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Abstract

We consider the standard contact structure on the supercircle, S1|1, and the
supergroups E(1|1), Aff(1|1) and SpO(2|1) of contactomorphisms, defining the
Euclidean, affine and projective geometry respectively. Using the new notion
of p|q-transitivity, we construct in synthetic fashion even and odd invariants
characterizing each geometry, and obtain an even and an odd super cross-ratios.

Starting from the even invariants, we derive, using a superized Cartan for-
mula, one-cocycles of the group of contactomorphisms, K(1), with values in
tensor densities Fλ(S1|1). The even cross-ratio yields a K(1) one-cocycle with
values in quadratic differentials, Q(S1|1), whose projection on F 3

2

(S1|1) corre-

sponds to the super Schwarzian derivative arising in superconformal field theory.
This leads to the classification of the cohomology spaces H1(K(1),Fλ(S1|1)).

The construction is extended to the case of S1|N . All previous invariants admit
a prolongation for N > 1, as well as the associated Euclidean and affine cocycles.
The super Schwarzian derivative is obtained from the even cross-ratio, for N = 2,
as a projection to F1(S

1|2) of a K(2) one-cocycle with values in Q(S1|2). The
obstruction to obtain, for N ≥ 3, a projective cocycle is pointed out.
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1 Introduction

The cross-ratio is the fundamental object of projective geometry; it is a projective

invariant of the circle S1 (or, rather, of RP1). The main objective of this article is to

propose and justify from a group theoretical analysis a super-analogue of the cross-ratio

in the case of the supercircle S1|N , and to deduce then, from the Cartan formula (1.2),

the associated Schwarzian derivative for N = 1, 2.

It is well-known that the circle, S1, admits three different geometries, namely the

Euclidean, affine and projective geometries. They are defined by the groups (R,+),

Aff(1,R) and PGL(2,R), or equivalently by their characteristic invariants, the distance,

the distance ratio, and the cross-ratio. From these invariants we can obtain, using the

Cartan formula, three 1-cocycles of Diff+(S1) with coefficients in some tensorial density

modules Fλ(S
1) with λ ∈ R. They are the generators of the three nontrivial cohomology

spaces H1(Diff+(S1),Fλ), with λ = 0, 1, 2; see [11].

The purpose of this article is to extend these results to the supercircle, S1|N , en-

dowed with its standard contact structure. To that end, we use the embedding of the

quotient, PC(2|N) = SpO(2|N)/{±Id}, of the orthosymplectic supergroup SpO(2|N),

into the group, K(N), of contactomorphisms of S1|N . The supergroup PC(2|N) is the

projective conformal supergroup introduced by Manin in [20], extending PSL(2,R).

The two main objects of super projective geometry, namely the cross-ratio and the

Schwarzian derivative, have, indeed, already been introduced in the general context

of superstring theories, though in a somewhat independent fashion. This was mainly

done in the framework of super Riemann surfaces, or in terms of the so-called SUSY

structures. On the one hand, the even and odd cross-ratios, for N = 1, have been

originally put forward by Aoki [2], and Nelson [21], respectively; these two references

have opened the way to subsequent work of, e.g., Giddings [13], and Uehara and Ya-

sui [29]. On the other hand, the super Schwarzian derivative has been introduced,

in the framework of superconformal field theory, by Friedan [10], for N = 1, and by

Cohn [5], for N = 2.

Quite independently, and from a more mathematical point of view, Manin [20]
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introduced the even and odd cross-ratios, for N = 1, 2, by resorting to linear su-

persymplectic algebra. Also did Radul [24, 25] discover the formulæ for the super

Schwarzian K(N) 1-cocycles, for N = 1, 2, 3, using the transformation laws of the

super Sturm-Liouville operators on S1|N .

Our first objective is to construct, in a systematic manner, invariants characterizing

each supergroup E+(1|N) ⊂ Aff+(1|N) ⊂ PC(2|N) acting on the supercircle S1|N . To

this end, we introduce the new notion of p|q-transitivity, well-adapted to supergroups,

and state a general theorem, providing a way to build up characteristic invariant of

a simply p|q-transitive group action. Applying this theorem to the three preceding

supergroups, we obtain Euclidean, affine, and projective invariants, respectively Ie, Ia

and Ip, with their even and an odd part. In the case N = 1, the two components

of Ip are, unsurprisingly, the even and odd above-mentioned super cross-ratios. Let

us emphasize that, for arbitrary N , the even cross-ratio turns out to be given by the

superfunction

[t1, t2, t3, t4] =
[t1, t3][t2, t4]

[t2, t3][t1, t4]
(1.1)

of a quadruple of “points” (t1, t2, t3, t4) of S1|N , with even coordinates xi, and odd ones

(ξ1
i , . . . , ξ

N
i ), for i = 1, . . . , 4; note that in (1.1) the two-point superfunction [ti, tj ] =

xj − xi − ξj · ξi is the Euclidean even invariant. The supergroups preserving Ie, Ia and

Ip are respectively E+(1|N), Aff+(1|N) and PC(2|N), as expected.

Our second objective, is to link the three even parts of the previously found in-

variants to 1-cocycles of K(N), by means of a natural superized version of the Cartan

formula. It culminates in the projective case, where we get the super Schwarzian

derivative (3.11) from the even cross-ratio. Let us go into some more details. Given a

flow, φε = Id + εX + O(ε2), we posit ti+1 = φiε(t1), for i = 0, . . . , 3. We contend that

the Cartan formula [4, 23] can be consistently superized for N = 1, and N = 2, using

the cross-ratio (1.1), namely by

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 = 〈εX ⊗ εX,S(Φ)〉 +O(ε3), (1.2)

hence, providing us with a definition of the Schwarzian derivative, S(Φ), of a contacto-

morphism Φ. In doing so, we naturally obtain a 1-cocycle of K(N), for N = 1, 2
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respectively, with values in the module, Q(S1|N ), of quadratic differentials. Their pro-

jections onto the modules F 3

2

(S1|1) and F1(S
1|2), for K(1) and K(2) respectively, are

indeed the super Schwarzian derivatives [10, 5, 25]. Quite remarkably, our formula

allows us to recover the classical Schwarzian derivative on the circle, S1, which would

not be the case, had we started with Friedan’s, Cohn’s, and Radul’s formulæ. Much in

the same way, we define the Euclidean and affine 1-cocycles of K(N) for any N . Taking

advantage of the results of Agrebaoui et al. [1] on the cohomology of the Lie superal-

gebra of contact vector field on S1|1, we can claim that our three 1-cocycles on K(1)

are, indeed, the generators of the three non-trivial cohomology spaces H1(K(1),Fλ),

where λ = 0, 1
2
, 3

2
.

The paper is organized as follows.

In Section 2, we recall the main definitions and facts related to the geometry

of the supercircle S1|1, in particular its canonical contact structure and the action of

the (special) orthosymplectic group SpO+(2|1), as a subgroup of the group, K(1), of

contactomorphisms of S1|1.

In Section 3, we review the main results of this article, namely the form of the

invariants, and of the associated 1-cocycles of K(1), obtained for each of the three

above-mentioned geometries. This section also gives the classification of the cohomo-

logy spaces H1(K(1),Fλ), for λ ∈ C.

Sections 4 and 5 provide the proofs of the main results announced in Section 3.

We first define the notion of p|q-transitivity and state the general Theorem 4.3, lead-

ing to the construction of the Euclidean, affine, and projective invariants, from the

action of the corresponding subgroups of K(1). Those invariants are then shown to

yield, via a Taylor expansion, the sought 1-cocycles; in particular the Cartan formula

readily leads to a new expression for the Schwarzian derivative, S(Φ), of a contacto-

morphism, Φ, with values in the module of quadratic differentials, Q(S1|1). The link

with Friedan’s and Radul’s Schwarzian derivative is elucidated. The kernels of the

three above 1-cocycles are shown to be, indeed, isomorphic to E(1|1), Aff(1|1), and

SpO+(2|1) respectively.

In Section 6, we present a detailed treatment of the general case, N > 1, along
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the same lines as before. As mentioned in Section 3, there is hardly no change in the

construction and the resulting expressions of the invariants. The Euclidean and affine

1-cocycles of K(N) are explicitly derived, as well as the Schwarzian derivative obtained

as a 1-cocycle ofK(2) with values in the module Q(S1|2) of quadratic differentials. Upon

projection of Q(S1|2) onto the K(2)-module F1(S
1|2) of 1-densities, we obtain Cohn’s

and Radul’s formula for the Schwarzian derivative. Specific difficulties encountered in

deriving the projective 1-cocycles forN > 2 are pointed out, together with those arising

in the determination of the kernels of the Euclidean and affine 1-cocycles. At last, the

kernel of the Schwarzian 1-cocycle of K(2) is shown to be isomorphic to PC(2|2).

Section 7 gives us the opportunity to sum up the content of this article, and to

draw several conclusions. It opens perspectives for future work related to the link

between discrete projective invariants of the supercircle, and the cohomology of the

group of its contactomorphisms.

Acknowledgements

It is a pleasure to acknowledge enlightening discussions with V. Fock and C. Roger.

Special thanks are due to V. Ovsienko for his constant interest in this work and a

number of suggestions that have greatly improved this paper.

2 The supercircle S1|1 and its contactomorphisms:

A compendium

We briefly define in this section the geometrical objects on S1|1 that will be needed for

our purpose. This includes the basics of super differential geometry [19, 6], the standard

contact structure on the supercircle [25], and the orthosymplectic group SpO(2|1),

see [20].

2.1 The supercircle S1|1

The supercircle S1|1 can be defined as the circle, S1, endowed with the sheaf of the

supercommutative associative algebra of superfunctions C∞(S1|1) = C∞(S1)[ξ]. Thus,
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S1|1 admits local coordinates t = (x, ξ), where x is a local coordinate on S1, and ξ is an

odd (Grassmann) coordinate, i.e., such that ξ2 = 0 and xξ = ξx. Then, a superfunction

is of the form

f(x, ξ) = f0(x) + ξf1(x) (2.1)

with f0, f1 ∈ C∞(S1). There exists a Z2-grading on superfunctions, f0 being the even

part and ξf1 the odd part of f . The parity is denoted by p, with the convention

p(f0) = 0 and p(ξf1) = 1. We define the projection

π : C∞(S1|1) → C∞(S1) (2.2)

by quotienting by the ideal of nilpotent elements; this gives an embedding of the circle

into the supercircle.

Denote by Diff(S1|1) the group of diffeomorphisms of S1|1, i.e., the group of auto-

morphisms of C∞(S1|1). Let Φ ∈ Diff(S1|1), then

Φ(x, ξ) = (ϕ(x, ξ), ψ(x, ξ)) (2.3)

where ϕ is an even superfunction and ψ an odd one, so Φ preserves parity and

(ϕ(x, ξ), ψ(x, ξ)) become new coordinates on S1|1. For any morphism, i.e., algebra

morphism preserving parity, the following diagram is commutative

C∞(S1|1)
π

// C∞(S1)

C∞(S1|1)

Φ

OO

π
// C∞(S1)

Π(Φ)

OO

(2.4)

So, every morphism of C∞(S1|1) induces a morphism of C∞(S1), and we have a canonical

morphism Π : Diff(S1|1) → Diff(S1).

A super vector field, X, on S1|1 is a superderivation of C∞(S1|1), i.e., a linear opera-

tor satisfying super Leibniz rule, X(fg) = X(f)g+(−1)p(f)p(X)fX(g), for homogeneous

elements. As in ordinary differential geometry, X can be locally written in terms of

partial derivatives as

X = f(x, ξ)∂x + g(x, ξ)∂ξ (2.5)
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where f, g ∈ C∞(S1|1), with p(∂x) = 0 and p(∂ξ) = 1. The space, Vect(S1|1), of vector

fields on S1|1 is thus a left-module over C∞(S1|1). It has the structure of a super Lie

algebra, Vect(S1|1) = Vect(S1|1)0⊕Vect(S1|1)1, whose superbracket is denoted by [ · , · ],

and [X, Y ] = XY − (−1)p(X)p(Y )Y X, for homogeneous elements.

Since the group Diff(S1|1) of diffeomorphisms preserves parity, we can define the

flow of X ∈ Vect(S1|1), namely ϕε = Id + εX + O(ε2), only if p(εX) = 0. For odd

vector fields, X, the parameter ε must therefore be odd, see [6].

We can now define the C∞(S1|1) right-module Ω1(S1|1) of 1-forms on S1|1, as the

dual of the C∞(S1|1) left-module Vect(S1|1). The 1-forms dx and dξ will constitute the

dual basis of ∂x and ∂ξ, that is 〈∂x, dx〉 = 〈∂ξ, dξ〉 = 1 and 〈∂ξ, dx〉 = 〈∂x, dξ〉 = 0. Then

p is extended naturally to Ω1(S1|1) by p(dx) = 0 and p(dξ) = 1. Using the exterior

product we construct Ω∗(S1|1), the space of all differential forms on S1|1, graded by Z

with | · | the cohomological degree. Parity being also defined on this space, we have

two choices for the sign rule, viz.,

α ∧ β = (−1)(p(α)+|α|) (p(β)+|β|)β ∧ α (2.6)

α ∧ β = (−1)|α||β|+p(α)p(β)β ∧ α (2.7)

where α, β are homogeneous elements of Ω∗(S1|1). The second convention corresponds

to a bigrading Z × Z2, and, following [6, 17], we will choose it from now on.

2.2 The contact structure on S1|1 and its automorphisms

The standard contact structure on S1|1 is given by the conformal class of the 1-form

α = dx+ ξdξ (2.8)

which satisfies α∧ dα 6= 0. This contact structure is equivalently defined by the kernel

of α, spanned by the odd vector field

D = ∂ξ + ξ∂x, (2.9)

whose square D2 = 1
2
[D,D] = ∂x is the Reeb vector field of the structure.
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Then D and ∂x set up a basis of the C∞(S1|1) left-module Vect(S1|1), while α and

β = dξ constitute the dual basis, with dα = β ∧ β. Thus for any f ∈ C∞(S1|1) we have

df = αf ′ + βDf. (2.10)

where f ′ = ∂xf . The contact structure being given by the direction of α, it is therefore

preserved by Φ ∈ Diff(S1|1) iff

Φ∗α = EΦα (2.11)

for some superfunction EΦ, which, following [25], we call the multiplier of Φ. We

denote by K(1) the subgroup of Diff(S1|1) preserving the contact structure, its elements

are called contactomorphisms. From (2.3) and (2.8) we find Φ∗α = dϕ + ψdψ =

α(ϕ′ + ψψ′) + β(Dϕ− ψDψ).

Proposition 2.1. Let Φ = (ϕ, ψ) be a diffeomorphism of S1|1; then Φ ∈ K(1) iff

Dϕ− ψDψ = 0. (2.12)

The multiplier of Φ is then given by EΦ = ϕ′ + ψψ′, i.e., by

EΦ =
Φ∗α

α
= (Dψ)2. (2.13)

Since α and β set up a basis of the C∞(S1|1)-module Ω1(C∞(S1|1)), we will also

need the expression of the action of K(1) on the odd 1-form β; it reads

Φ∗β = αψ′ + βDψ. (2.14)

We might, as well, define K(1) as the group of diffeomorphisms preserving the hor-

izontal distribution spanned by D, denoted by 〈D〉. In the complex setting, D is

interpreted as the covariant derivative of a super Riemann surface [10, 5], and K(1)

as the superconformal group; the distribution 〈D〉 is also often referred to as a SUSY

structure [20, 6]. See also [16] for a review.

Using (2.11), we find that the transformation law (2.14) entails

Φ∗D =
1

Dψ
D, (2.15)

which makes sense as Dψ 6= 0 for any diffeomorphism Φ.

9



Remark 2.2. If Φ = (ϕ, ψ) ∈ K(1), see (2.3), we put ϕ(x, ξ) = ϕ0(x) + ξϕ1(x), and

ψ(x, ξ) = ψ1(x) + ξψ0(x), with an index 0 for even functions and 1 for odd functions.

The constraint (2.12) then reads ϕ′
0 = ψ2

0 − ψ1ψ
′
1 and ϕ1 = ψ0ψ1. Using the natural

projection Π : K(1) → Diff(S1), defined in (2.4), we note that Φ gives rise to a

diffeomorphism of S1, which is actually orientation-preserving since Π(Φ)′ = π(ϕ′
0) =

π(ψ0)
2 > 0.

From the constraint (2.12), we can obtain an interesting property of contactomor-

phisms: they are essentially determined by their even part.

Lemma 2.3. Let Φ = (ϕ, ψ) ∈ K(1) and Φ̃ = (ϕ̃, ψ̃) ∈ K(1), be two contacto-

morphisms such that their even part coincide, ϕ = ϕ̃. We then have ψ̃ = ±ψ.

This can be checked by a direct calculation.

2.2.1 The super Lie algebra, k(1), of contact vector fields

In view of the definition (2.11) of contactomorphisms, we will call X ∈ Vect(S1|1) a

contact vector field, X ∈ k(1), if

LXα = eX α (2.16)

for some superfunction eX . The Lie derivative is still given by the derivative of the

flow, so k(1) is the Lie algebra of K(1), and e is the derivative of E at the identity.

Let us now recall the following classic result [15, 12]: if X ∈ k(1), there exists a

unique superfunction f(x, ξ) = a(x) + 2ξb(x), called the contact Hamiltonian, such

that X = Xf , where

Xf = a(x)∂x +
1

2
a′(x)ξ∂ξ + b(x)(∂ξ − ξ∂x) (2.17)

so that the associated (infinitesimal) multiplier is given by

eXf
= f ′. (2.18)

10



2.2.2 Tensor densities, 1-forms and quadratic differentials of S1|1

Let us introduce now a 1-parameter family, Fλ(S
1|1) or Fλ for short, of K(1)-modules,

which define the λ-densities associated with the contact structure, λ ∈ C. As vector

spaces, these modules are isomorphic to C∞(S1|1), the K(1) anti-action (Φ 7→ Φλ) on

Fλ(S
1|1) being given by

Φλf = (EΦ)λ Φ∗f, (2.19)

where f ∈ C∞(S1|1). We may thus write a λ-density F ∈ Fλ, symbolically, as F = fαλ.

We will thus write (Φ → Φ∗) the K(1) anti-action on Fλ with this identification.

Remark 2.4. In view of (2.13) and (2.15), we will regard, in conformity with the

definition (2.19), the odd vector field D as a (−1
2
)-density.

There is an isomorphism of K(1)-modules: Vect(S1|1) ∼= F−1 ⊕ F− 1

2

, where F−1

corresponds to k(1) and F− 1

2

to the vector fields fD, with f ∈ C∞(S1|1) and D as

in (2.9). See [15, 12]. The space of 1-forms Ω1(S1|1) is generated, as C∞(S1|1)-module,

by α and β. Similarly the space Q(S1|1) of quadratic differentials is generated, as a

C∞(S1|1)-module by

α2 = α⊗ α and αβ =
1

2
(α⊗ β + β ⊗ α), (2.20)

where the tensor product is understood as the supersymmetric tensor product con-

structed via the commutativity isomorphism given by the Sign Rule [6]. This notation

will be used throughout this paper.

Proposition 2.5. The two K(1)-modules Ω1(S1|1) and Q(S1|1), admit the following

decomposition into K(1)-submodules, namely

Ω1(S1|1) ∼= F 1

2

⊕F1, (2.21)

Q(S1|1) ∼= F 3

2

⊕F2. (2.22)

The summands F1 (resp. F2) are naturally K(1)-submodules of Ω1(S1|1) (resp. Q(S1|1)).

The projections Ω1(S1|1) → F 1

2

(resp. Q(S1|1) → F 3

2

) are given by α
1

2 〈D, · 〉, and the

corresponding sections by α
1

2LD (resp. 2
3
α

1

2LD).
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Proof. We have α
1

2 〈D,αf+βg〉 = α
1

2 g and α
1

2 〈D,α2f+αβg〉 = 1
2
α

3

2 g. The transforma-

tion rules (2.13) for α and (2.14) for β then entail that the projections α
1

2 〈D, · 〉 actually

define morphisms of K(1)-modules, Φ∗(α
1

2 〈D,ω〉) = α
1

2 〈D,Φ∗ω〉 for all ω ∈ Ω1(S1|1),

and for all ω ∈ Q(S1|1).

Moreover, since LDα = 2β and LDβ = 0, we readily find α
1

2LD(α
1

2 g) = αDg+ βg

and α
1

2LD(α
3

2 g) = α2Dg + 3αβg. Using, once more, (2.13) and (2.14), we then obtain

that the inclusions α
1

2LD define, again, morphisms of K(1)-modules. To have the

identity µα
1

2 〈D,α
1

2LDF 〉 = F , we choose µ = 1 for F a 1
2
-density, and µ = 2

3
for F a

3
2
-density. The result follows.

2.3 The orthosymplectic group SpO(2|1)

To define the supergroup SpO(2|1) and its action on the supercircle we will introduce

the notion of functor of points, following [6]. Let A be a supermanifold, an A-point of

the supercircle is a morphism of supermanifolds A → S1|1; we will denote by S1|1(A)

the set of A-points of S1|1. The assignation A → (A-points) is the functor of points.

An A-point of S1|1 is given by the image of the generators (x, ξ) of C∞(S1|1) in OA, the

sheaf of functions defining A, see [6, 19]. By Yoneda’s lemma, giving f ∈ Diff(S1|1) is

equivalent to giving, functorially in A, a map fA on S1|1(A).

For A any commutative superalgebra, GLp,q(A) is the well-known group of even

invertible linear transformation of the free A-module of dimension p|q, see [19]. We

define then the supergroup GL(p|q) by its functor of points, GL(p|q)(A) = GLp,q(OA),

and this functor is representable by a supermanifold, GL(p|q). By Yoneda’s lemma the

action of GL(p|q) on Rp|q can be given by the action of GL(p|q)(A) on Rp|q(A).

If we restrict ourselves to the supermanifolds A whose underlying manifold is a

point, then OA is a Grassmann algebra, and we obtain the supermanifolds defined by

Rogers [26] or the A-manifolds of Tuynman [28].

From now on we will speak of points instead of A-points, and of the action of a

supergroup on points, instead of the action of A-points of a supergroup on A-points.

The contact structure on S1|1 (or rather on RP 1|1) defined by α, see (2.8), does

stem from the 1-form on R2|1 given by ̟ = 1
2
(pdq − qdp + θdθ), via the formula
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̟ = 1
2
p2α, with p 6= 0, expressed in affine coordinates x = q/p and ξ = θ/p. We define

the orthosymplectic group [15, 20], denoted by SpO(2|1), via its functor of points;

SpO(2|1)(A) is the group of all linear transformations of R2|1(A), viz.,

h =




a b γ
c d δ
α β e


 (2.23)

preserving the symplectic form d̟, i.e., such that [20]:

ad− bc− αβ = 1, (2.24)

e2 + 2γδ = 1, (2.25)

αe− aδ + cγ = 0, (2.26)

βe− bδ + dγ = 0. (2.27)

We easily find that SpO(2|1) also preserves ̟. Since ̟ = 1
2
p2α, the orthosymplectic

group acts by contactomorphisms, SpO(2|1) → K(1), via the following projective

action on S1|1, namely (in terms of A-points)

ĥ(x, ξ) =

(
ax+ b+ γξ

cx+ d+ δξ
,
αx+ β + eξ

cx+ d+ δξ

)
(2.28)

where h ∈ SpO(2|1). The Berezinian of h is Ber(h) = e + αβe−1, see [20]. We

introduce the special orthosymplectic group SpO+(2|1) as the subgroup of SpO(2|1) of

Berezinian 1, or as the quotient of SpO(2|1) by the kernel of the projective action (2.28),

or as the connected component of the identity of SpO(2|1). So, SpO+(2|1) is a super-

extension of Sp(2,R) = SL(2,R). We have the following (local) group-factorization

SpO+(2|1) ∋ h =




1 0 0

c̃ 1 δ̃

δ̃ 0 1






ã 0 0
0 ã−1 0
0 0 1






ǫ b̃ −β̃
0 ǫ 0

0 ǫβ̃ 1


 (2.29)

where (ã, b̃, c̃, β̃, δ̃) ∈ R3|2, with ǫ2 = 1, and ã > 0. Thus, as read off in (2.29),

every homography is the composition of an inversion, a dilatation and a translation.

We will denote by E(1|1) the subgroup of translations and by Aff(1|1) the subgroup

generated by translations and dilatations. The connected component of the identity of

these subgroups of SpO+(2|1), characterized by ǫ > 0, will be denoted by E+(1|1) and

Aff+(1|1), and referred to as special supergroups.
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3 Main results

We expound in this section the two main results of this paper regarding the case of S1|1;

the first one gives the invariants of the action on S1|1 of the special supergroups E+(1|1),

Aff+(1|1) and SpO+(2|1), and the second one provides, by means of a super version

of the Cartan formula, the associated K(1)-cocycles. These results will be extended

(whenever possible) to the case of S1|N in Section 6.

3.1 Super Euclidean, affine and projective invariants

Let t1, t2, t3, t4 be four generic points of S1|1, ti = (xi, ξi).

Theorem 3.1. The following three couples, Ie, Ia and Ip, of superfunctions are the

invariants of the action of Euclidean, affine and projective special supergroups on S1|1:

• Euclidean invariant: Ie(t1, t2) = ([t1, t2], {t1, t2}) with

[t1, t2] = x2 − x1 − ξ2ξ1, (3.1)

{t1, t2} = ξ2 − ξ1. (3.2)

• Affine invariant, Ia(t1, t2, t3) = ([t1, t2, t3], {t1, t2, t3}), where, if x1 < x2,

[t1, t2, t3] =
[t1, t3]

[t1, t2]
, (3.3)

{t1, t2, t3} = [t1, t2, t3]
1

2

{t1, t3}

[t1, t3]
1

2

. (3.4)

• Projective invariant, Ip(t1, t2, t3, t4) = ([t1, t2, t3, t4],±{t1, t2, t3, t4}), where, when

ord(t1, t2, t3) = 1, see (4.9),

[t1, t2, t3, t4] =
[t1, t3][t2, t4]

[t2, t3][t1, t4]
, (3.5)

{t1, t2, t3, t4} = [t1, t2, t3, t4]
1

2

{t2, t4}[t1, t2] − {t1, t2}[t2, t4]

([t1, t2][t2, t4][t1, t4])
1

2

. (3.6)
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If a bijective transformation of S1|1 preserves one of these three couples of super-

functions, it can be identified with the action of an element of the corresponding super-

group, E+(1|1), Aff+(1|1) or SpO+(2|1). Moreover, if a contactomorphism Φ ∈ K(1)

preserves the even part of one of the invariants Ie, Ia, or Ip, respectively, then Φ = ĥ

for some h in E(1|1), Aff(1|1), or SpO+(2|1), respectively.

This theorem summarizes Theorems 4.8, 4.14, and 4.19 given below, as well as their

corollaries. Their proofs rely on the p|q-transitivity of the action of these supergroups

on S1|1; all details are given in Section 4.

Remark 3.2. The super cross-ratio, i.e., the even part (3.5) of the projective invari-

ant, Ip, has already been introduced by Nelson [21], and used by Giddings [13] while

studying the punctured super Riemann sphere, and also by Uehara and Yasui [29]

to define coordinates on the super Teichmüller space. It has also been put forward

by Manin in [20] from a somewhat different standpoint that we can summarize as

follows in our formalism. Using the even symplectic form d̟ = dp ∧ dq + 1
2
dθ ∧ dθ

on R2|1 one defines a SpO+(2|1)-invariant pairing 〈Zi, Zj〉 = d̟(Zi, Zj) = pipj[tj , ti], for

Zi = (pi qi θi) ∈ R2|1, where ti = (qi/pi, θi/pi). Positing [Z1, Z2, Z3, Z4] = 〈Z3,Z1〉〈Z4,Z2〉
〈Z3,Z2〉〈Z4,Z1〉

,

one obtains a four-point function, not only SpO+(2|1)-invariant, but also invariant un-

der rescalings of each variable. We then have [Z1, Z2, Z3, Z4] = [t1, t2, t3, t4], see (3.5).

Remark 3.3. The odd part (3.6) of the projective invariant, Ip, can clearly be reduced

to a three-point (almost) invariant function, corresponding to Jp given below in (4.15).

The latter was already introduced by D’Hoker and Phong [7] and used in [13, 29] on the

same footing as the super cross-ratio. We have written Jp as function of the Euclidean

invariants, but it can be recast into the form

Jp(t1, t2, t3) = ±
ξ1[t2, t3] + ξ2[t3, t1] + ξ3[t1, t2] − ξ1ξ2ξ3

([t1, t3][t3, t2][t2, t1])
1

2

, (3.7)

which precisely corresponds to the expression originally given in [2, 7], where the cyclic

symmetry is obvious. This invariant, Jp, has also been introduced by Manin in [20],

using a construction akin to that developed by us in Section 4.
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Remark 3.4. If we apply the projection π : C∞(S1|1) → C∞(S1), see (2.2), to each

invariant Ie, Ia and Ip, we obtain the usual Euclidean, affine and projective invariant,

namely the distance, the distance-ratio and the cross-ratio.

3.2 The associated 1-cocycles of K(1)

Let Φ ∈ Diff(S1) be a diffeomorphism of the circle, and φε = Id + εX + O(ε2) be the

flow of a vector field X on the circle. We set ti = φ(i−1)ε(t1) for i = 1, 2, 3, 4. Then,

the Schwarzian derivative can be defined in terms of the cross-ratio, as the quadratic

differential S(Φ) ∈ Q(S1) appearing in the Cartan formula, see [4, 23]:

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 = 〈εX ⊗ εX,S(Φ)〉 +O(ε3). (3.8)

For the group of contactomorphisms of S1|1, we will proceed by analogy with this

method. Starting from the super cross-ratio (3.5), we will deduce the super Schwarzian

derivative, S(Φ) ∈ Q(S1|1), as a K(1)-cocycle with kernel SpO+(2|1). Euclidean and

affine K(1)-cocycles will, likewise, be obtained from the even Euclidean and affine

invariants. We recall that Ω1(S1|1) is the space of 1-forms, Q(S1|1) the space of quadratic

differentials of the supercircle, and EΦ = Φ∗α
α

= (Dψ)2, see Subsection 2.2.

Theorem 3.5. From the Euclidean (3.1), affine (3.3), and projective (3.5) even in-

variants, we deduce via the Cartan formula (3.8) three 1-cocycles of K(1), with kernel

E(1|1), Aff(1|1) and SpO+(2|1) respectively. They retain the following form:

• the Euclidean cocycle E : K(1) → F0(S
1|1):

E(Φ) = logEΦ = log(Dψ)2, (3.9)

• the affine cocycle A : K(1) → Ω1(S1|1):

A(Φ) = dE(Φ), (3.10)

• the projective Schwarzian cocycle S : K(1) → Q(S1|1):

S(Φ) =
2

3
α

1

2LD S(Φ), (3.11)
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where LD stands for the Lie derivative with respect to the vector field D, and S(Φ) is

given by Equation (3.13) below. Moreover, using the projections on tensor densities

defined in Proposition 2.5, we obtain two new affine and projective 1-cocycles, namely

• the projection of the affine cocycle, A : K(1) → F 1

2

(S1|1):

A(Φ) = α
1

2 〈D,A(Φ)〉 =
DEΦ

EΦ
α

1

2 , (3.12)

• the projection of the Schwarzian cocycle, S : K(1) → F3/2(S
1|1):

S(Φ) = α
1

2 〈D,S(Φ)〉 =
1

4

(
D3EΦ

EΦ
−

3

2

DEΦD
2EΦ

E2
Φ

)
α3/2. (3.13)

We will give the proof of this theorem in Section 5.

Remark 3.6. As in the case of the Schwarzian cocycle (3.11), using Proposition 2.5,

we can express the affine cocycle A in terms of its projection A, namely

A(Φ) = α
1

2LD A(Φ). (3.14)

Remark 3.7. 1) The projection π : C∞(S1|1) → C∞(S1), see (2.2), can be extended

naturally to differential forms and quadratic differentials, sending α to dx and β to 0.

So, we can project the K(1)-cocycle S(Φ) given by (3.11) on Q(S1), and as the re-

sult depends only on f = Π(Φ), see (2.4), we easily recover the classical Schwarzian

derivative S0 : Diff+(S1) 7→ Q(S1), namely

S0(f) =

(
f ′′′

f ′
−

3

2

(
f ′′

f ′

)2
)
dx2, (3.15)

using the expression (5.8) where π(EΦ) = f ′. See, e.g., [4, 8, 23]. The projections

of the two other K(1)-cocycles, E and A, lead to the Euclidean and affine cocycle of

Diff+(S1), namely E0(f) = f ′ and A0(f) = f ′′

f ′
dx.

2) The K(1)-cocycle, S, given in (3.13), is the super Schwarzian derivative, in-

dependently introduced by Friedan [10] and Radul [25]. Recall that EΦ = (Dψ)2,

see (2.13), so we can also write

S(Φ) =

(
D4ψ

Dψ
− 2

D2ψD3ψ

(Dψ)2

)
α3/2. (3.16)
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This is the form of the super Schwarzian derivative used in superconformal field the-

ories [10], see also [20]. Gieres and Theisen use it in [14], as well as the affine cocycle

A, to construct superconformal covariant operators.

It is well-known that the classical Schwarzian derivative (3.15) can be expressed

in terms of the classical affine cocycle A0(f) = (f ′′/f ′)dx on S1, viz.,

S0(f) = dxL∂x
A0(f) −

1

2
A0(f)2, (3.17)

where f ∈ Diff+(S1). A formula relating, in the super case, the expression of S and A

can be found in [14]. The next proposition gives another formula for the 1-cocycle S

in a form akin to (3.17).

Proposition 3.8. Let A denote the affine K(1)-cocycle (3.10); the following holds true

for the super Schwarzian derivative (3.13):

S(Φ) =
1

4
α

1

2

〈
D, (α

1

2LD)2A(Φ) −
1

2
A(Φ)2

〉
. (3.18)

3.3 The determination of H1(K(1),Fλ)

The following corollary of Theorem 3.5 is straightforward.

Corollary 3.9. The associated Lie algebra cocycles with the K(1)-cocycles E , A, and S,

read ci : k(1) → Fi/2(S
1|1), with

ci(Xf ) = (Di+2f) αi/2, (3.19)

where i = 0, 1, 3.

We recover, in this way, three of the four non trivial k(1)-cocycles with coefficients

in Fλ (see [1] for a classification). The fourth one, c̃0 : k(1) → F0(S
1|1), defined by

c̃0(Xf ) = f − 1
2
ξ∂ξf , does not integrate as a group 1-cocycle, just like the Vect(S1)-

cocycle Xf 7→ f . Indeed, suppose that c̃0 does integrate as a K(1)-cocycle, C̃0. Then

∂x ∈ k(1) induces, using an angular coordinate x, the flow Φt(x, ξ) = (x + t, ξ), and

as c̃0(∂x) = 1, we have C̃0(Φt) = 1
2
t, see e.g. [27]. But this is inconsistent with
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the periodicity condition Φt = Φt+2π. As the derivation of Lie group cocycle is an

injection from the Lie group cocycle into the Lie algebra cocycle, we obtain the complete

classification of the Fλ-valued K(1)-cocycles.

Corollary 3.10. The cohomology spaces H1(K(1),Fλ) are given by

H1(K(1),Fλ) =

{
R if λ = 0, 1

2
, 3

2

{0} otherwise.
(3.20)

These three cohomology spaces are respectively generated by E , A and S.

Moreover, the two cohomology spaces

H1(K(1),Ω1(S1|1)) = R, (3.21)

H1(K(1),Q(S1|1)) = R, (3.22)

are respectively generated by A and S.

4 Super Euclidean, affine and projective invariants

of S1|1

In this section we construct the Euclidean, affine and projective invariants given by

Theorem 3.1. We introduce an extension of the notion of transitivity, allowing us to

formulate a theorem giving the sought invariants when applied to each supergroup:

E+(1|1), Aff+(1|1), and SpO+(2|1).

Let us first introduce an equivalence relation, on the n-tuples of a product set

E = E0×E1. We denote by p0 and p1 the two canonical projections. Let s = (s1, . . . , sn)

and t = (t1, . . . , tn) be two n-tuples of E, we will say that s and t are p|q equivalent,

s
p|q
= t, where n = max(p, q), iff

∀i ∈ J1, pK, p0(si) = p0(ti) and ∀i ∈ J1, qK, p1(si) = p1(ti). (4.1)

We will use the notation [t] for the class of t for this equivalence relation.
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Definition 4.1. Let G be a group acting on a set E = E0×E1 by (g 7→ ĝ). The action

of G on E is p|q-transitive, n = max(p, q), if for any n-tuples s and t of distinct points,

there exists an element h ∈ G such that ĥ(t)
p|q
= s. If h is unique the action is said to

be simply p|q-transitive.

In particular a p|q-transitive action is min(p, q)-transitive. To prove n-transitivity,

we usually prove that any n-tuple t can be sent to a given n-tuple m. To prove p|q-

transitivity we need an extra condition, this is specified by the next proposition.

Proposition 4.2. Let G act on a set E = E0 × E1 and choose m, a n-tuple of E.

Suppose that for every n-tuple s, there exists h ∈ G such that ĥ(s)
p|q
= m, where n =

max(p, q), and G.[s] ⊇ [m]. Then the action of G on E is p|q-transitive.

Proof. Let t and s be two n-tuples of E. We look for those k ∈ G such that k̂(t)
p|q
= s.

By assumption, there exist h, g ∈ G such that ĥ(t)
p|q
= m and ĝ(s)

p|q
= m. Then, as

ĥ(t) ∈ [m] and G.[s] ⊇ [m], there exist s′
p|q
= s and g′ ∈ G such that ĝ′(s′) = ĥ(t).

Finally ĝ′
−1

(ĥ(t))
p|q
= s.

Theorem 4.3. Let g 7→ ĝ denote the simply p|q-transitive action of a group G on a

set E = E0 × E1, and let m be a n-tuple, n = max(p, q), of distinct points of E. We

can define the following (n+ 1)-point function of E with values in E, associated to the

class of m, namely

I[m](t1, . . . , tn+1) = ĥ(tn+1) (4.2)

where ĥ(t)
p|q
= m, and t = (t1, . . . , tn) is a n-tuple of distinct points of E. This function

enjoys the following properties:

1. I[m] is G-invariant.

2. If Φ ∈ E! preserves I[m], then Φ = ĝ for some g ∈ G.

3. Let l be a n-tuple of E and g ∈ G, then ĝ[m] = [l] iff I[l] = ĝ ◦ I[m].

The first two properties assert that I[m] is a characteristic invariant of the action of G.

Moreover, if n = p > q, we can define n-point invariant functions with values in E1

J[m],j(t) = p1(ĥ(tj)) (4.3)
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for j ∈ Jq + 1, pK. Any (n + 1)-point G-invariant function I can be factorized through

the invariants I[m] and J[m],j, i.e., I = f(J[m],q+1, . . . , J[m],p, I[m]) for some function f ,

depending on the n-tuple m. Similarly, any n-point G-invariant function can be fac-

torized through the invariants J[m],j.

Proof. We first prove that I[m](ĝ(t1), . . . , ĝ(tn+1)) = I[m](t1, . . . , tn+1) for all g ∈ G,

i.e., I[m] is G-invariant. Since ĥ(t)
p|q
= m, we have ĥ ◦ ĝ−1(ĝ(t))

p|q
= m. It follows that

I[m](ĝ(t1), . . . , ĝ(tn+1)) = ĥ ◦ ĝ−1(ĝ(tn+1)) = ĥ(tn+1), hence the result. The proof of the

G-invariance of J[m],j is identical.

Secondly, we show that I[m] is a characteristic G-invariant. Let Φ be a bijection of

E, such that Φ∗I[m] = I[m], we have to prove that Φ comes from an element of G. There

exist h, g ∈ G, depending on t such that, ĥ(t)
p|q
= m and ĝ(Φ(t))

p|q
= m. Since Φ∗I = I,

we have ĝ(Φ(tn+1)) = ĥ(tn+1) for all tn+1 ∈ E, and thus Φ = k̂ , with k = g−1h.

Thirdly, suppose that there exists g ∈ G such that ĝ[m] = [l]. Let t be a n-

tuple, we have ĥ(t)
p|q
= m for a unique h ∈ G, then ĝ(ĥ(t))

p|q
= l, and it follows that

I[l](t1, . . . , tn+1) = ĝ ◦ ĥ(tn+1). Conversely suppose that I[l] = ĝ ◦ I[m] for some g ∈ G

and let m′ ∈ [m]. For every n-tuple t, there exists h ∈ G such that ĥ(t)
p|q
= m and

then I[l](t, tn+1) = ĝ ◦ ĥ(tn+1), for all tn+1 ∈ E. As I[l](t, tn+1) = k̂(tn+1) for the unique

k ∈ G such that k̂(t)
p|q
= l, we deduce that ĝ(ĥ(t))

p|q
= l. In particular for the n-tuple

m′, h is the identity, hence ĝ(m′)
p|q
= l. It follows that ĝ[m] ⊆ [l], and as we also have

ĝ−1 ◦ I[l] = I[m], then ĝ−1[l] ⊆ [m], leading to the result ĝ[m] = [l].

Fourthly, let I be an arbitrary (n+ 1)-point invariant function. For any n-tuple t

there exists some h ∈ G such that I(t1, . . . , tn+1) = I(m′
1, . . . , m

′
n, ĥ(tn+1)) with ĥ(t) =

m′ p|q
= m. Now I[m](t1, . . . , tn+1) = ĥ(tn+1) and since m′ depends only on m and on

J[m],j, the result follows.

Remark 4.4. This theorem generalizes the more common situation of a simply n-

transitive action of a group, choosing p = q. In this case,
p|q
= reduces to the mere

equality, =, and every (n+1)-point invariant can be factorized through the invariant Im

given by Theorem 4.3. In particular, the invariant Il, for l another n-tuple, can be

factorized Il = ĝ ◦ Im, with g ∈ G such that ĝ(m) = l.
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Remark 4.5. In the definition of p|q-transitivity and in this theorem, we consider

n-tuples of distinct points. The notion of distinct points of E = E0×E1 is well-known,

but we will strengthen it by assuming distinct even coordinates when dealing with

supergroups acting on the supercircle.

As direct and classical application of our result, the action of PGL(2,R) by ho-

mographies on the circle S1, viewed as RP 1, is simply 3-transitive, and choosing

m = (∞, 0, 1) as the distinguished triple of points, we obtain the usual cross-ratio:

I(x1, x2, x3, x4) = (x1−x3)(x2−x4)
(x2−x3)(x1−x4)

.

4.1 Euclidean invariants

We introduce the subgroups E(1|1) and E+(1|1) of SpO+(2|1) which act on S1|1 by

translations in an affine coordinate system.

Definition 4.6. Let us define E(1|1) as the subgroup of GL(2|1) whose elements are

of the form

g =




ǫ ǫb −ǫβ
0 ǫ 0
0 β 1


 (4.4)

where (b, β) ∈ R1|1, and ǫ2 = 1. It acts on R1|1 ⊂ S1|1 by translations, according to

ĝ(x, ξ) = (x+ b− βξ, ǫβ + ǫξ). We will denote by E+(1|1) the connected component of

the identity characterized by ǫ = 1.

Remark 4.7. The Euclidean groups can be defined in an alternative manner, in terms

of the transformation laws of the 1-forms α and β, and then directly as subgroups of

K(1). The group E(1|1) is the subgroup of those Φ ∈ Diff(S1|1) such that Φ∗α = α

and Φ∗β = ǫβ, with ǫ = ±1; restricting to ǫ = 1 we obtain the subgroup E+(1|1).

Proposition 4.8. The action of E+(1|1) on R1|1 ⊂ S1|1 is simply 1|1-transitive; choos-

ing e = (0, 0), it defines a characteristic Euclidean invariant consisting of the following

two-point couple of superfunctions

Ie(t1, t2) = ([t1, t2] , {t1, t2}) = (x2 − x1 − ξ2ξ1 , ξ2 − ξ1) (4.5)

where t1 = (x1, ξ1) and t2 = (x2, ξ2).
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Proof. Following Theorem 4.3, we have to show that for any point t1 of S1|1, there

exists a unique h ∈ E+(1|1) such that ĥ(t1) = (0, 0), and then to compute ĥ(t2) =

([t1, t2] , {t1, t2}) for another point t2.

The action of any h ∈ E+(1|1) is given by ĥ(x, ξ) = (x + b − βξ, β + ξ). Hence

ĥ(t1) = (0, 0) is equivalent to x1+b−βξ1 = 0 and β+ξ1 = 0, i.e., β = −ξ1 and b = −x1.

So, h is uniquely determined, and ĥ(t2) = (x2 − x1 − ξ2ξ1, ξ2 − ξ1), as announced.

The choice of the point e = (0, 0) is immaterial, see Remark 4.4.

Remark 4.9. The even Euclidean invariant [t1, t2] is the discretized version of the

contact form α = dx+ξdξ, while the odd Euclidean invariant {t1, t2} is that of β = dξ.

This will be specified in Lemma 5.1.

Corollary 4.10. The even part of Ie is invariant under E(1|1), and characterizes this

subgroup of K(1), namely if Φ ∈ K(1) satisfies Φ∗[t1, t2] = [t1, t2], then Φ = ĥ for some

h ∈ E(1|1).

Proof. Let ι ∈ K(1) be defined by ι : (x, ξ) 7→ (x,−ξ). Identifying E(1|1) with its

image in K(1) we have E(1|1) = E+(1|1) ⊔ ι(E+(1|1)). Since [t1, t2] is invariant under

E+(1|1) as well as under the action of ι, this is a E(1|1)-invariant.

Let Φ = (ϕ, ψ) ∈ K(1) be such that Φ∗[t1, t2] = [t1, t2]. There exists t1 such that

Φ(t1) = (0, 0), and h ∈ E+(1|1) such that ĥ(t1) = Φ(t1). Since Φ leaves [t1, t2] invariant,

we have ϕ(t2) = [Φ(t1),Φ(t2)] = [t1, t2] = ĥ0(t2) in view of (4.2); hence ϕ = ĥ0, with

ĥ = (ĥ0, ĥ1). Using Lemma 2.3, we obtain Φ = ĥ or Φ = ι(ĥ), and Φ is then a (super)

translation.

4.2 Affine invariants

Let us start with the definitions of Aff(1|1) and Aff+(1|1) and with their action on S1|1.

Definition 4.11. The affine supergroup, Aff(1|1), is the subgroup of GL(2|1) whose

elements are of the form

g =




a ab −aβ
0 a−1 0
0 β 1


 (4.6)
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where (a, b, β) ∈ R2|1, and a 6= 0. This supergroup acts on R1|1 ⊂ S1|1 by translations

and dilatations, ĝ(x, ξ) = (a2x+ a2b− a2βξ, aβ+ aξ). We will denote by Aff+(1|1) the

connected component of the identity, characterized by a > 0.

Remark 4.12. The affine groups can be defined in an alternative manner, in terms

of the transformation laws of the 1-forms α and β, and then directly as subgroups of

K(1). The group Aff(1|1) is the subgroup of those Φ ∈ K(1) which satisfy Φ∗β = FΦβ,

with FΦ a superfunction; restricting to π(FΦ) > 0 we obtain the subgroup Aff+(1|1).

Acting by contactomorphisms on S1|1, Aff+(1|1) preserves the orientation of the

underlying circle, see Remark 2.2. Moreover, two points on the supercircle t1 and t2

define an orientation given by the sign of x2 − x1 (in the chosen affine coordinate

system). Hence, the action of Aff+(1|1) cannot be 2|1-transitive, but for all couples

s and t defining the same orientation there exists a unique h ∈ Aff+(1|1) such that

ĥ(t)
2|1
= s. So, let us introduce ˜Aff+(1|1) as the group generated by Aff+(1|1) and the

orientation-reversing transformation r : (x, ξ) 7→ (−x, ξ).

Lemma 4.13. The action of ˜Aff+(1|1) on R1|1 ⊂ S1|1 is simply 2|1-transitive.

Proof. Let a1 = (0, 0), a2 = (1, ζ) and t1, t2 be two distinct points of S1|1, with x1 < x2,

a condition which can always been satisfied, using the transformation r, if necessary.

We look for h ∈ Aff+(1|1) such that ĥ((t1, t2))
2|1
= (a1, a2). We thus have to solve the

system: a2x1 + a2b − a2βξ1 = 0, aβ + aξ1 = 0 and a2x2 + a2b − a2βξ2 = 1. In doing

so, we obtain β = −ξ1, b = −x1 and a2 = [t1, t2]
−1, see (4.5). This entails that h is

uniquely determined and ĥ(t3) =

(
[t1,t3]
[t1,t2]

, {t1,t3}

[t1,t2]
1
2

)
for any point t3 of S1|1. Here, p1 is

the projection to the odd component, hence p1(ĥ(t2)) is given by {t1,t2}

[t1,t2]
1
2

. The function

p1 ◦ ĥ is thus surjective from [t] onto R0|1 and Proposition 4.2 applies, proving the

simply 2|1-transitivity of the action of ˜Aff+(1|1).

Now, the action of ˜Aff+(1|1) on S1|1 satisfies all assumptions of Theorem 4.3, and

then, restricting ourselves to x1 < x2, we obtain affine invariants with all properties

stated in Theorem 4.3.
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Proposition 4.14. Choosing a, the class of a couple a = ((0, 0), (1, ζ)) for the rela-

tion
2|1
=, Theorem 4.3 gives rise to a characteristic affine invariant consisting of the

following three-point couple of superfunctions, defined, for x1 < x2, by

Ia(t1, t2, t3) = ([t1, t2, t3] , {t1, t2, t3}) =

(
[t1, t3]

[t1, t2]
,
{t1, t3}

[t1, t2]
1

2

)
. (4.7)

We, likewise, have a two-point odd invariant, defined, for x1 < x2, by

Ja(t1, t2) =
{t1, t2}

[t1, t2]
1

2

, (4.8)

which is fundamental in that it generates all other two-point invariants.

Proof. The action of ˜Aff+(1|1) being simply 2|1-transitive, we can apply Theorem 4.3.

Let t = (t1, t2) be a couple; if x1 < x2, we obtain, resorting to the proof of the last

lemma, Ia(t1, t2, t3) =

(
[t1,t3]
[t1,t2]

, {t1,t3}

[t1,t2]
1
2

)
and Ja(t1, t2) = {t1,t2}

[t1,t2]
1
2

. For x1 < x2, Ia and Ja

are invariants (with all properties given in Theorem 4.3) of the subgroup of ˜Aff+(1|1)

preserving the condition x1 < x2, i.e., Aff+(1|1).

For x2 < x1, we can easily show that Ia and Ja are simply obtained by exchanging t1

and t2.

Remark 4.15. The invariants Ia and Ja depend on a; for another class, b, of a couple of

points, we have, following the third assertion of Theorem 4.3, Ib = ĝ◦Ia and Jb = ĝ◦Ja

iff p1(b1) = 0. For p1(b1) 6= 0, Ib and Jb depend on Ia and Ja in a more involved way.

Remark 4.16. We can rewrite the odd three-point invariant, p1(Ia), as {t1, t2, t3} =

[t1, t2, t3]
1

2
{t1,t3}

[t1,t3]
1
2

, showing that it is a function of the odd two-point invariant func-

tion, Ja, and of the even three-point invariant, p0(Ia). Hence, every affine three-point

invariant function is a function of Ja and p0(Ia).

Corollary 4.17. The even part, p0(Ia), of Ia is invariant under Aff(1|1), and char-

acterizes this subgroup of K(1), namely if Φ ∈ K(1) satisfies Φ∗[t1, t2, t3] = [t1, t2, t3],

then Φ = ĥ for some h ∈ Aff(1|1).

The proof is identical to that of Corollary 4.10, in the Euclidean case.
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4.3 Projective invariants

Once more, we will follow the previous method, and derive the super cross-ratio as the

even part of the SpO+(2|1)-invariant given by Theorem 4.3.

We begin by the introduction of an orientation index, ord, on the oriented circle,

defined on triples of distinct points by

ord(x1, x2, x3) = +1 if x2 ∈ [x1, x3] (4.9)

= −1 if x2 ∈ [x3, x1].

It is uniquely preserved by orientation-preserving diffeomorphisms of the circle and en-

joys the property: ord(σ(x1), σ(x2), σ(x3)) = ε(σ)ord(x1, x2, x3) for any permutation σ

whose parity is denoted by ε(σ), see [3]. This index, ord, can be extended to triples of

points of the supercircle by ord(t1, t2, t3) = ord(x1, x2, x3).

As SpO+(2|1) acts by contactomorphisms on S1|1, it preserves the orientation of

the underlying circle, see Remark 2.2. Hence, the action of SpO+(2|1) cannot be 3|2-

transitive, a triple of distinct points defining an orientation. However, if s and t are two

triples defining the same orientation, there exist exactly two elements h± ∈ SpO+(2|1)

such that ĥ±(t)
3|2
= s. So, let us introduce ˜SpO+(2|1), the group generated by SpO+(2|1)

already considered, and the orientation-reversing transformation r : (x, ξ) 7→ (−x, ξ).

Lemma 4.18. • The action of ˜SpO+(2|1) on S1|1 is 3|2-transitive.

• Moreover, let p be the class of p = ((∞, 0), (0, 0), (1, ζ)) for the relation
3|2
=, then

for any triple t, there exist exactly two elements of ˜SpO+(2|1), k+, k−, such that

k̂±(t)
3|2
= p, and k̂− = ι ◦ k̂+, with ι : (x, ξ) 7→ (x,−ξ).

Proof. Let us first assume that the triple t = (t1, t2, t3) is such that x1 < x2 < x3,

even if it means to apply r and an element of SpO+(2|1) inducing a cyclic permutation

on t. Then, Proposition 4.14 insures that there exists a unique g ∈ Aff+(1|1) such

that: ĝ(t2) = (0, 0), and ĝ(t3) = (1, ζ ′), with ζ ′ = {t2,t3}

[t2,t3]
1
2

. Since g ∈ SpO+(2|1), we

just have to determine all h ∈ SpO+(2|1) such that ĥ(0, 0) = (0, 0), p0(ĥ(1, ζ
′)) = 1,

and ĥ(ĝ(t1)) = (∞, 0), implying that hg = k are the sought transformations such that

ĥg(t)
3|2
= p.
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As h is an element of SpO+(2|1), ĥ is of the form ĥ(x, ξ) =
(

ax+b+γξ
cx+d+δξ

, αx+β+eξ
cx+d+δξ

)
,

with the relations (2.24) to (2.27). Since ĥ(0, 0) = (0, 0), we have b = β = 0, and the

relations become ad = 1, e2 = 1, αe = aδ and γ = 0; now e = 1 since we restrict us

to special transformations, i.e., of Berezinian 1. The equation ĥ(ĝ(t1)) = (∞, 0) gives

ac [t2,t1]
[t2,t3]

+ 1 + α {t2,t1}

[t2,t3]
1
2

= 0 and α [t2,t1]
[t2,t3]

+ {t2,t1}

[t2,t3]
1
2

= 0, where we have used the fact that

ĝ(t1) = Ia(t2, t3, t1) as given by (4.7). Hence, we have

α = −
{t1, t2}

[t2, t3]
1

2

[t2, t3]

[t1, t2]
and ac =

[t2, t3]

[t1, t2]
. (4.10)

There is one extra equation to satisfy, namely p0(ĥ(1, ζ
′)) = 1; it yields explicitly a2 =

ac+ 1 + αζ ′, giving a2 = [t2,t3]
[t1,t2]

+ 1− {t1,t2}{t2,t3}
[t1,t2]

, since ζ ′ = Ja(t2, t3), see (4.3), as given

by (4.8). We then get, with the help of the identity [t2, t3] + [t1, t2] − {t1, t2}{t2, t3} =

[t1, t3],

a2 =
[t1, t3]

[t1, t2]
, (4.11)

so a is determined up to an overall sign. We have proved that h is therefore given by

ĥ(x, ξ) =

(
a2x

acx+ 1 + αξ
,
a(αx+ ξ)

acx+ 1 + αξ

)
, (4.12)

the sign of a 6= 0 remaining unspecified. This proves the existence and uniqueness

of h±, as stated above. Moreover, Jp(t1, t2, t3) = p1(ĥ(t3)) is a surjective function

from [t] to R0|1, see (4.15). Using Proposition 4.2, we conclude that the action of

˜SpO+(2|1) is 3|2-transitive.

Now, even if the action of ˜SpO+(2|1) is not simply 3|2-transitive, we can con-

struct, following Theorem 4.3, invariants in the same way as before, and restricting

consideration to ord(t1, t2, t3) = 1, we will end up with projective invariants.

Proposition 4.19. Let p = ((∞, 0), (0, 0), (1, ζ)) be a triple of points of S1|1, and

denote by p the class of p for the relation
3|2
=. Theorem 4.3 then yields the projective

invariant Ip(t1, t2, t3, t4) = ([t1, t2, t3, t4] ,±{t1, t2, t3, t4}), given, if ord(t1, t2, t3) = 1, by

[t1, t2, t3, t4] =
[t1, t3][t2, t4]

[t2, t3][t1, t4]
, (4.13)

{t1, t2, t3, t4} = [t1, t2, t3, t4]
1

2

{t2, t4}[t1, t2] − {t1, t2}[t2, t4]

([t1, t2][t2, t4][t1, t4])
1

2

, (4.14)
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which characterizes the group SpO+(2|1) within the diffeomorphisms of S1|1.

We also have an odd projective invariant, namely, if ord(t1, t2, t3) = 1,

Jp(t1, t2, t3) = ±
{t2, t4}[t1, t2] − {t1, t2}[t2, t4]

([t1, t2][t2, t4][t1, t4])
1

2

. (4.15)

which is fundamental in that it generates all other three-point invariants.

Proof. Assume that ord(t1, t2, t3) = 1. Using Lemma 4.18, we know that there exist

exactly two elements k+, k− ∈ SpO+(2|1) such that k̂±(t)
3|2
= p. We set Ip(t1, . . . , t4) =

k̂±(t4) and Jp(t1, t2, t3) = p1(k̂±(t3)), as suggested by Theorem 4.3. Despite the non

uniqueness of k, all conclusions of Theorem 4.3 apply just as well, and the proofs are

identical, except for Ip being a characteristic invariant. The proof of Theorem 4.3 shows

that any bijection, Φ, of the supercircle such that Φ∗Ip = Ip, satisfies Φ(t4) = k̂±(t4)

for all t4. We have to impose that Φ be a diffeomorphism to obtain Φ = k̂+ or Φ = k̂−.

It then remains to compute k̂±(t4); using the proof of Lemma 4.18 we will easily

calculate k̂± = ĥ± ◦ ĝ, for the specific case x1 < x2 < x3. Starting with the even part

of k̂±(t4), we obtain, see (4.12),

[t1, t2, t3, t4] =
a2[t2, t3, t4]

ac[t2, t3, t4] + 1 + α{t2, t3, t4}

=
[t1, t3][t2, t4]

[t1, t2][t2, t3]

(
[t2, t4]

[t1, t2]
+ 1 −

{t1, t2}{t2, t4}

[t1, t2]

) ,

where we have used (4.10) and (4.11). With the help of the identity [t2, t4] + [t1, t2] −

{t1, t2}{t2, t4} = [t1, t4], we find the announced result, viz., Equation (4.13).

We then compute the odd part of ĥ±(ĝ(t4)), which is determined up to global sign

governed by the sign of a (see proof of Lemma 4.18). For a > 0, we find, using (4.12),

{t1, t2, t3, t4} =
a (α[t2, t3, t4] + {t2, t3, t4})

ac[t2, t3, t4] + 1 + α{t2, t3, t4}

=

([t1, t2][t1, t3])
1

2

(
−
{t1, t2}

[t2, t3]
1

2

[t2, t4]

[t1, t2]
+

{t2, t4}

[t2, t3]
1

2

)

[t1, t4]

= [t1, t2, t3, t4]
1

2

(
[t1, t2, t4]

− 1

2

{t2, t4}

[t2, t4]
1

2

− [t4, t2, t1]
− 1

2

{t1, t2}

[t1, t2]
1

2

)
,
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with the help of the equalities (4.10) and (4.11). For x1 < x2 < x3, we can write

{t1, t2, t3, t4} = [t1, t2, t3, t4]
1

2

{t2, t4}[t1, t2] − {t1, t2}[t2, t4]

([t1, t2][t2, t4][t1, t4])
1

2

, (4.16)

which is the announced result, viz., Equation (4.14).

For the more general case ord(t1, t2, t3) = 1, we still have to compute k̂±(t4)

for x3 < x1 < x2 and x2 < x3 < x1. Let us introduce the homography ĉ(x, ξ) =

(x−1+ζξ
x

, ζx−ξ
x

), which cyclically permutes (0, 0), (∞, 0) and (1, ζ). Start with the case

x3 < x1 < x2; we can assume that x3 < 0 < x1 < x2, even if it means to apply

a translation, and then ĉ(x1) < ĉ(x2) < ĉ(x3). As Ip is invariant under the ac-

tion of SpO+(2|1), we have Ip = ĉ ∗Ip, and using the above results, we deduce that

k̂±(t4) = ĉ ∗

(
[t1,t3][t2,t4]
[t2,t3][t1,t4]

, [t1, t2, t3, t4]
1

2
{t2,t4}[t1,t2]−{t1,t2}[t2,t4]

([t1,t2][t2,t4][t1,t4])
1
2

)
. The Euclidean invariants

are transformed by ĉ as follows ĉ∗[ti, tj] =
[ti,tj ]

xixj
and ĉ∗{ti, tj} = ti

xi
−

tj
xj

, we then have

k̂±(t4) =

(
[t1,t3][t2,t4]
[t2,t3][t1,t4]

, [t1, t2, t3, t4]
1

2
{t2,t4}[t1,t2]−{t1,t2}[t2,t4]

([t1,t2][t2,t4][t1,t4])
1
2

)
. The case x2 < x3 < x1 is

similar, except for the fact that we have to apply ĉ2 instead of ĉ.

For ord(t1, t2, t3) = −1, the projective invariants Ip and Jp are simply given by the

exchange of t1 and t2 in Formulæ (4.13), (4.14), and (4.15).

Corollary 4.20. The cross-ratio (4.13) is invariant under SpO+(2|1), and character-

izes this subgroup of K(1), namely if Φ ∈ K(1) satisfies Φ∗[t1, t2, t3, t4] = [t1, t2, t3, t4],

then Φ = ĥ for some h ∈ SpO+(2|1).

The proof is the same as in the Euclidean case, except for the fact that SpO+(2|1)

contains now the transformation ι : (x, ξ) 7→ (x,−ξ).

Remark 4.21. Projective groups and projective invariants of the circle and of the

supercircle share various properties. Like SpO+(2|1) in the super case, the action

of PSL(2,R) preserves the orientation of the circle. The action of PSL(2,R) on the

circle is thus not simply 3-transitive, in contradistinction to that of PGL(2,R). The

cross-ratio can also be defined following Theorem 4.3, leading to the classical expression
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[x1, x2, x3, x4] = (x1−x3)(x2−x4)
(x2−x3)(x1−x4)

, which is invariant under PSL(2,R) only. The PGL(2,R)-

invariant is given either by this last expression or by the same expression where x1

and x2 have been exchanged, depending on ord(x1, x2, x3).

Remark 4.22. Again, the odd four-point invariant p1(Ip) is a function of the odd

three-point invariant Jp and of the even four-point invariant p0(Ip). So every four-

point invariant is a function of these two invariants.

5 The Schwarzian derivative from the Cartan for-

mula

This section provides the proof of Theorem 3.5. We will begin by two preliminary

lemmas and then give the proof for the Euclidean and affine cases, and, finally, for the

projective one.

5.1 Preparation

Let us first recall the formula for the Taylor expansion of a smooth superfunction

f ∈ C∞(S1|1) as given in [19, 6], namely

f(t2) − f(t1) =

n∑

i=1

1

i!

(
(x2 − x1)

i∂i
xf(t1) + i(ξ2 − ξ1)(x2 − x1)

i−1∂i−1
x ∂ξf(t1)

)

+O((x2 − x1)
n+1, (ξ2 − ξ1)(x2 − x1)

n)

=
n∑

i=1

1

i!

(
[t1, t2]

i∂i
xf(t1) + i{t1, t2}[t1, t2]

i−1∂i−1
x Df(t1)

)

+O((x2 − x1)
n+1, (ξ2 − ξ1)(x2 − x1)

n). (5.1)

The following lemma linking discrete variations and forms, will enable us to write

Taylor expansions in terms of the differential forms α and β. We will skip its straight-

forward proof.

Lemma 5.1. Let X ∈ Vect(S1|1), and φε the associated flow. Putting t2 = φε(t1), we

have

[t1, t2] = 〈εX, α〉 (t1) +O(ε2), and {t1, t2} = 〈εX, β〉 (t1) +O(ε2). (5.2)
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The next result is of central importance in the subsequent proof of Theorem 3.5.

Lemma 5.2. Let Φ = (ϕ, ψ) ∈ K(1) be a contactomorphism of S1|1, and let t2 = φε(t1),

where φε is the flow of a vector field X, then

Φ∗[t1, t2]

EΦ(t1)[t1, t2]
= 1 +

1

2

(
[t1, t2]

E ′
Φ

EΦ
(t1) + {t1, t2}

DEΦ

EΦ
(t1)

)

+

〈
εX ⊗ εX, α2 A

6EΦ

+ αβ
B

2EΦ

〉
(t1) +O(ε3) (5.3)

where A = ϕ′′′ + ψψ′′′ and B = Dϕ′′ − ψDψ′′, α2 and αβ being as in (2.20).

Proof. We have Φ∗[t1, t2] = [Φ(t1),Φ(t2)] = ϕ(t2) − ϕ(t1) − (ψ(t2) − ψ(t1))ψ(t1), by

virtue of (4.5). Using Taylor’s formula (5.1), we obtain

Φ∗[t1, t2] = {t1, t2}(Dϕ− ψDψ)(t1) + [t1, t2](ϕ
′ + ψψ′)(t1)

+[t1, t2]

(
1

2
[t1, t2](ϕ

′′ + ψψ′′)(t1) + {t1, t2}(Dϕ
′ − ψDψ′)(t1)

)

+[t1, t2]

(
1

6
[t1, t2]

2(ϕ′′′ + ψψ′′′)(t1) +
1

2
{t1, t2}[t1, t2](Dϕ

′′ − ψDψ′′)(t1)

)

+O(ε4).

Then, as Φ ∈ K(1), Proposition 2.1 yields Dϕ− ψDψ = 0, and ϕ′ + ψψ′ = EΦ. This

entails that ϕ′′ + ψψ′′ = E ′
Φ, and Dϕ′ − ψDψ′ = 1

2
DEΦ. Lemma 5.1 then leads to the

result.

At first order in ε we obtain simply: Φ∗[t1,t2]
[t1,t2]

=
[
EΦ + 1

2
〈εX, dEΦ〉

]
(t1) +O(ε2).

5.2 Proof of Theorem 3.5

5.2.1 Euclidean and affine K(1)-cocycles, E ,A

The Cartan formula (3.8) yields a privileged means to define the Schwarzian derivative

via a Taylor expansion of the cross-ratio. Much in the same way, we will construct

1-cocycles via the Euclidean and affine even invariants. Thanks to the last lemma, we

have
Φ∗[t1, t2]

[t1, t2]
= EΦ(t1) +O(ε). (5.4)
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Hence, E : Φ 7→ log(EΦ) is a 1-cocycle of K(1), with values in F0(S
1|1); this jus-

tifies (3.9). Note that log(EΦ) is well-defined since the reduced function π(EΦ) =

π(Dψ)2, see (2.2), is positive.

For the affine even invariant (4.7), we have, putting t2 = φε(t1) and t3 = φ2ε(t1),

Φ∗[t1, t2, t3]

[t1, t2, t3]
− 1 =

1 + 1
2
〈2εX, d(logEΦ)〉 (t1) +O(ε2)

1 + 1
2
〈εX, d(logEΦ)〉 (t1) +O(ε2)

− 1

=
1

2
〈εX, d(logEΦ)〉 (t1) +O(ε2).

This implies that A : Φ 7→ d(logEΦ) is a 1-cocycle of the group K(1) of contactomor-

phisms, with values in the space, Ω1(S1|1), of 1-forms on S1|1. Using the projection on

half-densities F 1

2

(S1|1) given by α
1

2 〈D, · 〉, see Proposition 2.5, we still obtain an affine

1-cocycle: A : Φ 7→ α
1

2 〈D, d(logEΦ)〉 = DEΦ

EΦ

α
1

2 . The justification of (3.10) and (3.12)

is complete.

5.2.2 The Schwarzian derivative, S

We will now resort, verbatim, to the Cartan formula (3.8) in order to derive the ex-

pression of the Schwarzian derivative (3.11) of a diffeomorphism Φ ∈ K(1). This

formula involves the cross-ratio [t1, t2, t3, t4] of four close by points; we will, hence,

posit t2 = φε(t1), t3 = φ2ε(t1), and t4 = φ3ε(t1), where φε = Id + εX +O(ε2) is the flow

of a vector field X of S1|1.

Let us then expand in powers of ε the following expression:

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

Φ∗[t1, t3]

EΦ(t1)[t1, t3]

Φ∗[t2, t4]

EΦ(t2)[t2, t4]
−

Φ∗[t2, t3]

EΦ(t2)[t2, t3]

Φ∗[t1, t4]

EΦ(t1)[t1, t4]

1 +O(ε)
. (5.5)

We note that the terms Φ∗[t1,t3]
EΦ(t1)[t1,t3]

and Φ∗[t1,t4]
EΦ(t1)[t1,t4]

, with base point t1, are explicitly given

by Lemma 5.2. The remaining terms, with base point t2, will be computed separately,

using again Equation (5.3) and the Taylor formula (5.1), viz.,

f(t2) = f(t1) + [t1, t2]f
′(t1) + {t1, t2}Df(t1) +O(ε2), (5.6)

for a superfunction f ∈ C∞(S1|1).
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We have

Φ∗[t2, t3]

EΦ(t2)[t2, t3]
= 1 +

1

2

(
[t2, t3]

E ′
Φ

EΦ
(t1) + {t2, t3}

DEΦ

EΦ
(t1)

)

+
1

2
[t1, t2]

(
[t2, t3]

(
E ′

Φ

EΦ

)′

(t1) + {t2, t3}

(
DEΦ

EΦ

)′

(t1)

)

+
1

2
{t1, t2}

(
[t2, t3]D

(
E ′

Φ

EΦ

)
(t1) + {t2, t3}D

(
DEΦ

EΦ

)
(t1)

)

+

〈
εX ⊗ εX, α2 A

6EΦ
+ αβ

B

2EΦ

〉
(t1) +O(ε3),

where the terms A and B are defined in Lemma 5.2. The other term Φ∗[t2,t4]
EΦ(t2)[t2,t4]

is,

likewise, obtained by replacing in the latter expression t3 by t4, and εX by 2εX.

From Lemma 5.1 and Taylor’s formula (5.6), we get [t2, t3] = 〈εX, α〉(t1) + O(ε2) and

{t2, t3} = 〈εX, β〉(t1) + O(ε2). In particular {t2, t3}{t1, t2} is thus of third order in ε,

since 〈εX, β〉 is an odd superfunction. We finally have

Φ∗[t2, t3]

EΦ(t2)[t2, t3]
= 1 +

1

2

(
[t2, t3]

E ′
Φ

EΦ
(t1) + {t2, t3}

DEΦ

EΦ
(t1)

)

+
1

2

〈
εX ⊗ εX, α2

(
E ′

Φ

EΦ

)′

+ 2αβ

(
DEΦ

EΦ

)′〉
(t1)

+

〈
εX ⊗ εX, α2 A

6EΦ
+ αβ

B

2EΦ

〉
(t1) +O(ε3).

This formula and Lemma 5.2 help us find the contribution of the first order terms

of each product in the numerator of Equation (5.5); this contribution is found as

([t1, t3]+[t2, t4]−[t2, t3]−[t1, t4])
E′

Φ

2EΦ

(t1)+({t1, t3}+{t2, t4}−{t2, t3}−{t1, t4})
DEΦ

2EΦ

(t1) =

(ξ1 − ξ2)(ξ3 − ξ4)
E′

Φ

2EΦ

(t1), which is of third order in ε, since ξ3 − ξ4 = ξ1 − ξ2 + O(ε2).

The right-hand side of (5.5) is of second order in ε and we now compute it. We find

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

1

4

〈
εX, α

E ′
Φ

EΦ
+ β

DEΦ

EΦ

〉2

(t1)

+
1

2

〈
εX ⊗ εX, α2

(
E ′

Φ

EΦ

)′

+ 2αβ

(
DEΦ

EΦ

)′〉
(t1)

−2

〈
εX ⊗ εX, α2 A

6EΦ
+ αβ

B

2EΦ

〉
(t1) +O(ε3).
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Collecting the terms involving α2 and αβ, we put the latter expression in a nicer form,

namely

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

〈
εX ⊗ εX, α2

(
E ′′

Φ

2EΦ

−
A

3EΦ

−
1

4

(
E ′

Φ

EΦ

)2
)〉

(t1)

+

〈
εX ⊗ εX, αβ

(
DE ′

Φ

EΦ

−
B

EΦ

−
E ′

ΦDEΦ

2E2
Φ

)〉
(t1). (5.7)

SinceDϕ = ψDψ and EΦ = (Dψ)2, see Proposition 2.1, we calculate the terms A andB

whose expression is given in Lemma 5.2; we find A = ϕ′′′+ψψ′′′ = (EΦ−ψψ
′)′′+ψψ′′′ =

E ′′
Φ − ψ′ψ′′, together with B = Dϕ′′ − ψDψ′′ = ψ′′Dψ + 2ψ′Dψ′ = 1

2
D3EΦ + 1

4

E′

Φ
DEΦ

EΦ

.

Plugging these quantities into (5.7), we obtain

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

〈
εX ⊗ εX, α2

(
1

6

E ′′
Φ

EΦ
−

1

4

(
E ′

Φ

EΦ

)2

+
1

3

ψ′ψ′′

EΦ

)〉
(t1)

+

〈
εX ⊗ εX, αβ

(
1

2

DE ′
Φ

EΦ
−

3

4

E ′
ΦDEΦ

E2
Φ

)〉
(t1). (5.8)

Upon defining

S̃(Φ) =
DE ′

Φ

EΦ
−

3

2

E ′
ΦDEΦ

E2
Φ

, (5.9)

we find DS̃(Φ) =
E′′

Φ

EΦ

− 3
2

(
E′

Φ

EΦ

)2

− 1
2

DE′

Φ
DEΦ

E2

Φ

. We also have DE ′
ΦDEΦ = −4ψ′ψ′′EΦ.

Inserting the latter result into (5.8) and using the Cartan formula (3.8) to define the

Schwarzian derivative, S(Φ), of the contactomorphism Φ, we obtain

S(Φ) =
1

6
α2DS̃(Φ) +

1

2
αβS̃(Φ). (5.10)

Thus, S defines a 1-cocycle of K(1) with values in the space, Q(S1|1), of quadratic

differentials, cf. Subsection 2.2.2. Using the projection onto the 3
2
-densities, F 3

2

(S1|1),

given by α
1

2 〈D, · 〉, see Proposition 2.5, we still obtain a projective 1-cocycle of K(1),

viz.,

S(Φ) = α
1

2 〈D,S(Φ)〉 =
1

4

(
DE ′

Φ

EΦ
−

3

2

E ′
ΦDEΦ

E2
Φ

)
α3/2. (5.11)

This ends the proof of (3.13).
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Equation (3.11) can now be deduced from (5.10) and (5.11). Indeed, using

LDα = 2β, (5.12)

we find α
1

2LDS(Φ) = 1
4
α

1

2LD(S̃(Φ)α
3

2 ) = 3
2
S(Φ).

5.2.3 The kernels of the K(1)-cocycles E ,A,S

- The subgroup of those Φ ∈ K(1) such that E(Φ) = 0 is characterized by the equation

EΦ = 1, see (3.9). Writing Φ = (ϕ, ψ), and using (2.13), we find Dψ = ǫ, with ǫ2 = 1.

This entails that ψ(x, ξ) = ǫ(β + ξ), with β ∈ R0|1. The constraint (2.12) then leads

to ϕ(x, ξ) = x+ b− βξ, with b ∈ R. This proves that ker(E) = E(1|1).

- The kernel of the 1-cocycle A, given by (3.10), is determined by the equation

EΦ = a2, with a ∈ R∗. The kernel of A is given by the same equation, hence is

equal to the kernel of A. The same computation as before clearly leads to Φ(x, ξ) =

(a2x+ a2b− a2βξ, aβ + aξ). Hence, ker(A) = ker(A) = Aff(1|1).

- The kernels of the 1-cocycles S and S, given respectively by (3.11), and (3.13),

clearly coincide. Suffice it to determine ker(S). Let us consider Φ ∈ K(1), then its

Schwarzian derivative (3.13) reads alternatively

S(Φ) = −
1

2
E

1

2

Φ D
3(E

− 1

2

Φ )α3/2. (5.13)

Hence, S(Φ) = 0 iff ∂xD(E
− 1

2

Φ ) = 0. As ∂xDχ0 = 0 implies, for χ0 an even super-

function, χ0 = c′x+ d′ + δ′ξ, where (c′, d′, δ′) ∈ R2|1; we obtain EΦ = (c′x+ d′ + δ′ξ)−2.

Consider now h ∈ SpO+(2|1), whose action is given by (2.28), then E ĥ = (cx+d+δξ)−2.

We thus have EΦ = E ĥ for some h ∈ SpO+(2|1), so that Φ = ĥ ◦ ĝ with g ∈ E(1|1) in

view of the above result; this implies that Φ ∈ SpO+(2|1). The conclusion, ker(S) =

SpO+(2|1), easily follows.

The proof of Theorem 3.5 is complete.

5.3 Proof of Proposition 3.8

With the help of (2.10), the affine cocycle A, given by (3.10), can be recast into the

form A(Φ) = E−1
Φ dEΦ = αE−1

Φ E ′
Φ + βE−1

Φ DEΦ. Using Equation (5.12), we obtain

(α
1

2LD)2 = αLD2 + βLD.
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Straightforward calculation yields the expressions of LDA, LD2A, and A2, so that

(α
1

2LD)2A(Φ) −
1

2
A(Φ)2 = α2

(
DS̃(Φ) −

1

2

DEΦDE
′
Φ

E2
Φ

)
+ 2αβS̃(Φ). (5.14)

This formula leads directly to (3.18), using 〈D,α2〉 = 0 and 〈D,αβ〉 = 1
2
α, together

with the expressions (5.9) and (5.11) for S̃ and S.

6 Super Euclidean, affine and projective invariants,

and K(N)-cocycles for S1|N

The aim of this section is to extend to S1|N the previous constructions, namely those

of the Euclidean, affine and projective invariants, of the Euclidean and affine cocycles,

and of the Schwarzian derivative for N = 2. For N ≥ 3, the cross-ratio is badly

transformed by contactomorphisms, which prevents the construction of a Schwarzian

derivative along the same lines as before (see Remark 6.6 below).

Let us define the notation used throughout this section. Except if otherwise stated,

all indices i, j of odd objects will run from 1 to N , and Einstein’s summation conven-

tion will be freely used. The space of superfunctions C∞(S1|N ), defining S1|N , is the

superalgebra C∞(S1)[ξ1, . . . , ξN ] where the ξi are odd indeterminates. It is topologically

generated, as an algebra, by the coordinates (x, ξ) with ξ = (ξ1, . . . , ξN). The diffeo-

morphisms retain the form Φ = (ϕ, ψ), with ψ = (ψ1, . . . , ψN) and ϕ, ψj ∈ C∞(S1|N),

such that (ϕ, ψ) is a new coordinate system. Let F,G ∈ C∞(S1|N)N , we denote their

pairing with values in C∞(S1|N) by

F ·G = FiG
i (6.1)

where F i and Gi are the i-th components of F and G, and Fi = δijF
j (with the choice

of an Euclidean signature). The C∞(S1|N)-module Ω1(S1|N) is generated by the 1-forms

α = dx+ ξidξ
i = dx+ ξ · dξ and βi = dξi, (6.2)

with dual vectors ∂x and Di = ∂ξi
+ ξi∂x. For f ∈ C∞(S1|N) we therefore have

df = αf ′ + βiDif, (6.3)
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see (2.10). We furthermore denote by K(N) the group of contactomorphisms, Φ,

characterized by Φ∗α = EΦ α for some superfunction EΦ. Let Φ = (ϕ, ψ) ∈ K(N),

then Φ∗α = dϕ+ψ ·dψ = α(ϕ′+ψ ·ψ′)+βi(Diϕ−ψ ·Diψ). It follows that Φ ∈ K(N) iff

Diϕ− ψ ·Diψ = 0, (6.4)

for all i = 1, . . . , N . The multiplier of Φ is then given by EΦ = ϕ′ + ψ · ψ′, i.e., by

EΦ =
Φ∗α

α
= (Diψ)2 (6.5)

for any i = 1, . . . , N . The expression (Diψ)2 stands for Diψ ·Diψ. This has been first

developed in the framework of super Riemann surfaces by Cohn [5]; we will nevertheless

refer to work of Radul [25], whose geometric approach, in terms of contact structure,

is closer to our viewpoint. See also [16].

Proposition 6.1. Let Φ ∈ K(N), then

DjDiϕ+ ψ ·DjDiψ = Diψ ·Djψ = EΦδij . (6.6)

Hence (E
− 1

2

Φ Diψ)i=1,...,N is an “orthonormal basis” for the pairing (6.1) on C∞(S1|N)N .

Proof. As Φ ∈ K(N), we have DjDiϕ = Dj(ψ ·Diψ) = Djψ ·Diψ−ψ ·DjDiψ, in view

of (6.4); by exchanging i and j, we deduce Diψ ·Djψ = 0 if i 6= j. For i = j, the result

is given by (6.5) and the equality EΦ = ϕ′ + ψ · ψ′.

6.1 Euclidean, affine and projective invariants

We now extend to S1|N , where N ≥ 2, the content of Subsection 2.3. Now, α (6.2)

stems from the 1-form on R2|N given by ̟ = 1
2
(pdq − qdp + θidθ

i), via the formula

̟ = 1
2
p2α (p 6= 0), expressed in affine coordinates x = q/p and ξi = θi/p. We define

the orthosymplectic group [15, 20], SpO(2|N), as the supergroup whose A-points are

all linear transformations of O
2|N
A , see Subsection 2.3,

h =




a b γ
c d δ
α β e


 (6.7)
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preserving the symplectic form d̟. If we demand that these linear transformations

preserve the direction of d̟, only, we end up with the conformal supergroup C(2|N),

see [20]. In the expression (6.7), the entries a, b, c, d are even elements, α, β are odd

column vectors of size N , while δ, γ are odd row vectors of size N , and e is an even

matrix of size N ×N . Moreover, as d̟ is preserved, we have

ad− bc− αtβ = 1, (6.8)

ete+ 2γtδ = 1, (6.9)

αte− aδ + cγ = 0, (6.10)

βte− bδ + dγ = 0, (6.11)

where the superscript t denotes transposition. We easily find that SpO(2|N) also

preserves ̟. Again, since ̟ = 1
2
p2α, the orthosymplectic group acts by contacto-

morphisms, SpO(2|N) → K(N), via the following projective action on S1|N , namely

ĥ(x, ξ) =

(
ax+ b+ γξ

cx+ d+ δξ
,
αx+ β + eξ

cx+ d+ δξ

)
(6.12)

where h ∈ SpO(2|N) and ξ is understood as a column vector. The kernel of this action is

{Id,−Id}, hence the action is effective for the supergroup SpO(2|N)/{±Id} = PC(2|N)

of conformal projective transformations. If N is odd, this supergroup coincides with

the special orthosymplectic group SpO+(2|N), which is the subgroup of SpO(2|N) of

Berezinian 1. We still can define Euclidean and affine subgroups of SpO(2|N), whose

elements are

g =




a ab −aβt

0 a−1 0
0 β 1


 , (6.13)

where (a, b, β) ∈ R2|N , a > 0 defining Aff+(1|N) and a = 1 defining E+(1|N).

Remark 6.2. The group Aff+(1|N) may be defined as the subgroup of those ĥ ∈ K(N)

that preserve the direction of each βi, namely ĥ∗βi = βifi, for some superfunction fi,

with i = 1, . . . , N . Its subgroup E+(1|N) is characterized by exactly preserving α.

Let t1, t2, t3, t4 be four generic points of S1|N .
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Theorem 6.3. We have three invariants, Ie, Ia and Ip, of the action of the Euclidean,

affine and projective supergroups on the supercircle S1|N .

• Euclidean invariant: Ie(t1, t2) = ([t1, t2], {t1, t2}) with

[t1, t2] = x2 − x1 − ξ2 · ξ1, {t1, t2} = ξ2 − ξ1. (6.14)

• Affine invariant: Ia(t1, t2, t3) = ([t1, t2, t3], {t1, t2, t3}), where, if x1 < x2,

[t1, t2, t3] =
[t1, t3]

[t1, t2]
, {t1, t2, t3} =

{t1, t3}

[t1, t2]
1

2

. (6.15)

• Projective invariant: Ip(t1, t2, t3, t4) = ([t1, t2, t3, t4],O(N).{t1, t2, t3, t4}), where,

if ord(t1, t2, t3) = 1,

[t1, t2, t3, t4] =
[t1, t3][t2, t4]

[t2, t3][t1, t4]
, (6.16)

{t1, t2, t3, t4} = [t1, t2, t3, t4]
1

2

{t2, t4}[t1, t2] − {t1, t2}[t2, t4]

([t1, t2][t2, t4][t1, t4])
1

2

. (6.17)

The odd invariant, denoted by O(N).{t1, t2, t3, t4}, is the orbit of {t1, t2, t3, t4} under

the natural group action of O(N). If a bijective transformation, Φ, of S1|N leaves Ie

(resp. Ia) invariant, it can be identified with the action of an element h ∈ E+(1|N)

(resp. h ∈ Aff+(1|N)), i.e., Φ = ĥ. If Φ ∈ Diff(S1|N) preserves Ip, then Φ = ρ ◦ ĥ,

with h ∈ SpO(2|N) and ρ(x, ξ) = (x,Rξ), R ∈ C∞(S1|N ,O(N)).

The proof of this Theorem can be carried out along the same lines as in the

proof of Theorem 3.1, we will skip it and just provide some hints for it. As in the

case N = 1, we can show that the action of E+(1|N) is simply 1|1-transitive, while

that of ˜Aff+(1|N) is simply 2|1-transitive, on R1|N ⊂ S1|N . Moreover, the action

of ˜PC(2|N) is 3|2-transitive on S1|N and satisfies the following property: for any triple t,

and g, h ∈ ˜PC(2|N), ĝ(t)
3|2
= p

3|2
= ĥ(t) is equivalent to ĝ = k̂ ◦ ĥ, with k̂(x, ξ) = (x, eξ),

e ∈ O(N). As in Section 4, the tilde denotes the extension of the group by the involution

ι : (x, ξ) 7→ (−x, ξ). We can now apply Theorem 4.3 and the claims of Theorem 6.3

follow.
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Remark 6.4. For N = 1, the Corollaries 4.10, 4.17 and 4.20 have been obtained

thanks to Lemma 2.3. They cannot be prolonged for N > 1 as there exists no such

lemma in this case. However, the supergroup preserving each even invariant is in-

cluded in the kernel of the associated K(N)-cocycles, and for N = 2, see Remark 6.9

and Theorem 6.10, one can easily check the converse inclusion. So, for N = 2, the pre-

serving supergroups of the even part of Ie, Ia and Ip are respectively EO(1|2)/{±Id},

AO(1|2)/{±Id} and PC(2|2).

6.2 Associated cocycles from the Cartan formula

The following calculation will rely on Proposition 6.1, and on the relation [Di, Dj] =

DiDj +DjDi = 2δij∂x, for i, j = 1, . . . , N , which results from a direct calculation. As in

the case N = 1, we need a lemma giving the third-order Taylor expansion of Φ∗[t1, t2].

To that end, we will be using the notation:

βiβj =
1

2
(βi ⊗ βj − βj ⊗ βi), (6.18)

and βiβjβk = 1
6
(
∑

σ∈S3
ε(σ)βσ(i) ⊗ βσ(j) ⊗ βσ(k)), i.e., the symmetrized tensor product

of odd elements; see [6].

Lemma 6.5. Let Φ = (ϕ, ψ) ∈ K(N), and t2 = φε(t1), with φε the flow of a vector

field X, and t1 a point of S1|N ; we then have

Φ∗[t1, t2] = [t1, t2]EΦ(t1)

(
1 +

1

2
[t1, t2]

E ′
Φ

EΦ
(t1) +

1

2
{t1, t2}

iDiEΦ

EΦ
(t1)

)
(6.19)

+[t1, t2]

〈
εX ⊗ εX, α2A

6
+ αβiBi

2
+ βiβjCij

2

〉
(t1)

+
1

6

〈
εX ⊗ εX ⊗ εX, βiβjβk [DkDjDiϕ− ψ ·DkDjDiψ]

〉
(t1) +O(ε4),

where A = ϕ′′′ + ψ · ψ′′′, Bi = Diϕ
′′ − ψ ·Diψ

′′ and Cij = DjDiϕ
′ + ψ ·DjDiψ

′.

Proof. By definition we have: Φ∗[t1, t2] = ϕ(t2)−ϕ(t1)− (ψ(t2)−ψ(t1)) ·ψ(t1). Using

the formula (5.1), trivially extended to the case N ≥ 2, we obtain
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Φ∗[t1, t2] = [t1, t2]

[
EΦ +

1

2
[t1, t2](ϕ

′′ + ψ · ψ′′) +
1

2
{t1, t2}

iDi(ϕ
′ + ψ · ψ′)

]
(t1)

+
1

2
{t1, t2}

i{t1, t2}
j [DjDiϕ+ ψ ·DjDiψ] (t1)

+[t1, t2]

[
1

6
[t1, t2]

2(ϕ′′′ + ψ · ψ′′′) +
1

2
{t1, t2}

i[t1, t2](Diϕ
′′ − ψ ·Diψ

′′)

]
(t1)

+
1

2
[t1, t2]{t1, t2}

i{t1, t2}
j [DjDiϕ

′ + ψ ·DjDiψ
′)] (t1)

+
1

6
{t1, t2}

i{t1, t2}
j{t1, t2}

k [DkDjDiϕ− ψ ·DkDjDiψ] (t1)

+O(ε4). (6.20)

The coefficient of {t1, t2}
i{t1, t2}

j on the second line of (6.20) vanishes if i 6= j, us-

ing (6.6). The analog of Lemma 5.1 holds true, namely [t1, t2] = 〈εX, α〉 +O(ε2), and

{t1, t2}
i = 〈εX, βi〉 +O(ε2). Hence, we are done.

Remark 6.6. The last term in (6.20) definitely does not vanish in the case N ≥ 3,

implying that Φ∗[t1, t2] is not proportional to [t1, t2] at third order in ε. This entails

that the Cartan formula fails to provide an expression of the Schwarzian derivative

for N ≥ 3.

6.2.1 The Euclidean and affine K(N)-cocycles

Up to the second order in ε, Φ∗[t1, t2] is proportional to [t1, t2]; this enables us to obtain

1-cocycles from Euclidean and affine invariants, as was done in Subsection 5.2.1.

Theorem 6.7. From the Euclidean and affine even invariants, we construct the two

following K(N) 1-cocycles:

• The Euclidean cocycle E : K(N) → F0(S
1|N) :

E(Φ) = log(EΦ) = log(Diψ)2, (6.21)

where the equality holds for any i = 1, . . . , N .
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• The affine cocycle A : K(N) → Ω1(S1|N):

A(Φ) = dE(Φ) =
dEΦ

EΦ

. (6.22)

The proof is the same as in the case N = 1, it relies on Lemma 6.5.

Remark 6.8. The directions of the individual vector fields Di are no longer preserved

by the contactomorphisms; only that of D1 ⊗ · · · ⊗ DN is preserved. Hence, the pro-

jection of A on Di is no longer a K(N)-cocycle.

Let us introduce AO(1|N), the ortho-affine subgroup of SpO(2|N) whose elements

are

g =




a ab −aβt

0 a−1 0
0 β e


 (6.23)

where (a, b, β) ∈ R2|N , e ∈ O(N), and restricting us to a = ±1, we obtain the ortho-

Euclidean subgroup EO(1|N). Since the action of SpO(2|N) on the supercircle has a

kernel equal to {±Id}, the same holds for its above introduced subgroups.

Remark 6.9. For N = 2, a direct computation shows that the kernel of the two

cocycles E and A, are, respectively, EO(1|2)/{±Id} and AO(1|2)/{±Id}. This groups

are also the groups preserving the even part of Ie and Ia, see Remark 6.4. But forN ≥ 3,

this is no longer the case, i.e., the subgroup of K(N) preserving the even invariant

and the kernel of the associated cocycle are no longer the same defining groups. For

example, if N = 3, the contactomorphism Φ = (ϕ, ψ), with ϕ(x, ξ) = x + ξ1ξ2ξ3λ

and ψ(x, ξ) = ξ − (ξ2ξ3, ξ3ξ1, ξ1ξ2)λ, where λ ∈ R0|1, does not preserve p0(Ie) although

E(Φ) = 1. Moreover, Φ is not even an homography.

6.2.2 The Schwarzian K(2)-cocycle

For N = 2, the expression (6.5) of Φ∗[t1, t2] is proportional to [t1, t2]. This enables us to

use the Cartan formula to define the projective 1-cocycle, S, from the cross-ratio (6.16).

By construction, our projective 1-cocycle will take its values in the K(2)-module of
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quadratic differentials, Q(S1|2), generated by α2, αβ1, αβ2 and β1β2, where α2 and αβi

are as in (2.20), and β1β2 as in (6.18). One can check that the linear mapping

α〈D2 ⊗D1, .〉 : Q(S1|2) → F1(S
1|2) (6.24)

intertwines the natural action of K(2), see Remark 6.8.

Now, the Schwarzian derivative given by Radul [25], or Cohn [5], for N = 2, has

again coefficients in tensor densities. Projecting the 1-cocycle, S, via (6.24), we will

readily recover Radul’s and Cohn’s Schwarzian derivative.

Theorem 6.10. From the cross-ratio (6.16), we deduce, via the Cartan formula (3.8),

the following projective 1-cocycle S : K(2) → Q(S1|2), which reads

S =
1

6
α2

(
D1D2S12 +

1

2
S2

12

)
+

1

2
α(β1D2 + β2D1)S12 + β1β2 S12, (6.25)

where we have put S12 = 2 Sα−1, see (6.26).

Moreover, using the projection (6.24) of the quadratic differentials on 1-densities,

we obtain the Schwarzian derivative S : K(2) → F1(S
1|2) given by

S(Φ) =

(
D2D1EΦ

EΦ
−

3

2

D2EΦD1EΦ

E2
Φ

)
α. (6.26)

The kernels of these two cocycles coincide and are isomorphic to PC(2|2).

Proof. The formula of the cross-ratio being similar to that of the case N = 1, we have

to compute, again, the expression (5.5), the term Φ∗[t1,t2]
EΦ(t1)[t1,t2]

being now given by Lemma

6.5. Straightforward calculation, essentially the same as in Subsection 5.2.2, leads to

Φ∗[t2, t3]

EΦ(t2)[t2, t3]
= 1 +

1

2

(
[t2, t3]

E ′
Φ

EΦ

(t1) + {t2, t3}
iDiEΦ

EΦ

(t1)

)

+
1

2

〈
εX ⊗ εX, α2

(
E ′

Φ

EΦ

)′

+ 2αβi

(
DiEΦ

EΦ

)′

+ βiβjDj

(
DiEΦ

EΦ

)〉
(t1)

+

〈
εX ⊗ εX, α2 A

6EΦ

+ αβi Bi

2EΦ

+ βiβj Cij

2EΦ

〉
(t1) +O(ε3).
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The combinatorics is the same as before; we thus obtain

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

1

4

〈
εX, α

E ′
Φ

EΦ
+ βiDiEΦ

EΦ

〉2

(t1)

+
1

2

〈
εX ⊗ εX, α2

(
E ′

Φ

EΦ

)′

+ 2αβi

(
DiEΦ

EΦ

)′

+ βiβjDj

(
DiEΦ

EΦ

)〉
(t1)

−2

〈
εX ⊗ εX, α2 A

6EΦ
+ αβi Bi

2EΦ
+ βiβj Cij

2EΦ

〉
(t1) +O(ε3).

As in the case N = 1, see (5.7) and (5.8), we have A = E ′′
Φ − ψ′ · ψ′′ and Bi =

1
2
DiE

′
Φ + ψ′ ·Diψ

′. We now collect the terms according to

Φ∗[t1, t2, t3, t4]

[t1, t2, t3, t4]
− 1 =

〈
εX ⊗ εX, α2

(
1

6

E ′′
Φ

EΦ
+
ψ′ · ψ′′

3EΦ
−

1

4

(
E ′

Φ

EΦ

)2
)〉

(t1)

+

〈
εX ⊗ εX, αβi

(
1

2

DiE
′
Φ

EΦ
−
ψ′ ·Diψ

′

EΦ
−
E ′

ΦDiEΦ

2E2
Φ

)〉
(t1)

+

〈
εX ⊗ εX, β1β2

(
D2D1EΦ

EΦ
−

2C12

EΦ
−
D2EΦD1EΦ

2E2
Φ

)〉
(t1)

+O(ε3). (6.27)

We denote by S(Φ) the coefficient of α2, Si(Φ) that of αβi and S12(Φ) that of β1β2.

Let us start with the computation of S12(Φ), our goal being to write C12 as a function

of EΦ and its derivatives. We first give a useful lemma.

Lemma 6.11. For any φ, φ̃ ∈ C∞(S1|2)2, the following relations hold:

(φ ·D1ψ)(φ̃ ·D1ψ) + (φ ·D2ψ)(φ̃ ·D2ψ) = φ · φ̃ EΦ, (6.28)

and also,

φ×D2ψ = λφ ·D1ψ and φ×D1ψ = −λφ ·D2ψ, (6.29)

with λ2 = 1, and where the cross-product is defined by φ× φ̃ = φ1φ̃2 − φ2φ̃1.

Moreover, ψ′ being odd, for even φ and φ̃, we have

(ψ′ · φ)(ψ′ · φ̃) = ψ′
1ψ

′
2(φ× φ̃). (6.30)
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Proof. Proposition 6.1 proves the first equality. As D2ψ · D2ψ = EΦ, either D2ψ1 or

D2ψ2 is invertible, where ψ = (ψ1, ψ2). Suppose that D2ψ2 is invertible, we then have

D1ψ1 = λD2ψ2 for some λ. Using Diψ ·Djψ = δijEΦ, we obtain D1ψ2 = −λD2ψ1 and

λ2 = 1. If D2ψ1 is invertible the same equalities hold. Then, easy calculation ends the

proof.

We have C12 = D2D1ϕ
′ + ψ ·D2D1ψ

′, as given by Lemma 6.5. Differentiating the

constraint Diϕ = ψ · Diψ, see (6.4), we find D1ϕ
′ = ψ′ · D1ψ + ψ · D1ψ

′, and then

D2D1ϕ
′ = D2ψ

′ · D1ψ − ψ′ · D2D1ψ + D2ψ · D1ψ
′ − ψ · D2D1ψ

′. Plugging the latter

expression into C12, and using Diψ ·Djψ = 0, for i 6= j, we obtain C12 = −ψ′ ·D2D1ψ.

Using the proof of Lemma 6.11, we have D1ψ1 = λD2ψ2 andD1ψ2 = −λD2ψ1, and then

ψ′ ·D2D1ψ = 2λψ′
1ψ

′
2. Moreover, as 1

4
D1EΦD2EΦ = (ψ′ ·D1ψ)(ψ′ ·D2ψ), we find, using

(6.30) and (6.29), 1
4
D1EΦD2EΦ = λψ′

1ψ
′
2EΦ. We thus have C12 = − 1

2EΦ

D1EΦD2EΦ,

and replacing this in the last expression of S12, as given by (6.27), we finally get

S12(Φ) =
D2D1EΦ

EΦ

−
3

2

D2EΦD1EΦ

E2
Φ

. (6.31)

We will show that S1 = 1
2
D2S12, and then, exchanging D1 and D2, readily obtain

S2 = −1
2
D1S12. Let us first recall the expression of S1, given in (6.27),

S1(Φ) =
1

2

(
D1E

′
Φ

EΦ
−
E ′

ΦD1EΦ

E2
Φ

−
2ψ′ ·D1ψ

′

EΦ

)
.

Secondly, we find

D2S12(Φ) =
D1E

′
Φ

EΦ
−
D2EΦD2D1EΦ

E2
Φ

+
3

2

D2EΦD2D1EΦ

E2
Φ

−
3

2

E ′
ΦD1EΦ

E2
Φ

.

We then have to show that the following expression vanishes, namely

2S1(Φ) −D2S12(Φ) = −
2ψ′ ·D1ψ

′

EΦ

+
1

2

D2EΦD1D2EΦ

E2
Φ

+
1

2

E ′
ΦD1EΦ

E2
Φ

. (6.32)

To that end, let us use Formula (6.5) to rewrite the last two terms as D2EΦD1D2EΦ =

4(ψ′ ·D2ψ)(D1ψ
′ ·D2ψ+ψ′ ·D2D1ψ), and E ′

ΦD1EΦ = 4(ψ′ ·D1ψ)(D1ψ
′ ·D1ψ), respec-

tively. We have already proved that ψ′ ·D2D1ψ = 2λψ′
1ψ

′
2, and using (6.28), we thus

obtain

2S1 −D2S12 = 0. (6.33)
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At last, we want to show that 6S = D1D2S12 + 1
2
S2

12. Begin by writing explicitly

6S(Φ) =
E ′′

Φ

EΦ
−

3

2

(
E ′

Φ

EΦ

)2

+
2ψ′ · ψ′′

EΦ
,

with the help of 6.27, and also

D1D2S12(Φ) =
E ′′

Φ

EΦ
−
D1EΦD1E

′
Φ

E2
Φ

−
3

2

(
E ′

Φ

EΦ

)2

−
3

2

D1E
′
ΦD1EΦ

E2
Φ

+
1

2

D2EΦD2E
′
Φ

E2
Φ

−
1

2

(
D2D1EΦ

EΦ

)2

−
D1EΦD2EΦD2D1EΦ

E3
Φ

.

We now compute the difference:

D1D2S12(Φ) − 6S(Φ) =
1

2

D1EΦD1E
′
Φ +D2EΦD2E

′
Φ

E2
Φ

−
D1EΦD2EΦD2D1EΦ

E3
Φ

−
1

2

(
D2D1EΦ

EΦ

)2

− 2
ψ′ · ψ′′

EΦ
.

Using Equation (6.5), we get 1
2
(D1EΦD1E

′
Φ +D2EΦD2E

′
Φ) = 2[(ψ′ ·D1ψ)(ψ′′ ·D1ψ) +

(1 ↔ 2)] + 2[(ψ′ · D1ψ)(ψ′ · D1ψ
′) + (1 ↔ 2)]. Thanks to Formula (6.28), the

first term reduces to 2ψ′ · ψ′′EΦ, and using (6.30) the second one turns out to be

2ψ′
1ψ

′
2(D1ψ ×D1ψ

′ +D2ψ ×D2ψ
′), which is equal to 4λψ′

1ψ
′
2(D2ψ ·D1ψ

′), in view of

(6.29). On the other hand, using the previous equalities, we findD1EΦD2EΦD2D1EΦ =

−8λEΦψ
′
1ψ

′
2(D1ψ

′ ·D2ψ); hence, we obtain

D1D2S12(Φ) − 6S(Φ) = −
3

2

D1EΦD2EΦD2D1EΦ

E3
Φ

−
1

2

(
D2D1EΦ

EΦ

)2

,

which is the desired result: 6S = D1D2S12 + 1
2
S2

12. Together with (6.33) and (6.31),

the latter equation finishes the derivation of (6.25). Using the projection (6.24) on

1-densities, we obtain the Schwarzian derivative S, given by (6.26).

To find the kernel of the cocycle S, whence that of S, we have to use another form

of S, namely

S(Φ) = −2E
1

2

Φ(D2D1(E
− 1

2

Φ ))α.

Hence, if Φ ∈ ker(S), we have D2D1(E
− 1

2

Φ ) = 0. As was the case for N = 1, the solution

is EΦ = (cx+d+δ·ξ)−2. A direct computation shows that there exists h ∈ PC(2|2) such

that EΦ = Eĥ. Since the kernel of the Euclidean cocycle is Ê+1|N/{±Id} for N = 2, we

obtain as announced: ker(S) = PC(2|2). The proof of Theorem 6.10 is complete.
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7 Conclusion, discussion and outlook

Starting with the orthosymplectic group SpO(2|N), and its two subgroups E+(1|N) ⊂

Aff+(1|N) ⊂ SpO(2|N), we have been able to uniquely characterize Euclidean, Ie,

affine, Ia, and projective, Ip, invariants for their actions as contactomorphisms of the

supercircle S1|N , using the central notion of p|q-transitivity. Moreover, these invari-

ants are characteristic of their defining groups. For N = 0, 1, 2, their even part does

characterize the image of the supergroups EO(1|N), AO(1|N) and SpO(2|N), by the

projective action on S1|N , within the group, K(N), of all contactomorphisms. In doing

so, we have recovered in a systematic fashion the previously introduced [2, 21] even and

odd cross-ratios. Then, using a natural super extension of the Cartan formula (1.2),

we have provided a novel construction of the nontrivial 1-cocycles of K(N) associated

with the even invariants, for N = 0, 1, 2. We have also succeeded to recover the known

expressions [10, 5, 24, 25] of the Schwarzian derivatives for N = 0, 1, 2. The kernels of

the above-mentioned 1-cocycles have been shown to coincide with the groups defining

the invariants leading to them. So, for each geometry, the group action, the even in-

variant and the 1-cocycle are three equivalent geometric objects on the supercircle S1|N ,

N = 0, 1, 2, endowed with its standard contact structure.

For N > 2, our method yields, indeed, the Euclidean and affine 1-cocycles of

K(N). There is, however, no way to obtain, in our approach, Radul’s Schwarzian

integro-differential operator for N = 3, since there exists no projection from Q(S1|3) to

F 1

2

= k(3)∗reg intertwining the K(3) action. Moreover, our study provides a clear cut

explanation of the fact that S(Φ) cannot be derived as a quadratic differential by the

Cartan formula (see Remark 6.6) for N ≥ 3, and therefore help us understand why the

Radul expression for N = 3 involves pseudo-differential operators.

We have, so far, studied the supercircle S1|N ; but there are in fact two super-

extensions of the circle, namely S1|N and S
1|N
+ , see [9, 25, 15]. Let us discuss the

case N = 1. The only difference between these two supermanifolds is that the functions

on S1|1 are, indeed, functions on R1|1 invariant with respect to the transformation

(x, ξ) 7→ (x+ 2π, ξ), whereas functions on the Möbius supercircle, S
1|1
+ , can be viewed
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as functions on R1|1 invariant under the transformation (x, ξ) 7→ (x + 2π,−ξ). Here

the coordinate x is regarded as an angular coordinate on S1. The canonical contact

structure on R1|1 define a contact structure on both S1|1 and S
1|1
+ [22]. All our cocycles,

prior to projections, are left invariant by the map (x, ξ) 7→ (x,−ξ), as well as the

projections themselves; then E , A, S, and A, S still define cocycles on S
1|1
+ . This can

be generalized for N > 1 along the same line as before.

We expect that our approach will help us express the Bott-Thurston cocycles

of K(1) and K(2) given by Radul in terms of the 1-cocycles E and A introduced

above, extending, hence, the classical formula worked out in [8]. Another plausible

development would be the superization of the hyperboloid of one sheet in sl(2,R)∗

whose conformal geometry is related to the projective geometry of null infinity [18, 8].
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