 } i {t 1 , t 2 } j [D j D i ϕ ′ + ψ • D j D i ψ ′ )] (t 1 ) + 1 6 {t 1 , t 2 } i {t 1 , t 2 } j {t 1 , t 2 } k [D k D j D i ϕ -ψ • D k D j D i ψ] (t 1 )
+O(ε 4 ). (6.20)

The coefficient of {t 1 , t 2 } i {t 1 , t 2 } j on the second line of (6.20) vanishes if i = j, using (6.6). The analog of Lemma 5.1 holds true, namely [t 1 , t 2 ] = εX, α + O(ε 2 ), and

{t 1 , t 2 } i = εX, β i + O(ε 2 )
. Hence, we are done.

Remark 6.6. The last term in (6.20) definitely does not vanish in the case N ≥ 3, implying that Φ * [t 1 , t 2 ] is not proportional to [t 1 , t 2 ] at third order in ε. This entails that the Cartan formula fails to provide an expression of the Schwarzian derivative for N ≥ 3.

Euclidean and affine K(N)-cocycles

Up to the second order in ε, Φ * [t 1 , t 2 ] is proportional to [t 1 , t 2 ]; this enables us to obtain 1-cocycles from Euclidean and affine invariants, as was done in Subsection 5.2.1.

Theorem 6.7. From the Euclidean and affine even invariants, we construct the two following K(N) nontrivial 1-cocycles:

• The Euclidean cocycle E : K(N) → F 0 (S 1|N ) :

E(Φ) = log(E Φ ) = log(D i ψ) 2 , (6.21) 
where the equality holds for any i = 1, . . . , N.

• The affine cocycle A : K(N) → Ω 1 (S 1|N ):

A(Φ) = dE(Φ) = dE Φ E Φ . (6.22)
The proof is the same as in the case N = 1, it relies on Lemma 6.5. this is no longer the case, i.e., the subgroup of K(N) preserving the even invariant and the kernel of the associated cocycle are no longer the same defining groups. For example, if N = 3, the contactomorphism Φ = (ϕ, ψ), with ϕ(x, ξ) = x + ξ 1 ξ 2 ξ 3 λ and ψ(x, ξ) = ξ -(ξ 2 ξ 3 , ξ 3 ξ 1 , ξ 1 ξ 2 )λ, where λ ∈ R 0|1 , does not preserve p 0 (I e ) although E(Φ) = 1. Moreover, Φ is not even an homography.

The Schwarzian K(2)-cocycle

For N = 2, the expression (6.5) of Φ where we have put S 12 = 2 S α -1 , see (6.26).

Moreover, using the projection (6.24) of the quadratic differentials on 1-densities, we obtain the Schwarzian derivative S : K(2) → F 1 (S 1|2 ) given by

S(Φ) = D 2 D 1 E Φ E Φ - 3 2 
D 2 E Φ D 1 E Φ E 2 Φ α. ( 6 

.26)

These two 1-cocycles are nontrivial; their kernels coincide and are isomorphic to PC(2|2).

Proof. The formula of the cross-ratio being similar to that of the case N = 1, we have to compute, again, the expression (5.6), the term Φ * [t 

E Φ + β i D i E Φ E Φ 2 (t 1 ) + 1 2 εX ⊗ εX, α 2 E ′ Φ E Φ ′ + 2αβ i D i E Φ E Φ ′ + β i β j D j D i E Φ E Φ (t 1 ) -2 εX ⊗ εX, α 2 A 6E Φ + αβ i B i 2E Φ + β i β j C ij 2E Φ (t 1 ) + O(ε 3 ).
As in the case N = 1, see (5.8) and (5.9), we still have A = E ′′ Φ -ψ ′ • ψ ′′ and also 

B i = 1 2 D i E ′ Φ + ψ ′ • D i ψ ′ .
E ′′ Φ E Φ + ψ ′ • ψ ′′ 3E Φ - 1 4 
E ′ Φ E Φ 2 (t 1 )
+ εX ⊗ εX, αβ i 1 2

D i E ′ Φ E Φ - ψ ′ • D i ψ ′ E Φ - E ′ Φ D i E Φ 2E 2 Φ (t 1 ) + εX ⊗ εX, β 1 β 2 D 2 D 1 E Φ E Φ - 2C 12 E Φ - D 2 E Φ D 1 E Φ 2E 2 Φ (t 1 )
+O(ε 3 ). (6.27)

We denote by S(Φ) the coefficient of α 2 , S i (Φ) that of αβ i and S 12 (Φ) that of β 1 β 2 .

Let us start with the computation of S 12 (Φ), our goal being to write C 12 as a function of E Φ and its derivatives.

We first give a useful lemma.

Lemma 6.11. For any φ, φ ∈ C ∞ (S 1|2 ) 2 , the following relations hold: with λ 2 = 1, and where the cross-product is defined by φ × φ = φ 1 φ 2 -φ 2 φ 1 .

(φ • D 1 ψ)( φ • D 1 ψ) + (φ • D 2 ψ)( φ • D 2 ψ) = φ • φ E Φ , (6.28 
Moreover, ψ ′ being odd, for even φ and φ, we have 

(ψ ′ • φ)(ψ ′ • φ) = ψ ′ 1 ψ ′ 2 (φ × φ). ( 6 
D 2 D 1 ϕ ′ = D 2 ψ ′ • D 1 ψ -ψ ′ • D 2 D 1 ψ + D 2 ψ • D 1 ψ ′ -ψ • D 2 D 1 ψ ′ .
Plugging the latter expression into C 12 , and using D i ψ • D j ψ = 0, for i = j, we obtain C 12 = -ψ ′ • D 2 D 1 ψ.

Using the proof of Lemma 6.11, we have D 1 ψ 1 = λD 2 ψ 2 and D 1 ψ 2 = -λD 2 ψ 1 , and then

ψ ′ • D 2 D 1 ψ = 2λψ ′ 1 ψ ′ 2 . Moreover, as 1 4 D 1 E Φ D 2 E Φ = (ψ ′ • D 1 ψ)(ψ ′ • D 2 ψ
), we find, using (6.30) and (6.29), 1 4 D 1 E Φ D 2 E Φ = λψ ′ 1 ψ ′ 2 E Φ . We thus have C 12 = -1 2E Φ D 1 E Φ D 2 E Φ , and replacing this in the last expression of S 12 , as given by (6.27), we finally get

S 12 (Φ) = D 2 D 1 E Φ E Φ - 3 2 
D 2 E Φ D 1 E Φ E 2 Φ . (6.31) 
We will show that S 1 = 1 2 D 2 S 12 , and then, exchanging D 1 and D 2 , readily obtain S 2 = -1 2 D 1 S 12 . Let us first recall the expression of S 1 , given in (6.27),

S 1 (Φ) = 1 2 D 1 E ′ Φ E Φ - E ′ Φ D 1 E Φ E 2 Φ - 2ψ ′ • D 1 ψ ′ E Φ .
Secondly, we find

D 2 S 12 (Φ) = D 1 E ′ Φ E Φ - D 2 E Φ D 2 D 1 E Φ E 2 Φ + 3 2 D 2 E Φ D 2 D 1 E Φ E 2 Φ - 3 2 
E ′ Φ D 1 E Φ E 2 Φ .
We then have to show that the following expression vanishes, namely .32) To that end, let us use Formula (6.5) to rewrite the last two terms as

2S 1 (Φ) -D 2 S 12 (Φ) = - 2ψ ′ • D 1 ψ ′ E Φ + 1 2 D 2 E Φ D 1 D 2 E Φ E 2 Φ + 1 2 E ′ Φ D 1 E Φ E 2 Φ . ( 6 
D 2 E Φ D 1 D 2 E Φ = 4(ψ ′ • D 2 ψ)(D 1 ψ ′ • D 2 ψ + ψ ′ • D 2 D 1 ψ), and E ′ Φ D 1 E Φ = 4(ψ ′ • D 1 ψ)(D 1 ψ ′ • D 1 ψ
), respectively. We have already proved that ψ ′ • D 2 D 1 ψ = 2λψ ′ 1 ψ ′ 2 , and using (6.28), we thus obtain 2S 1 -D 2 S 12 = 0. (6.33)

At last, we want to show that 6S = D 1 D 2 S 12 + 1 2 S 2 12 . Begin by writing explicitly

6S(Φ) = E ′′ Φ E Φ - 3 2 
E ′ Φ E Φ 2 + 2ψ ′ • ψ ′′ E Φ ,
with the help of 6.27, and also

D 1 D 2 S 12 (Φ) = E ′′ Φ E Φ - D 1 E Φ D 1 E ′ Φ E 2 Φ - 3 2 E ′ Φ E Φ 2 - 3 2 
D 1 E ′ Φ D 1 E Φ E 2 Φ + 1 2 D 2 E Φ D 2 E ′ Φ E 2 Φ - 1 2 
D 2 D 1 E Φ E Φ 2 - D 1 E Φ D 2 E Φ D 2 D 1 E Φ E 3 Φ .
We now compute the difference:

D 1 D 2 S 12 (Φ) -6S(Φ) = 1 2 D 1 E Φ D 1 E ′ Φ + D 2 E Φ D 2 E ′ Φ E 2 Φ - D 1 E Φ D 2 E Φ D 2 D 1 E Φ E 3 Φ - 1 2 
D 2 D 1 E Φ E Φ 2 -2 ψ ′ • ψ ′′ E Φ .
Using Equation (6.5), we get

1 2 (D 1 E Φ D 1 E ′ Φ + D 2 E Φ D 2 E ′ Φ ) = 2[(ψ ′ • D 1 ψ)(ψ ′′ • D 1 ψ) + (1 ↔ 2)] + 2[(ψ ′ • D 1 ψ)(ψ ′ • D 1 ψ ′ ) + (1 ↔ 2)
]. Thanks to Formula (6.28), the first term reduces to 2ψ ′ • ψ ′′ E Φ , and using (6.30) the second one turns out to be

2ψ ′ 1 ψ ′ 2 (D 1 ψ × D 1 ψ ′ + D 2 ψ × D 2 ψ ′ ), which is equal to 4λψ ′ 1 ψ ′ 2 (D 2 ψ • D 1 ψ ′ )
, in view of (6.29). On the other hand, using the previous equalities, we find

D 1 E Φ D 2 E Φ D 2 D 1 E Φ = -8λE Φ ψ ′ 1 ψ ′ 2 (D 1 ψ ′ • D 2 ψ)
; hence, we obtain

D 1 D 2 S 12 (Φ) -6S(Φ) = - 3 2 D 1 E Φ D 2 E Φ D 2 D 1 E Φ E 3 Φ - 1 2 
D 2 D 1 E Φ E Φ 2 ,

  the Reeb vector field of the structure. Then D and ∂ x set up a basis of the C ∞ (S 1|1 ) left-module Vect(S 1|1 ), while α and β = dξ constitute the dual basis, with dα = β ∧ β. Thus for any f ∈ C ∞ (S 1|1 ) we have df = αf ′ + βDf.

1 2 D, αf +βg = α 1 2 g and α 1 2 D, α 2 f +αβg = 1 2 α 3 2 1 2 1 2 1 2 1 2 L D (α 1 2 1 2 L D (α 3 2 2 L 1 2 D, α 1 2 3 2

 211311111132113 g. The transformation rules (2.13) for α and (2.14) for β then entail that the projections α D, • actually define morphisms of K(1)-modules, Φ * (α D, ω ) = α D, Φ * ω for all ω ∈ Ω 1 (S 1|1 ), and for all ω ∈ Q(S 1|1 ).Moreover, since L D α = 2β and L D β = 0, we readily find α g) = αDg + βg and α g) = α 2 Dg + 3αβg. Using, once more, (2.13) and (2.14), we then obtain that the inclusions α 1 D define, again, morphisms of K(1)-modules. To have the identity µα L D F = F , we choose µ = 1 for F a 1 2 -density, and µ = 2 3 for F a -density. The result follows.

Theorem 3 . 5 .

 35 From the Euclidean (3.1), affine (3.3), and projective (3.5) even invariants, we deduce via the Cartan formula (3.8) three 1-cocycles of K(1), with kernel E(1|1), Aff(1|1) and SpO + (2|1) respectively. They retain the following form:

). Proposition 3 . 8 .

 38 Let A denote the affine K(1)-cocycle (3.10); the following holds true for the super Schwarzian derivative (3.13):

Proposition 4 . 2 .

 42 Let G act on a set E = E 0 × E 1 and choose m, a n-tuple of E.Suppose that for every n-tuple s, there exists h ∈ G such that h(s) p|q = m, where n = max(p, q), and G.[s] ⊇ [m]. Then the action of G on E is p|q-transitive.

Theorem 4 . 3 .

 43 Let g → g denote the simply p|q-transitive action of a group G on a set E = E 0 × E 1 , and let m be a n-tuple, n = max(p, q), of distinct points of E. We can define the following (n + 1)-point function of E with values in E, associated to the class of m, namely

  (n + 1)-point G-invariant function I can be factorized through the invariants I [m] and J [m],j , i.e., I = f (J [m],q+1 , . . . , J [m],p , I [m] ) for some function f , depending on the n-tuple m. Similarly, any n-point G-invariant function can be factorized through the invariants J [m],j .

Remark 4 . 4 .

 44 This theorem generalizes the more common situation of a simply ntransitive action of a group, choosing p = q. In this case, p|q = reduces to the mere equality, =, and every (n+1)-point invariant can be factorized through the invariant I m

Definition 4 . 6 .Remark 4 . 7 .Proposition 4 . 8 .

 464748 Let us define E(1|1) as the subgroup of GL(2|1) where (b, β) ∈ R 1|1 , and ǫ 2 = 1. It acts on R 1|1 ⊂ S 1|1 by translations, according to g(x, ξ) = (x + b -βξ, ǫβ + ǫξ). We will denote by E + (1|1) the connected component of the identity characterized by ǫ = 1. The Euclidean groups can be defined in an alternative manner, in terms of the transformation laws of the 1-forms α and β, and then directly as subgroups of K(1). The group E(1|1) is the subgroup of those Φ ∈ Diff(S 1|1 ) such that Φ * α = α and Φ * β = ǫβ, with ǫ = ±1; restricting to ǫ = 1 we obtain the subgroup E + (1|1). The action of E + (1|1) on R 1|1 ⊂ S 1|1 is simply 1|1-transitive; choosing e = (0, 0), it defines a characteristic Euclidean invariant consisting of the following two-point couple of superfunctions

Lemma 4 . 13 .

 413 So, let us introduce Aff + (1|1) as the group generated by Aff + (1|1) and the orientation-reversing transformation r : (x, ξ) → (-x, ξ). The action of Aff + (1|1) on R 1|1 ⊂ S 1|1 is simply 2|1-transitive.

3 . 4 . 14 .

 3414 and Proposition 4.2 applies, proving the simply 2|1-transitivity of the action of Aff + (1|1). Now, the action of Aff + (1|1) on S 1|1 satisfies all assumptions of Theorem 4.3, and then, restricting ourselves to x 1 < x 2 , we obtain affine invariants with all properties stated in Theorem 4.Proposition Choosing a, the class of a couple a = ((0, 0), (1, ζ)) for the relation 2|1 =, Theorem 4.3 gives rise to a characteristic affine invariant consisting of the following three-point couple of superfunctions, defined, for x 1 < x 2 , by

Remark 4 . 15 .

 415 The invariants I a and J a depend on a; for another class, b, of a couple of points, we have, following the third assertion of Theorem 4.3, I b = g • I a and J b = g • J a iff p 1 (b 1 ) = 0. For p 1 (b 1 ) = 0, I b and J b depend on I a and J a in a more involved way.

Remark 4 . 21 .

 421 Projective groups and projective invariants of the circle and of the supercircle share various properties. Like SpO + (2|1) in the super case, the action of PSL(2, R) preserves the orientation of the circle. The action of PSL(2, R) on the circle is thus not simply 3-transitive, in contradistinction to that of PGL(2, R).

. 11 ) 2 (S 1|1 ), given by α 1 2

 1121 Thus, S defines a 1-cocycle of K(1) with values in the space, Q(S 1|1 ), of quadratic differentials, cf. Subsection 2.2.2. Using the projection onto the3 2 -densities, F 3 D, • , see Proposition 2.5, we still obtain a projective 1-cocycle of K(1),

Remark 6 . 8 .Remark 6 . 9 .

 6869 The directions of the individual vector fields D i are no longer preserved by the contactomorphisms; only that ofD 1 ⊗ • • • ⊗ D N is preserved. Hence, the projection of A on D i is no longer a K(N)-cocycle.Let us introduce AO(1|N), the ortho-affine subgroup of SpO(2|N) whose elements are , b, β) ∈ R 2|N , e ∈ O(N), and restricting us to a = ±1, we obtain the ortho-Euclidean subgroup EO(1|N). Since the action of SpO(2|N) on the supercircle has a kernel equal to {±Id}, the same holds for its above introduced subgroups. For N = 2, a direct computation shows that the kernel of the two cocycles E and A, are, respectively, EO(1|2)/{±Id} and AO(1|2)/{±Id}. This groups are also the groups preserving the even part of I e and I a , see Remark 6.4. But for N ≥ 3,

)

  and also,φ × D 2 ψ = λφ • D 1 ψ and φ × D 1 ψ = -λφ • D 2 ψ,(6.29)

. 30 )

 30 Proof. Proposition 6.1 proves the first equality. AsD 2 ψ • D 2 ψ = E Φ , either D 2 ψ 1 or D 2 ψ 2 is invertible, where ψ = (ψ 1 , ψ 2 ). Suppose that D 2 ψ 2 is invertible, we then have D 1 ψ 1 = λD 2 ψ 2 for some λ. Using D i ψ • D j ψ = δ ij E Φ , we obtain D 1 ψ 2 = -λD 2 ψ 1 and λ 2 = 1. If D 2 ψ 1 isinvertible the same equalities hold. Then, easy calculation ends the proof.We haveC 12 = D 2 D 1 ϕ ′ + ψ • D 2 D 1 ψ ′ ,as given by Lemma 6.5. Differentiating theconstraint D i ϕ = ψ • D i ψ, see (6.4), we find D 1 ϕ ′ = ψ ′ • D 1 ψ + ψ • D 1 ψ ′ ,and then

  Thirdly, suppose that there exists g ∈ G such that g[m] = [l]. Let t be a n-[l] (t 1 , . . . , t n+1 ) = g • h(t n+1 ). Conversely suppose that I [l] = g • I [m] for some g ∈ G

	tuple, we have h(t)

p|q = m for a unique h ∈ G, then g( h(t)) p|q = l, and it follows that I and let m ′ ∈ [m]. For every n-tuple t, there exists h ∈ G such that h(t) p|q = m and then

I [l] (t, t n+1 ) = g • h(t n+1 ), for all t n+1 ∈ E. As I [l] (t, t n+1 ) = k(t n+1 ) for the unique k ∈ G such that k(t) p|q = l, we deduce that g( h(t)) p|q = l.

In particular for the n-tuple m ′ , h is the identity, hence g(m ′ ) p|q

  SpO + (2|1) acts by contactomorphisms on S 1|1 , it preserves the orientation of So, let us introduce SpO + (2|1), the group generated by SpO + (2|1) already considered, and the orientation-reversing transformation r : (x, ξ) → (-x, ξ).

	the underlying circle, see Remark 2.2. Hence, the action of SpO + (2|1) cannot be 3|2-
	transitive, a triple of distinct points defining an orientation. However, if s and t are two
	triples defining the same orientation, there exist exactly two elements h ± ∈ SpO + (2|1)
	such that h ± (t)	
	Lemma 4.18.	1. The action of SpO + (2|1) on S 1|1 is 3|2-transitive.

3|2

= s. 2. Moreover, let p be the class of p = ((∞, 0), (0, 0), (1, ζ)) for the relation 3|2 =, then for any triple t, there exist exactly two elements of SpO + (2|1), k + , k -, such that k ± (t) 3|2 = p, and k -

  1 , t 2 , t 3 ) = p 1 ( h(t 3 )) is a surjective function from [t] to R 0|1 , see (4.15). Using Proposition 4.2, we conclude that the action of SpO

	1	,	(4.14)
	2		

+ (2|1) is 3|2-transitive. Now, even if the action of SpO + (2|1) is not simply 3|2-transitive, we can construct, following Theorem 4.3, invariants in the same way as before, and restricting consideration to ord(t 1 , t 2 , t 3 ) = 1, we will end up with projective invariants. Proposition 4.19. Let p = ((∞, 0), (0, 0), (1, ζ)) be a triple of points of S 1|1 , and denote by p the class of p for the relation 3|2 =. Theorem 4.3 then yields the projective invariant I p (t

1 , t 2 , t 3 , t 4 ) = ([t 1 , t 2 , t 3 , t 4 ] , ±{t 1 , t 2 , t 3 , t 4 }), given, if ord(t 1 , t 2 , t 3 ) = 1, by [t 1 , t 2 , t 3 , t 4 ] = [t 1 , t 3 ][t 2 , t 4 ] [t 2 , t 3 ][t 1 , t 4 ] , (4.13) {t 1 , t 2 , t 3 , t 4 } = [t 1 , t 2 , t 3 , t 4 ] 1 2 {t 2 , t 4 }[t 1 , t 2 ] -{t 1 , t 2 }[t 2 , t 4 ] ([t 1 , t 2 ][t 2 , t 4 ][t 1 , t 4 ])

  1 , t 2 , t 3 ) = 1. Using Lemma 4.18, we know that there exist exactly two elements k + , k -∈ SpO + (2|1) such that k ± (t) We set I p (t 1 , . . . , t 4 ) = k ± (t 4 ) and J p (t 1 , t 2 , t 3 ) = p 1 ( k ± (t 3 )), as suggested by Theorem 4.3. Despite the non uniqueness of k, all conclusions of Theorem 4.3 apply just as well, and the proofs are identical, except for I p being a characteristic invariant. The proof of Theorem 4.3 shows that any bijection, Φ, of the supercircle such that Φ * I p = I p , satisfies Φ(t 4 ) = k ± (t 4 ) for all t 4 . We have to impose that Φ be a diffeomorphism to obtain Φ = k + or Φ = k -.It then remains to compute k ± (t 4 ); using the proof of Lemma 4.18 we will easily calculate k ± = h ± • g, for the specific case x 1 < x 2 < x 3 . Starting with the even part of k ± (t 4 ), we obtain, see(4.12), [t 1 , t 2 , t 3 , t 4 ] = a 2 [t 2 , t 3 , t 4 ] ac[t 2 , t 3 , t 4 ] + 1 + α{t 2 , t 3 , t 4 }

	=	[t 1 , t 2 ][t 2 , t 3 ]	[t 1 , t 3 ][t 2 , t 4 ] [t 2 , t 4 ] [t 1 , t 2 ] {t 1 , t 2 }{t 2 , t 4 } + 1 -[t 1 , t 2 ]

3|2

= p.

, where we have used (4.10) and

(4.11)

. With the help of the identity [t

2 , t 4 ] + [t 1 , t 2 ] -{t 1 , t 2 }{t 2 , t 4 } = [t 1 , t 4 ]

, we find the announced result, viz., Equation (4.13).

  1 , t 2 , t 3 ) = -1, the projective invariants I p and J p are simply given by the exchange of t 1 and t 2 in Formulae (4.13), (4.14), and (4.15).

Corollary 4.20. The cross-ratio (4.13) is invariant under SpO + (2|1), and characterizes this subgroup of K(1), namely if Φ ∈ K(1) satisfies Φ * [t 1 , t 2 , t 3 , t 4 ] = [t 1 , t 2 , t 3 , t 4 ],

  The kernel of this action is {Id, -Id}, hence the action is effective for the su-2|N , a > 0 defining Aff + (1|N) and a = 1 defining E + (1|N). The group Aff + (1|N) may be defined as the subgroup of those h ∈ K(N) that preserve the direction of each β i , namely h * β i = β i f i , for some superfunction f

	pergroup SpO(2|N)/{±Id} = PC(2|N) of conformal projective transformations. If N
	is odd, this supergroup coincides with the special orthosymplectic group SpO + (2|N),
	which is the subgroup of SpO(2|N) of Berezinian 1. We still can define Euclidean and
	affine subgroups of SpO(2|N), whose elements are	
	g =	 	a ab -aβ t 0 a -1 0	  ,	(6.13)
			0 β	1	
	where (a, b, β) ∈ R Remark 6.2.				

i , with i = 1, . . . , N. Its subgroup E + (1|N) is characterized by exactly preserving α. Let t 1 , t 2 , t 3 , t 4 be four generic points of S 1|N . Theorem 6.3. We have three invariants, I e , I a and I p , of the action of the Euclidean, affine and projective supergroups on the supercircle S 1|N . • Euclidean invariant: I e (t 1 , t 2 ) = ([t 1 , t 2 ], {t 1 , t 2 }) with [t 1 , t 2

  [t 1 , t 2 ] is proportional to [t 1 , t 2 ]. This enables us to use the Cartan formula to define the projective 1-cocycle, S, from the cross-ratio(6.16).By construction, our projective 1-cocycle will take its values in the K(2)-module of quadratic differentials, Q(S 1|2 ), generated by α 2 , αβ 1 , αβ 2 and β 1 β 2 , where α 2 and αβ i are as in (2.20), and β 1 β 2 as in(6.18). One can check that the linear mappingα D 2 ⊗ D 1 , . : Q(S 1|2 ) → F 1 (S 1|2 ) (6.24)intertwines the natural action of K(2), see Remark 6.8. Now, the Schwarzian derivative given by Radul[START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF], or Cohn[START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF], for N = 2, has again coefficients in tensor densities. Projecting the 1-cocycle, S, via (6.24), we will readily recover Radul's and Cohn's Schwarzian derivative.Theorem 6.10. From the cross-ratio (6.16), we deduce, via the Cartan formula (3.8), the following projective 1-cocycle S : K(2) → Q(S 1|2 ), which reads D 2 + β 2 D 1 )S 12 + β 1 β 2 S 12 , (6.25)

	S =	1 6	α 2 D 1 D 2 S 12 +	1 2	S 2 12	+	1 2	α(β 1

* 

  1 ,t 2 ] E Φ (t 1 )[t 1 ,t 2 ] being now given by Lemma 6.5. Straightforward calculation, essentially the same as in Subsection 5.2.2, leads toΦ * [t 2 , t 3 ] E Φ (t 2 )[t 2 , t 3 ] ) + {t 2 , t 3 } i D i E Φ 2E Φ + β i β j C ij 2E Φ (t 1 ) + O(ε 3 ).The combinatorics is the same as before; we thus obtain Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ]

	= 1 +	1 2	[t 2 , t 3 ]	E ′ Φ E Φ	(t 1 E Φ	(t 1 )
	+	1 2	εX ⊗ εX, α 2 E ′ Φ E Φ	′	+ 2αβ i D i E Φ E Φ	′	+ β i β j D j	D i E Φ E Φ	(t 1 )
	+	εX ⊗ εX, α 2 A 6E Φ	+ αβ i B i
	-1 =	1 4	εX, α	E ′ Φ	

  We now collect the terms according to Φ * [t 1 , t 2 , t 3 , t 4 ] [t 1 , t 2 , t 3 , t 4 ] -1 = εX ⊗ εX, α 2 1 6

This formula leads directly to(3.18), using D, α 2 = 0 and D, αβ = 1 2 α, together with the expressions (5.10) and (5.12) for S and S.6 Super Euclidean, affine and projective invariants, and K(N )-cocycles for S 1|NThe aim of this section is to extend to S 1|N the previous constructions, namely those of the Euclidean, affine and projective invariants, of the Euclidean and affine cocycles,
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The odd invariant, denoted by O(N).{t 1 , t 2 , t 3 , t 4 }, is the orbit of {t 1 , t 2 , t 3 , t 4 } under the natural group action of O(N). If a bijective transformation, Φ, of S 1|N leaves I e (resp. I a ) invariant, it can be identified with the action of an element h ∈ E + (1|N) (resp. h ∈ Aff + (1|N)), i.e., Φ = h. If Φ ∈ Diff(S 1|N ) preserves I p , then Φ = ρ • h, with h ∈ SpO(2|N) and ρ(x, ξ) = (x, Rξ), R ∈ C ∞ (S 1|N , O(N)).

The proof of this Theorem can be carried out along the same lines as in the proof of Theorem 3.1, we will skip it and just provide some hints for it. As in the case N = 1, we can show that the action of E + (1|N) is simply 1|1-transitive, while that of Aff + (1|N) is simply 2|1-transitive, on R 1|N ⊂ S 1|N . Moreover, the action of PC(2|N) is 3|2-transitive on S 1|N and satisfies the following property: for any triple t, and g, h ∈ PC(2|N), g(t)

As in Section 4, the tilde denotes the extension of the group by the involution ι : (x, ξ) → (-x, ξ). We can now apply Theorem 4.3 and the claims of Theorem 6.3 follow. Remark 6.4. For N = 1, the Corollaries 4.10, 4.17 and 4.20 have been obtained thanks to Lemma 2.3. They cannot be prolonged for N > 1 as there exists no such lemma in this case. However, the supergroup preserving each even invariant is included in the kernel of the associated K(N)-cocycles, and for N = 2, see Remark 6.9 and Theorem 6.10, one can easily check the converse inclusion. So, for N = 2, the preserving supergroups of the even part of I e , I a and I p are respectively EO(1|2)/{±Id}, AO(1|2)/{±Id} and PC(2|2).

Associated cocycles from the Cartan formula

The following calculation will rely on Proposition 6.1, and on the relation

which results from a direct calculation. As in the case N = 1, we need a lemma giving the third-order Taylor expansion of Φ

To that end, we will be using the notation:

and

), i.e., the symmetrized tensor product of odd elements; see [START_REF] Deligne | Notes on supersymmetry[END_REF].

which is the desired result: 6S = D 1 D 2 S 12 + 1 2 S 2 12 . Together with (6.33) and (6.31), the latter equation finishes the derivation of (6.25). Using the projection (6.24) on 1-densities, we obtain the Schwarzian derivative S, given by (6.26).

An argument analogous to that of Remark 3.7 helps us to prove that the cocycles S and S are nontrivial.

To find the kernel of the cocycle S, whence that of S, we have to use another form of S, namely

A direct computation shows that there exists h ∈ PC(2|2) such that E Φ = E h . Since the kernel of the Euclidean cocycle is E + 1|N/{±Id} for N = 2, we obtain as announced: ker(S) = PC(2|2). The proof of Theorem 6.10 is complete.

Conclusion, discussion and outlook

Starting off with the orthosymplectic group, SpO(2|N), and two nested subgroups E + (1|N) ⊂ Aff + (1|N) ⊂ SpO(2|N), we have been able to uniquely characterize Euclidean, I e , affine, I a , and projective, I p , invariants for their actions as contactomorphisms of the supercircle S 1|N , using the central notion of p|q-transitivity. Moreover, these invariants are characteristic of their defining groups. For N = 0, 1, 2, their even part does characterize the image of the supergroups EO(1|N), AO(1|N) and SpO(2|N), by the projective action on S 1|N , within the group, K(N), of all contactomorphisms.

In doing so, we have recovered in a systematic fashion the previously introduced [START_REF] Aoki | Heat kernels and super determinants of Laplace operators on super Riemann surfaces[END_REF][START_REF] Nelson | Lectures on supermanifolds and strings[END_REF] even and odd cross-ratios.

Then, using a natural super extension of the Cartan formula (1.2), we have provided a novel construction of the nontrivial 1-cocycles E, A, and S of K(N), associated with the even invariants, for N = 0, 1, 2. We have also succeeded to recover the known expressions [START_REF] Friedan | Notes on string theory and two-dimensional conformal field theory[END_REF][START_REF] Cohn | N = 2 super-Riemann surfaces[END_REF][START_REF] Radul | Superanalogue of Schwarz derivations and Bott cocycles[END_REF][START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF] of the Schwarzian derivatives for N = 0, 1, 2. The kernels of the above-mentioned 1-cocycles have been shown to coincide with the groups defining the invariants leading to them. So, for each geometry, the group action, the even invariant and the 1-cocycle are three equivalent geometric objects on the supercircle S 1|N (where N = 0, 1, 2), endowed with its standard contact structure.

In the cases N = 0, 1, a complete classification of the subgeometries of the contact geometry of S 1|N is given by that of the nontrivial cohomology spaces H 1 (K(N), F λ ), see Theorem 3.10 and Remark 3.11. A similar classification for N = 2 is still lacking.

Work in progress related to the determination of H 1 (K(2), F λ ) should provide a first insight into this classification, as well as that of the 1-cohomology spaces of K(2) with coefficients in other natural modules such as Ω 1 (S 1|2 ) and Q(S 1|2 ). In doing so, we will resort to the computation of H 1 (k(2), F λ ) carried out by Ben Fraj [4].

For N > 2, our method yields, indeed, the Euclidean and affine 1-cocycles of K(N). There is, however, no way to obtain, in our approach, Radul's Schwarzian integro-differential operator for N = 3, since there exists no projection from Q(S 1|3 ) to

reg intertwining the K(3) action. Moreover, our study provides a clear cut explanation of the fact that S(Φ) cannot be derived as a quadratic differential by the Cartan formula (see Remark 6.6) for N ≥ 3, and therefore help us understand why the Radul expression for N = 3 involves pseudo-differential operators.

We have, so far, studied the supercircle S 1|N ; but there are in fact two superextensions of the circle, namely S 1|N and S 1|N + , see [START_REF] Feigin | New Lie superalgebras of string theories[END_REF][START_REF] Radul | Superstring Schwartz derivative and the Bott cocycle[END_REF][START_REF] Grozman | Lie superalgebras of string theories[END_REF]. Let us discuss the case N = 1. The only difference between these two supermanifolds is that the functions on S 1|1 are, indeed, functions on R 1|1 invariant with respect to the transformation (x, ξ) → (x + 2π, ξ), whereas functions on the Möbius supercircle, S 1|1 + , can be viewed as functions on R 1|1 invariant under the transformation (x, ξ) → (x + 2π, -ξ). Here the coordinate x is regarded as an angular coordinate on S 1 . The canonical contact structure on R 1|1 define a contact structure on both S 1|1 and S 1|1 + [START_REF] Ovsienko | [END_REF]. All our cocycles, prior to projections, are left invariant by the map (x, ξ) → (x, -ξ), as well as the projections themselves; then E, A, S, and A, S still define cocycles on S 1|1 + . This can be generalized for N > 1 along the same line as before.

We expect that our approach will help us express the Bott-Thurston cocycles of K(1) and K(2) given by Radul in terms of the Berezin integral of the cup product of the 1-cocycles E and A introduced above (in a manner similar to the case of Diff + (S 1 ) spelled out in [START_REF] Guieu | L'algèbre et le Groupe de Virasoro[END_REF]). This should, hence, extend the classical formula worked out in [START_REF] Duval | The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet[END_REF] using a contact 1-form on Diff + (S 1 ) × R.

Another plausible development would be the superization of the hyperboloid of one sheet in sl(2, R) * whose conformal geometry is related to the projective geometry of null infinity [START_REF] Kostant | The Schwartzian derivative and the conformal geometry of the Lorentz hyperboloid in Quantum theories and geometry[END_REF][START_REF] Duval | The Virasoro group and Lorentzian surfaces: the hyperboloid of one sheet[END_REF].