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Introduction

Let T > 0 be a finite time horizon and (Ω, F , P) be a stochastic basis supporting a d-dimensional Brownian motion W . We assume that the filtration F = (F t ) t≤T generated by W satisfies the usual assumptions and that F T = F . Let (X, Y, Z) be the solution of the decoupled Brownian Forward-Backward SDE

X t = X 0 + t 0 b(X s )ds + t 0 σ(X s )dW s (1.1) Y t = g(τ, X τ ) + T t 1 s<τ f (X s , Y s , Z s )ds - T t Z s dW s , t ∈ [0, T ] , (1.2) 
where τ is the first exit time of (t, X t ) t≤T from a cylindrical domain D = [0, T ) × O for some open piecewise smooth connected set O ⊂ R d , and b, σ, f and g satisfy the usual Lipschitz continuity assumption. This kind of systems appears in many applications. In particular, it is well known that it is related to the solution of the semi-linear Cauchy Dirichlet problem

-Lu -f (•, u, Duσ) = 0 on D , u = g on ∂ p D , (1.3) 
where L is the (parabolic) Dynkin operator associated to X, i.e. for ψ ∈ C 1,2 Lψ := ∂ t ψ + b, Dψ + 1 2 Tr aD 2 ψ , a := σσ * , and ∂ p D := ([0, T ) × ∂O) ∪ {T } × Ō is the parabolic boundary of D. More precisely, if the solution u of (1.3) is smooth enough, then Y = u(•, X) and Z = Duσ(•, X). Thus, in the regular frame, solving (1.2) is essentially equivalent to solving (1.3).

In this paper, we study an Euler scheme type approximation of (1.1)-(1.2) similar to the one introduced in [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Zhang | A numerical scheme for BSDEs[END_REF], see also [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF][START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF]. We first consider the Euler scheme approximation X of X on some grid π := {t i = ih, i ≤ n} with modulus h := T /n, n ∈ N * . The exit time τ is approximated by the first discrete exit time τ of (t i , Xti ) ti∈π from D. Then, the backward Euler scheme of (Y, Z) is defined for i = n -1, . . . , 0 as

Ȳti := E Ȳti+1 | F ti + 1 ti<τ h f ( Xti , Ȳti , Zti ) , Zti := h -1 E Ȳti+1 W ti+1 -W ti | F ti ,
with the terminal condition ȲT = g(τ , Xτ ) . Here, g is a suitable extension of the boundary condition on the whole space [0, T ] × R d .

The main purpose of this paper is to provide bounds for the (square of the) discrete time approximation error up to a stopping time θ ≤ T Pa.s. defined as

Err(h) 2 θ := max i<n E sup t∈[ti,ti+1] 1 t≤θ |Y t -Ȳti | 2 + E θ 0 Z t -Zφ(t) 2 dt , (1.4) 
where φ(t) := sup{s ∈ π : s ≤ t}.

We are interested in two important cases: θ = T and θ = τ ∧ τ . The quantity Err(h) T coincides with the usual strong approximation error computed up to T . The term Err(h) τ ∧τ should be more considered as a weak approximation error, since the length of the random time interval [0, τ ∧ τ ] cannot be controlled sharply in pratice. It essentially provides a bound for Y 0 -Ȳ0 , or equivalently in terms of (1.3), u(0, X 0 ) -Ȳ0 . Let us mention that a precise analysis of the weak error has been carried out by Gobet and Labart in [START_REF] Gobet | Error expansion for the discretization of Backward Stochastic Differential Equations[END_REF] in the uniformly elliptic case with O = R d .

As in [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF], [START_REF] Ma | Path Regularity of Solutions to Backward Stochastic Differential Equations[END_REF] and [START_REF] Zhang | A numerical scheme for BSDEs[END_REF], who also considered the limit case O = R d (i.e. τ = T ), the approximation error can be naturally related to the error due to the approximation of X by Xφ and the regularity of the solution (Y, Z) of (1.2) through the quantities:

R(Y ) π S 2 := max i<n E sup t∈[ti,ti+1] |Y t -Y ti | 2 and R(Z) π H 2 := E T 0 Z t -Ẑφ(t) 2 dt
where Ẑti := h -1 E ti+1 ti Z s ds | F ti for i < n .

(1.5)

In the case f = 0, Y is a martingale and Y ti is the best L 2 approximation of Y t on the time interval [t i , t i+1 ] by an F ti -measurable random variable. In this case, Doob's inequalities imply that

E sup t∈[ti,ti+1] |Y t -Ȳti | 2 ≥ E |Y ti+1 -Y ti | 2 ≥ c E sup t∈[ti,ti+1] |Y t -Y ti | 2
, for some universal constant c > 0. Moreover, the definition (1.5) implies that Ẑφ is the best approximation in L 2 ([0, T ] × Ω, dt ⊗ dP) of Z by a process which is constant on each time interval [t i , t i+1 ). Thus, R(Z) π

H 2 ≤ E T 0 Z t -Zφ(t) 2 dt .
This justifies why R(Y ) π S 2 and R(Z) π H 2 should play a crucial role in the convergence rate of Err(h) to 0 as h → 0. Bounds for similar quantities have previously been studied in [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF][START_REF] Zhang | A numerical scheme for BSDEs[END_REF] in the case O = R d and in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF][START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF] in the case of reflected BSDEs. All these articles use a Malliavin calculus approach to derive a particular representation of Z. Due to the exit time, these techniques fail in our setting. We propose a different approach that relies on mixed analytic/probabilistic arguments. Namely, we first adapt some barrier techniques from the PDE literature, see e.g. Chapter 14 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] and Section 6.2 below, to provide a bound for the modulus of continuity of u on the boundary, and then some stochastic flows and martingale arguments to obtain an interior control on this modulus. Under the standing assumptions of Section 2, it allows to derive that R(Y ) π S 2 + R(Z) π H 2 = O(h) and that u is 1/2-Hölder in time and Lipschitz continuous in space. To derive our final error bound on Err(h) θ , we additionally have to take into consideration the error coming from the approximation of τ by τ . We show that E [|ττ |] = O(h 1 2 -ε ) for all ε > 0. Combined with the previous controls on R(Y ) π S 2 and R(Z) π H 2 , this allows us to show that Err(h) T = O(h 1 4 -ε ). Exploiting an additional control on a weaker form of error on ττ , we also derive that Err(h) τ ∧τ = O(h 1 2 -ε ). As a matter of facts, the global error is driven by the approximation error of the exit time which propagates backward thanks to the Lipschitz continuity of u.

Importantly, we do not assume specific non degeneracies of the diffusion coefficient but only a uniform non characteristic boundary condition and uniform ellipticity close to the corners, recall that O is piecewise smooth. Using the transformation proposed in [START_REF] Kobylanski | Backward Stochastic Differential Equations and Partial Differential Equations with quadratic growth[END_REF], these results could be extended to drivers with quadratic growth (for a bounded boundary condition g). Also, without major difficulties, our results could be extended to time dependent domains and coefficients (b, σ and f ) under natural assumptions on the time regularity. We restrict here to the homogeneous cylindrical case for simplicity. We note that the numerical implementation of the above scheme requires the approximation of the involved conditional expectations. It can be performed by non-parametric regression techniques, see e.g. [START_REF] Gobet | Rate of convergence of empirical regression method for solving generalized BSDE[END_REF] and [START_REF] Longstaff | Valuing American Options By Simulation : A simple Least-Square Approach[END_REF], or a quantization approach, see e.g. [START_REF] Bally | A quantization algorithm for solving discrete time multidimensional optimal stopping problems[END_REF] and [START_REF] Delarue | A forward backward algorithm for quasi-linear PDEs[END_REF][START_REF] Delarue | An interpolated Stochastic Algorithm for Quasi-Linear PDEs[END_REF]. In both cases, the additional error is analyzed in the above papers and can be extended to our framework. We note that the Malliavin approach of [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF] cannot be directly applied here due to the presence of the exit time. Concerning a direct computable algorithm, we mention the work of Milstein and Tretyakov [25] who use a simple random walk approximation of the Brownian motion. However, their results require strong smoothness assumptions on the solution of (1.3) as well as a uniform ellipticity condition.

The rest of the paper is organized as follows. We start with some notations and assumptions in Section 2. Our main results are presented in Section 3. In Section 4, we provide a first bound on the error: it involves the error due to the discrete time approximation of τ by τ and the regularity of the solution (Y, Z) of (1.2). The discrete approximation of τ is specifically studied in Section 5. Eventually, Section 6 is devoted to the analysis of the regularity of (1.3) and (1.2) under our current assumptions.

Notations and assumptions

Any element x ∈ R d , d ≥ 1, will be identified to a line vector with i-th component x i and Euclidean norm x . The scalar product on R d is denoted by x, y . The open ball of center x and radius r is denoted by B(x, r), B(x, r) is its closure. Given a non-empty set A ⊂ R d , we similarly denote by B(A, r) and B(A, r) the sets {x ∈ R d : d(x, A) < r} and {x ∈ R d : d(x, A) ≤ r} where d(x, A) stands for the Euclidean distance of x to A. For a (m × d)-dimensional matrix M , we denote M * its transpose and we write M ∈ M d if m = d. For a smooth function f (t, x), Df and D 2 f stand for its gradient (as a line vector) and Hessian matrix with respect to its second component. If it depends on some extra components, we denote by ∂ t f (t, x, y, z), ∂ x f (t, x, y, z), etc... its partial gradients.

Euler scheme approximation of BSDEs

From now on, we assume that the coefficients of (1.1)-(1.2) satisfy:

(HL): There is a constant L > 0 such that for all (t, x, y, z, t

′ , x ′ , y ′ , z ′ ) ∈ ([0, T ] × R d × R × R d ) 2 : (b, σ, g, f )(t, x, y, z) -(b, σ, g, f )(t ′ , x ′ , y ′ , z ′ ) ≤ L (t, x, y, z) -(t ′ , x ′ , y ′ , z ′ ) , (b, σ, g, f )(t, x, y, z) ≤ L (1 + (x, y, z) ) .
Under this assumption, it is well known, see e.g. [START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations[END_REF][START_REF] Peng | Probabilistic interpretation for systems of quasilinear parabolic partial differential equations[END_REF], that we have existence and uniqueness of a solution (X, Y, Z) in S 2 × S 2 × H 

:= E[ T 0 |ζ t | 2 dt] 1 2 < ∞ .
As usual, we shall approximate the solution of (1.1) by its Euler scheme X associated to a grid

π := {t i = ih , i ≤ n} , h := T /n , n ∈ N * , defined by Xt = X 0 + t 0 b( Xφ(s) )ds + t 0 σ( Xφ(s) )dW s , t ≥ 0 , (2.1) 
where we recall that φ(s) := arg max{t i , i ≤ n : t i ≤ s} for s ≥ 0 .

Regarding the approximation of (1.2), we adapt the approach of [START_REF] Zhang | A numerical scheme for BSDEs[END_REF] and [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF]. First, we approximate the exit time τ by the first exit time of the Euler Scheme (t, Xt ) t∈π from D on the grid π:

τ := inf{t ∈ π : Xt / ∈ O} ∧ T .
Remark 2.1. Note that one could also approximate τ by τ := inf{t ∈ [0, T ] : Xt / ∈ O} ∧ T , the first exit time of the "continuous version" of the Euler scheme (t, Xt ) t∈[0,T ] , as it is done for linear problems, i.e. f is independent of (Y, Z), see e.g. [START_REF] Gobet | Weak approximation of killed diffusion using Euler schemes[END_REF]. However, in the case where O is not a half-space, this requires additional local approximations of the boundary by tangent hyperplanes and will not allow to improve our strong approximation error, compare Corollaire 2.3.2. in [START_REF] Gobet | Schéma d'Euler pour diffusions tuées[END_REF] with Theorem 3.1 below.

Then, we define the discrete time process ( Ȳ , Z) on π by

Ȳti := E Ȳti+1 | F ti + 1 ti<τ h f ( Xti , Ȳti , Zti ) , (2.2) 
Zti := h -1 E Ȳti+1 W ti+1 -W ti | F ti , i < n , (2.3) 
with the terminal condition ȲT = g(τ , Xτ ) .

(2.4)

Observe that Ȳti 1 ti≥τ = g(τ , Xτ )1 ti≥τ and that Zti 1 ti≥τ = 0.

One easily checks that ( Ȳti , Zti ) ∈ L 2 for all i ≤ n under (HL). It then follows from the martingale representation theorem that we can find Z ∈ H 

Assumptions on O, σ and g

Our main result holds under some additional assumptions on O, σ and g. Without loss of generality, we can specify them in terms of the constant L which appears in (HL).

We first assume that the domain O is a finite intersection of smooth domains with compact boundaries:

(D1): We have O := m ℓ=1 O ℓ where m ∈ N * and O ℓ is a C 2 domain of R d for each 1 ≤ ℓ ≤ m. Moreover, O ℓ has a compact boundary, sup{ x : x ∈ ∂O ℓ } ≤ L, for each 1 ≤ ℓ ≤ m.
It follows from Appendix 14.6 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF] that there is a function d which coincides with the algebraic distance to ∂O, in particular O := {x ∈ R d : d(x) > 0} , and is C 2 outside of a neighborhood B(C, L -1 ) of the set of corners

C := m ℓ =k=1 ∂O ℓ ∩ ∂O k .
We also assume that the domain satisfies a uniform exterior sphere condition as well as a uniform truncated interior cone condition:

(D2): For all x ∈ ∂O, there is y(x) ∈ O c , r(x) ∈ [L -1 , L] and δ(x) ∈ B(0, 1) such that B(y(x), r(x)) ∩ Ō = {x} and {x ′ ∈ B(x, L -1 ) : x ′ -x, δ(x) ≥ (1 -L -1 ) x ′ -x } ⊂ Ō .
In view of (D1), these last assumptions are actually automatically satisfied outside a neighborhood of the set of corners, see e.g. Appendix 14.6 in [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF].

In order to ensure that the associated first boundary value problem is well posed in the (unconstrained) viscosity sense, we shall also assume that a := σσ * satisfies a non-characteristic boundary condition outside the set of corners C and a uniform ellipticity condition on a neighborhood of C:

(C): We have inf{n(x)a(x)n(x) * : x ∈ ∂O \ B(C, L -1 )} ≥ L -1 where n(x) := Dd(x) , and inf{ξa(x)ξ * : ξ ∈ ∂B(0, 1) , x ∈ Ō ∩ B(C, L -1 )} ≥ L -1 .
In particular, it guarantees that the process X is non-adherent to the boundary.

Observe that n coincides with the inner normal unit on ∂O outside the set of corners. By abuse of notations, we write n(x) for Dd(x), whenever this quantity is well defined, even if x / ∈ ∂O.

Importantly, we do not assume that σ is non degenerate in the whole domain.

We finally assume that g is smooth enough:

(Hg): g ∈ C 1,2 ([0, T ] × R d ) and ∂ t g + Dg + D 2 g ≤ L on [0, T ] × R d .
Clearly, this smoothness assumption could be imposed only on a neighborhood of ∂O. Since it is compact and Y depends on g only on ∂O, we can always construct a suitable extension of g on R d which satisfies the above condition. Actually, one could only assume that g is Lipschitz in (t, x) and has a Lipschitz continuous derivative in x. With this slightly weaker condition, all our arguments would go through after possibly replacing g by a sequence of regularized versions and then passing to the limit, see Section 6.4 for similar kind of arguments.

Main results

We first provide a general control on the quantities in (1.4) 

in terms of R(Y ) π S 2 , R(Z) π H 2 and |τ -τ |.
Let us mention that this type of result is now rather standard when O = R d , see e.g. [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF], and requires only the Lipschitz continuity assumptions of (HL). Proposition 3.1. Assume that (HL) and (Hg) hold. Then, there exist C L > 0 and a positive random variable ξ L satisfying E [(ξ L ) p ] ≤ C p L for all p ≥ 2 such that

Err(h) 2 T ≤ C L h + R(Y ) π S 2 + R(Z) π H 2 + E ξ L |τ -τ | + 1 τ <τ τ τ Z s 2 ds (3.1)
and

Err(h) 2 τ ∧τ ≤ Err(h) 2 τ+∧τ ≤ C L (h + R(Y ) π S 2 + R(Z) π H 2 ) + E E ξ L |τ -τ | | F τ+∧τ 2 + C L E 1 τ <τ E τ τ Z s ds | F τ 2 . (3.2)
where τ + is the next time after τ in the grid π: τ + := inf{t ∈ π : τ ≤ t} .

The proof will be provided in Section 4 below. Note that we shall control Err(h) 2 τ ∧τ through the slightly stronger term Err(h) 2 τ+∧τ , see (3.2). This will allow us to work with stopping times with values in the grid π which will be technically easier, see Remark 4.2 below.

In order to provide a convergence rate for Err(h) 2 T and Err(h) 2 τ+∧τ , it remains to control the quantities R(Y ) π S 2 , R(Z) π H 2 and the terms involving the difference between τ and τ .

The error due to the approximation of τ by τ is controlled by the following estimate that extends to the non uniformly elliptic case previous results obtained in [START_REF] Gobet | Schéma d'Euler pour diffusions tuées[END_REF], see its Corollaire 2.3.2. The proof of this Theorem is provided in Section 5 below.

Theorem 3.1. Assume that b and σ satisfy (HL) and that (D1) and (C) hold. Then, for ε ∈ (0, 1) and each positive random variable ξ satisfying E [(ξ) p ] ≤ C p L for all p ≥ 1, there is

C ε L > 0 such that E E ξ |τ -τ | | F τ+∧τ 2 ≤ C ε L h 1-ε .
In particular, for each ε ∈ (0, 1/2), there is

C ε L > 0 such that E [|τ -τ |] ≤ C ε L h 1/2-ε .
In [START_REF] Gobet | Schéma d'Euler pour diffusions tuées[END_REF], the last bound is derived under a uniform ellipticity condition on σ and cannot be exploited in our setting, recall that we only assume (C). Up to the ε term, it can not be improved. Indeed, in the special case of a uniformly elliptic diffusion in a smooth bounded domain, it has been shown in [START_REF] Gobet | Stopped diffusion processes: overshoots and boundary correction[END_REF] that

E [τ -τ ] = Ch 1 2 + o(h 1 
2 ) for some C > 0, see Theorem 2.3 of this reference.

Our next result concerns the regularity of (Y, Z) and is an extension to our framework of similar results obtained in [START_REF] Ma | Path Regularity of Solutions to Backward Stochastic Differential Equations[END_REF], [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF], [START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF] and [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF] in different contexts.

Theorem 3.2. Let the conditions (HL), (D1), (D2), (C) and (Hg) hold. Then,

R(Y ) π S 2 + R(Z) π H 2 ≤ C L h . (3.3)
Moreover, for all stopping times θ, ϑ satisfying θ ≤ ϑ ≤ T Pa.s., one has

E sup θ≤s≤ϑ |Y s -Y θ | 2p ≤ E [ξ p L |ϑ -θ| p ] , p ≥ 1 , (3.4) 
and

E ϑ θ Z s p ds | F θ ≤ E [ξ p L |ϑ -θ| | F θ ] , p = 1, 2 , (3.5) 
where ξ p L is a positive random variable which satisfies E [|ξ p L | q ] < ∞ , for all q ≥ 1. In addition, the unique continuous viscosity solution u of (1.3), in the class of continuous solutions with polynomial growth, is uniformly 1/2-Hölder continuous in time and Lipschitz continuous in space, i.e.

|u(t, x) -u(t ′ , x ′ )| ≤ C L |t -t ′ | 1 2 + x -x ′ for all (t, x) and (t ′ , x ′ ) ∈ D . (3.6)
The proof is provided in Section 6 below. The bound (3.5) can be interpreted as a weak bound on the gradient, whenever it is well defined, of the viscosity solution of (1.3). It implies that Y is 1/2-Hölder continuous in L 2 norm. This result is rather standard under our Lipschitz continuity assumption in the case where O = R d , i.e. τ = T , but seems to be new in our context and under our assumptions. The bound R(Z) π H 2 ≤ C L h can be seen as a weak regularity result on this gradient. It would be straightforward if one could show that Duσ is uniformly 1/2-Hölder in time and Lipschitz in space, which is not true in general.

Combining the above estimates, we finally obtain our main result which provides an upper bound for the convergence rate of Err(h) 2 τ+∧τ (and thus for Err(h) 2 τ ∧τ ) and Err(h) 2 T .

Theorem 3.3. Let the conditions (HL), (D1), (D2), (C) and (Hg) hold. Then, for each

ε ∈ (0, 1 2 ), there is C ε L > 0 such that Err(h) 2 τ+∧τ ≤ C ε L h 1-ε and Err(h) 2 T ≤ C ε L h 1 2 -ε .
This extends the results of [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF][START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF][START_REF] Zhang | A numerical scheme for BSDEs[END_REF] who obtained similar bounds in different contexts.

Remark 3.1. When τ can be exactly simulated, we can replace τ by τ in the scheme (2.2)-(2.3). In this case, the two last terms in the right hand-sides of (3.1) and (3.2) cancel and we retrieve the convergence rate of the case O = R d , see e.g. [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF].

Remark 3.2. Note that the Lipschitz continuity assumption with respect to the x variable on g and f is only used to control at the right order the error term coming from the approximation of X by X in g and f . If one is only interested in the convergence of Err(h) T this assumption can be weakened. Indeed, if we only assume that (HL' 1 ): b, σ satisfy (HL), sup{|f (•, y, z)|, (y, z) ∈ R × R d } and g have polynomial growth, and

f (x, •) is uniformly Lipschitz continuous, uniformly in x ∈ R d ,
a weak version of (3.1) can still be established up to an obvious modification of the proof of Proposition 4.2 below. Namely, there exists C > 0 and a positive random variable ξ satisfying

E [(ξ) p ] ≤ C p L for all p ≥ 2 for which Err(h) 2 T ≤ C h + E T 0 |Y s -Y φ(s) | 2 ds + R(Z) π H 2 + E ξ|τ -τ | + T 0 1 τ <τ τ τ Z s 2 ds + CE |g(τ, X τ ) -g(τ , Xτ )| 2 + T 0 |f (X s , Y s , Z s ) -f ( Xφ(s) , Y s , Z s )| 2 ds . (3.7)
The terms

E T 0 |Y s -Y φ(s) | 2 ds and R(Z) π
H 2 are easily seen to go 0 with h, see e.g. the proof of Proposition 2.1 in [START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF] for details. As for the other terms in the first line, it suffices to appeal to Theorem 3.1 which implies that E [ξ|ττ |] → 0 and that τ → τ in probability under (D1) and (C). Note that the last assertion implies that E T 0 1 τ <τ τ τ Z s 2 ds → 0 and X τ -Xτ → 0 in probability. Hence, under the additional continuity assumption

(HL' 2 ): g and f (•, y, z) are continuous, uniformly in (y, z) ∈ R × R d ,
we deduce that the two last terms in the second line go to 0 as well.

Euler scheme approximation error: Proof of Proposition 3.1

In this section, we provide the proof of Proposition 3.1. We first recall some standard controls on X, (Y, Z) and X which holds under (HL).

From now on, C η L denotes a generic constant whose value may change from line to line but which depends only on X 0 , L and some extra parameter η (we simply write C L if it depends only on X 0 and L). Similarly, ξ η L denotes a generic non-negative random variable such that

E [|ξ η L | p ] ≤ C η,p
L for all p ≥ 1 (we simply write ξ L if it does not depend on the extra parameter η). 

Y t p + T ϑ Z t 2 dt p 2 | F ϑ   ≤ C p L (1 + X ϑ p )
and

E sup t∈[ϑ,T ] X t p + Xt p | F ϑ ≤ ξ p L .
Moreover,

max i<n E sup t∈[ti,ti+1] X t -X ti p + Xt -Xti p + E sup t∈[0,T ] X t -Xt p ≤ C p L h p 2 , P sup t≤T Xt -Xφ(t) > r ≤ C L r -4 h , r > 0 ,
and, if θ is a stopping time with values in [0, T ] such that ϑ ≤ θ ≤ ϑ + h Pa.s., then

E Xθ -Xϑ p + X θ -X ϑ p | F ϑ ≤ ξ p L h p 2 .
Remark 4.1. For later use, observe that the Lipschitz continuity assumptions (HL) ensure that

E   sup t∈[ϑ,T ] Ȳt p + T ϑ Zt 2 dt p 2 | F ϑ   < ∞ for all p ≥ 2 .
In order to avoid the repetition of similar arguments depending whether we consider Err(h) 

Err(h) 2 θ ≤ C L h + E |Y θ -Ȳθ | 2 + R(Y ) π S 2 + R(Z) π H 2 + E (τ ∨τ )∧θ τ ∧τ ∧θ ξ L + 1 τ <τ Z s 2 ds .
Let us first make the following Remark which will be of important use below.

Remark 4.2. Let ϑ ≤ θ Pa.s. be two stopping times with values in π and H be some adapted process in S 2 . Then, recalling that t i+1t i = h, it follows from (2.7) and Jensen's inequality that

E θ ϑ H φ(s) Zφ(s) 2 ds = i<n E ti+1 ti 1 ϑ≤ti<θ H ti E h -1 ti+1 ti Zu du | F ti 2 ds ≤ i<n E ti+1 ti 1 ϑ≤ti<θ H ti h -1 ti+1 ti Zu 2 duds ≤ E θ ϑ H φ(s) Zs 2 ds .
By definition of Ẑ, see (1.5), the same inequality holds with ( Ẑ, Z) or ( Ẑ -Z, Z -Z) in place of ( Z, Z). This remark will allow us to control Z -Zφ through Z -Z and Z -Ẑφ , see ( 

:= E |Y t∧θ -Ȳt∧θ | 2 + ti+1∧θ t∧θ Z s -Zs 2 ds = E |Y ti+1∧θ -Ȳti+1∧θ | 2 + E 2 ti+1∧θ t∧θ (Y s -Ȳs ) 1 s<τ f (Θ s ) -1 s<τ f ( Θφ(s) ) ds ,
where the martingale terms cancel thanks to Proposition 4.1 and Remark 4.1, and where Θ := (X, Y, Z) and Θ := ( X, Ȳ , Z). Using the inequality 2ab ≤ a 2 + b 2 , we then deduce that, for α > 0 to be chosen later on,

∆ θ t,ti+1 ≤ E |Y ti+1∧θ -Ȳti+1∧θ | 2 + α E ti+1∧θ t∧θ |Y s -Ȳs | 2 ds + 2α -1 E ti+1∧θ t∧θ 1 s<τ f (Θ s ) -f ( Θφ(s) ) 2 ds + ti+1∧θ t∧θ 1 τ ≤s<τ (f (Θ s )) 2 ds + 2α -1 E ti+1∧θ t∧θ 1 τ ≤s<τ (f (Θ s )) 2 ds .
Recall from Remark 2.2 that Z = 0 on ]τ, T ]. Since Y t = g(τ, X τ ) on {t ≥ τ }, we then deduce from (HL) and Proposition 4.1 that

∆ θ t,ti+1 ≤ E |Y ti+1∧θ -Ȳti+1∧θ | 2 + α E ti+1∧θ t∧θ |Y s -Ȳs | 2 ds + C L α -1 E h |Y ti∧θ -Ȳti∧θ | 2 + ti+1∧θ t∧θ |Y s -Y φ(s) | 2 ds + C L α -1 E ti+1∧θ t∧θ h + Z s -Ẑφ(s) 2 + Ẑφ(s) -Zφ(s) 2 ds + C L α -1 E ti+1∧θ t∧θ (ξ L 1 τ ∧τ≤s≤τ ∨τ + 1 τ ≤s<τ Z s 2 )ds . (4.1)
It then follows from Gronwall's Lemma that

E |Y t∧θ -Ȳt∧θ | 2 ≤ (1 + C α L h)E |Y ti+1∧θ -Ȳti+1∧θ | 2 + (C L α -1 + C α L h)E h |Y ti∧θ -Ȳti∧θ | 2 + ti+1∧θ t∧θ |Y s -Y φ(s) | 2 ds + (C L α -1 + C α L h)E ti+1∧θ t∧θ h + Z s -Ẑφ(s) 2 + Ẑφ(s) -Zφ(s) 2 ds + (C L α -1 + C α L h)E ti+1∧θ t∧θ (ξ L 1 τ ∧τ≤s≤τ ∨τ + 1 τ ≤s<τ Z s 2 )ds . (4.2)
Plugging (4.2) in (4.1) applied with t = t i , using Remark 4.2, taking α > 0 large enough, depending on the constants C L , and h small leads to

∆ θ ti,ti+1 ≤ (1 + C L h)E |Y ti+1∧θ -Ȳti+1∧θ | 2 + C L E ti+1∧θ ti∧θ h + |Y s -Y φ(s) | 2 + Z s -Ẑφ(s) 2 ds + C L E ti+1∧θ ti∧θ (ξ L 1 τ ∧τ ≤s≤τ ∨τ + 1 τ ≤s<τ Z s 2 )ds .
This implies that

∆ θ := max i<n E |Y ti∧θ -Ȳti∧θ | 2 + E θ 0 Z s -Zs 2 ds ≤ C L E |Y θ -Ȳθ | 2 + h + R(Y ) π S 2 + R(Z) π H 2 + C L E ξ L |τ ∧ θ -τ ∧ θ| + θ 0 1 τ ≤s<τ Z s 2 ds .
We conclude the proof by using Remark 4.2 again to obtain

E θ 0 Z s -Zφ(s) 2 ≤ C L E θ 0 Ẑφ(s) -Zφ(s) 2 ds + E T 0 Z s -Ẑφ(s) 2 ds ≤ C L E θ 0 Z s -Zs 2 ds + E T 0 Z s -Ẑφ(s) 2 ds (4.3)
which implies the required result, by the definition of Err(h) 2 θ in (1.4). 2

The above result implies the first estimate of Proposition 3.1.

Proof of (3.1) of Proposition 3.1. It suffices to apply Proposition 4.2 for θ = T and observe that the Lipschitz continuity of g implies that

E |g(τ, X τ ) -g(τ , Xτ )| 2 ≤ C L E |τ -τ | 2 + X τ -Xτ 2 + τ ∨τ τ ∧τ b(X s )ds + τ ∨τ τ ∧τ σ(X s )dW s 2 where |τ -τ | 2 ≤ T |τ -τ |, E X τ -Xτ 2 ≤ C L h by Proposition 4.1, and 
E τ ∨τ τ ∧τ b(X s )ds + τ ∨τ τ ∧τ σ(X s )dW s 2 ≤ E [ξ L |τ -τ |]
by Doob's inequality, (HL) and Proposition 4.1 again. 2

In order to prove (3.2) of Proposition 3.1, we need the following easy Lemma.

Lemma 4.1. Let (HL) hold. Then,

max i<n Ȳti + √ h Zti ≤ ξ L and Ȳ S 2 + Zφ H 2 + Z H 2 ≤ C L . (4.4)
Proof. The first bound follows from the same arguments as in the proof of Lemma 3.3 in [START_REF] Bouchard | Discrete-Time Approximation and Monte-Carlo Simulation of Backward Stochastic Differential Equations[END_REF], after noticing that the boundedness assumption on b and σ can be relaxed for our result. Since, by (2.6),

Ȳt = E Ȳti+1 | F t + 1 ti<τ (t i+1 -t)f ( Xti , Ȳti , Zti ) on [t i , t i+1 ]
, combining Jensen's inequality with (HL), the first inequality of (4.4) and Proposition 4.1 imply that

sup t≤T E | Ȳt | 2 ≤ 2 max i<n E | Ȳti+1 | 2 + 2h 2 max i≤n E f ( Xti , Ȳti , Zti ) 2 ≤ C L . (4.5) 
Applying Itô's Lemma to Ȳ 2 , using the inequality ab ≤ a 2 + b 2 for a, b ∈ R, (HL), (4.5) and Proposition 4.1 then leads to

E Ȳ 2 t∧τ + E τ t∧τ Zs 2 ds = E g(τ , Xτ ) 2 + τ t∧τ 2 Ȳs f ( Xφ(s) , Ȳφ(s) , Zφ(s) )ds ≤ C L 1 + α + α -1 + α -1 E τ t∧τ Zφ(s) 2 ds ,
for all α > 0. By Remark 4.2, this shows that 

E τ 0 Zφ(s) 2 ds ≤ E τ 0 Zs 2 ds ≤ C L 1 + α + α -1 + α -
≤ C L h + E |Y τ+∧τ -Ȳτ+∧τ | 2 + R(Y ) π S 2 + R(Z) π H 2 .
It remains to show that

E | Ȳτ+∧τ -Y τ+∧τ | 2 ≤ C L h + E E ξ L |τ -τ | | F τ+∧τ 2 + E 1 τ <τ E τ τ Z s ds | F τ 2 . (4.6)
Since f is L-Lipschitz continuous under (HL), we can find an R d -valued adapted process χ which is bounded by L and satisfies

f ( Xφ(s) , Ȳφ(s) , Zφ(s) ) = f ( Xφ(s) , Ȳφ(s) , 0) + χ φ(s) , Zφ(s) (4.7) on [0, T ]. Set H t := E t 0 1 τ+≤s<τ χ φ(s) dW s , t ≤ T ,
where E stands for the usual Doléans-Dade exponential martingale, and define Q ∼ P by dQ/dP = H T . It follows from Girsanov's theorem that

W Q = W - • 0 1 τ+≤s<τ χ φ(s) ds
is a Q-Brownian motion. Now, observe that, by (4.7) and (2.6),

Y t = g(τ, X τ ) + τ t∧τ f (X s , Y s , Z s )ds - τ t∧τ Z s dW Q s (4.8) Ȳt = g(τ , Xτ ) + τ t∧τ f ( Xφ(s) , Ȳφ(s) , Zφ(s) ) -1 τ+≤s χ φ(s) , Zs ds - τ t∧τ Zs dW Q s .(4.9)
In view of (4.7), (4.8), (4.9), it then suffices to show that

E E Q g(τ , Xτ ) -g(τ, X τ ) | F τ+∧τ 2 ≤ C L h + E E ξ L |τ -τ | | F τ+∧τ 2 , (4.10) 
E   1 τ+<τ E Q τ τ+ f ( Xφ(s) , Ȳφ(s) , 0)ds | F τ+ 2   ≤ E E ξ L (|τ -τ | + h) | F τ+∧τ 2 , (4.11) E   1 τ+<τ E Q τ τ+ χ φ(s) , Zφ(s) -Zs ds | F τ+ 2   ≤ C L h , (4.12 
)

E 1 τ <τ+ E Q τ τ f (X s , Y s , Z s )ds | F τ 2 ≤ C L h + E E ξ L |τ -τ | | F τ+∧τ 2 + C L E 1 τ <τ E τ τ Z s ds | F τ 2 . (4.13)
We start with the first term. By using (HL), applying Itô's Lemma to (g(t, X t )) t≥0 between τ and τ , using Proposition 4.1, the bound on χ as well as standard estimates (recall (Hg) and Proposition 4.1), we easily check that on {τ

+ > τ } ⊂ {τ > τ } E Q g(τ, X τ ) -g(τ , Xτ ) | F τ ≤ C L X τ -Xτ + E Q τ τ 1 τ+≤s<τ χ φ(s) σ * , Dg + Lg (s, X s )ds | F τ ≤ C L X τ -Xτ + E [ξ L |τ + -τ | | F τ ] .
Similarly, on {τ + < τ },

E Q g(τ + , X τ+ ) -g(τ , Xτ ) | F τ+ ≤ C L X τ+ -Xτ+ + E ξ L |τ + -τ | | F τ+ .
We then conclude the proof of (4.10) by appealing to (HL) and Proposition 4.1 to obtain 

E X τ+ -Xτ+ 2 + X τ -Xτ 2 + E g(τ + , X τ+ ) -g(τ, X τ ) 2 ≤ C L h , recall that 0 ≤ τ + -τ ≤ h.
+ < τ }, E Q τ τ+ χ φ(s) , Zφ(s) -Zs ds | F τ+∧τ = E τ τ+ H s χ φ(s) , Zφ(s) -Zs ds | F τ+ = E τ τ+ H φ(s) χ φ(s) , h -1 φ(s)+h φ(s) Zu du -Zs ds | F τ+ +E τ τ+ (H s -H φ(s) ) χ φ(s) , Zφ(s) -Zs ds | F τ+
and, since τ and τ + take values in π,

τ τ+ H φ(s) χ φ(s) , h -1 φ(s)+h φ(s)
Zu du -Zs ds = 0 .

On the other hand, the Cauchy-Schwartz inequality and the boundedness of χ imply that

E τ τ+ (H s -H φ(s) ) χ φ(s) , Zφ(s) -Zs ds | F τ+∧τ ≤ C L E τ τ+ (H s -H φ(s) ) 2 ds | F τ+∧τ 1 2 E τ τ+ Zφ(s) -Zs 2 ds | F τ+∧τ 1 2 ≤ ξ L h 1 2 E τ τ+ Zφ(s) -Zs 2 ds | F τ+∧τ 1 2
.

Recalling Lemma 4.1 and combining the above inequalities leads to (4.12). The last term (4.13) is easily controlled by using (HL), Remark 2.2, and Proposition 4.1. 2

5. Exit time approximation error: Proof of Theorem 3.1

In this section, we provide the proof of Theorem 3.1. We start with a partial argument which essentially allows to reduce to the case where m = 1, i.e. O has no corners, by working separately on the exit times of the different domains O ℓ :

τ ℓ + := inf{t ∈ π : ∃ s ≤ t s.t. X s / ∈ O ℓ } ∧ T and τ ℓ := inf{t ∈ π : Xt / ∈ O ℓ } ∧ T .
We shall prove below the following Proposition.

Proposition 5.1. Assume that (HL), (D1) and (C) hold. Then, for each ε > 0,

E E |τ ℓ + -τ ℓ | | F τ ℓ + ∧τ ℓ 2 ≤ C ε L h 1-ε , ∀ 1 ≤ ℓ ≤ m . (5.1) 
It implies the statements of Theorem 3.1.

Proof of Theorem 3.1. Since τ + = min ℓ≤m τ ℓ + and τ = min ℓ≤m τ ℓ , we have

E |τ + -τ | | F τ+∧τ ≤ m ℓ=1 E |τ ℓ + -τ ℓ | | F τ ℓ + ∧τ ℓ 1 τ+=τ ℓ + <τ + 1 τ =τ ℓ ≤τ+
which combined with (5.1) leads to

E E |τ -τ | | F τ+∧τ 2 ≤ C ε L h 1-ε , (5.2) 
since |τ +τ | ≤ h. This leads to the second assertion of Theorem 3.1. On the other hand, given a positive random variable ξ satisfying E [ξ p ] ≤ C p L for all p ≥ 1, we deduce from Hölder's inequality that

E ξ |τ -τ | | F τ+∧τ 2 ≤ ξ ε L E |τ -τ | 1 1-ε | F τ+∧τ 2(1-ε) ≤ ξ ε L T 2ε E |τ -τ | | F τ+∧τ 2(1-ε)
and

E ξ E ξ |τ -τ | | F τ+∧τ 2 ≤ C ε L E E |τ -τ | | F τ+∧τ 2 1-ε .
In view of (5.2), this leads to the first assertion of Theorem 3.1, after possibly changing ε. 2

The rest of this section is devoted to the proof of (5.1) for some fixed ℓ. We first provide an a-priori control on the difference between τ ℓ + and τ ℓ . We use the standard idea that consists in introducing a test function on which we can apply Itô's Lemma between τ ℓ + and τ ℓ so that the Lebesgue integral term provides an upper bound for the difference between these two times, see e.g. Lemma 3.1 Chapter 3 in [START_REF] Freidlin | Functional integration and partial differential equations[END_REF] for an application to the construction of upper bounds for the moments of the first exit time of a uniformly elliptic diffusion from a bounded domain.

To this end, we introduce the family of test functions

F ℓ := d 2 ℓ /γ , 1 ≤ ℓ ≤ m ,
for some γ > 0 to be fixed below. Here, d ℓ is a C 2 (R d ) function which coincides with the algebraic distance to ∂O ℓ on a neighborhood of ∂O ℓ and such that

O ℓ := {x ∈ R d : d ℓ (x) > 0} and ∂O ℓ := {x ∈ R d : d ℓ (x) = 0} .
The existence of such a map is guaranteed by the smoothness assumption (D1), see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF].

Observe that, after possibly changing L and considering a suitable extension of d ℓ outside of a neighbourhood of the compact boundary ∂O ℓ , we can assume that

d ℓ + Dd ℓ + D 2 d ℓ ≤ L on R d . (5.3) 
Observe that

LF ℓ = 1 γ 2 b, n ℓ + Tr aD 2 d ℓ d ℓ + Tr [a(n ℓ ) * n ℓ ] (5.4) 
where n ℓ := Dd ℓ coincides with the unit inward normal for x ∈ ∂O ℓ , recall (D1).

In view of (HL), (D1), (5.3) and (C), there is some C L > 0 such that, for each 1 ≤ ℓ ≤ m,

LF ℓ ≥ 1 γ (-C L d ℓ + n ℓ a(n ℓ ) * ) ≥ 1 and n ℓ a(n ℓ ) * ≥ L -1 /2 on B(∂O ℓ , r) (5.5) 
if we choose r > 0 and γ > 0 small enough, but depending only on L. For later use, also observe that, after possibly changing r, one can actually choose it such that n ℓ (x) a(y)n ℓ (x) * ≥ L -1 /2 for all x, y ∈ B(∂O ℓ , r) s.t. xy ≤ r .

(5.6)

We now fix r, γ > 0 such that (5.5) and (5.6) hold and define the sets

A ℓ := {X s ∈ B(∂O ℓ , r) , ∀ s ∈ [τ ℓ , τ ℓ + ]} , B ℓ := {|d ℓ (X τ ℓ + )| ≤ h 1 2 -η } Āℓ := { Xs ∈ B(∂O ℓ , r) , ∀ s ∈ [τ ℓ + , τ ℓ ]} , Bℓ := {|d ℓ ( Xτ ℓ )| ≤ h 1 2 -η } ,
for some η ∈ (0, 1/4) to be chosen later on. Observe that A ℓ (resp. Āℓ ) is well defined on

{τ ℓ ≤ τ ℓ + } (resp. {τ ℓ + ≤ τ ℓ }).
We can now provide our first control on |τ ℓ +τ ℓ |. Recall that ξ ε L (ξ L if it does not depend on some extra parameter ε) denotes a positive random variable whose value may change from line to line but satisfies

E [|ξ ε L | p ] ≤ C ε,p L for all p ≥ 1.
Lemma 5.1. Assume that (HL) and (D1) hold. Then, for each ε ∈ (0, 1),

E |τ ℓ + -τ ℓ | | F τ ℓ + ∧τ ℓ ≤ ξ ε L h 1 2 + (T -τ ℓ ) 1 2 P [(A ℓ ∩ B ℓ ) c | F τ ℓ ] 1-ε 1 {τ ℓ + >τ ℓ } + (T -τ ℓ + ) 1 2 P ( Āℓ ∩ Bℓ ) c | F τ ℓ + 1-ε 1 {τ ℓ + <τ ℓ } for each 1 ≤ ℓ ≤ m.
Proof. 1. We first work on the event {τ ℓ + > τ ℓ }. It follows from (5.5) and Itô's Lemma that

E τ ℓ + -τ ℓ | F τ ℓ ≤ E 1 A ℓ ∩B ℓ τ ℓ + τ ℓ LF ℓ (X s )ds | F τ ℓ + (T -τ ℓ ) P [(A ℓ ∩ B ℓ ) c | F τ ℓ ] ≤ E 1 A ℓ ∩B ℓ τ ℓ + τ ℓ LF ℓ (X s )ds + τ ℓ + τ ℓ DF ℓ (X s )σ(X s )dW s | F τ ℓ -E 1 A ℓ ∩B ℓ τ ℓ + τ ℓ DF ℓ (X s )σ(X s )dW s | F τ ℓ + (T -τ ℓ ) P [(A ℓ ∩ B ℓ ) c | F τ ℓ ] ≤ γ -1 E (d 2 ℓ (X τ ℓ + ) -d 2 ℓ (X τ ℓ ))1 A ℓ ∩B ℓ | F τ ℓ + E 1 (A ℓ ∩B ℓ ) c τ ℓ + τ ℓ DF ℓ (X s )σ(X s )dW s | F τ ℓ + (T -τ ℓ ) P [(A ℓ ∩ B ℓ ) c | F τ ℓ ]
where, by Hölder's and Burkholder-Davis-Gundy's inequality, the Lipschitz continuity of σ and DF ℓ (see (HL) and (5.3)) and Proposition 4.1,

E 1 (A ℓ ∩B ℓ ) c τ ℓ + τ ℓ DF ℓ (X s )σ(X s )dW s | F τ ℓ ≤ ξ ε L (T -τ ℓ ) 1 2 P [(A ℓ ∩ B ℓ ) c | F τ ℓ ] 1-ε
for all ε ∈ (0, 1). We now recall that |d ℓ (X

τ ℓ + )| ≤ h 1 2 -η on B ℓ , which implies E (d 2 ℓ (X τ ℓ + ) -d 2 ℓ (X τ ℓ ))1 A ℓ ∩B ℓ | F τ ℓ ≤ E d 2 ℓ (X τ ℓ + )1 A ℓ ∩B ℓ | F τ ℓ ≤ h 1-2η .
In view of the above inequalities, this provides the required estimate on the event set {τ ℓ + > τ ℓ } since η < 1/4. 2. We now work on the event {τ ℓ + < τ ℓ }. By Proposition 4.1,

E 1 Āℓ ∩ Bℓ τ ℓ τ ℓ + L Xφ(s) F ℓ ( Xs ) -L Xs F ℓ ( Xs ) ds | F τ ℓ + ≤ ξ L h 1 2 ,
with the notation L y F ℓ := ∂ t F ℓ + b(y), DF ℓ + 1 2 Tr a(y)D 2 F ℓ , so that L Xs F ℓ ( Xs ) = LF ℓ ( Xs ). Arguing as above, it follows that, on {τ ℓ > τ ℓ + },

E τ ℓ -τ ℓ + | F τ ℓ + ≤ ξ L h 1 2 + γ -1 E (d 2 ℓ ( Xτ ℓ ) -d 2 ℓ ( Xτ ℓ + ))1 Āℓ ∩ Bℓ | F τ ℓ + + E 1 ( Āℓ ∩ Bℓ ) c τ ℓ τ ℓ + DF ℓ ( Xs )σ( Xφ(s) )dW s | F τ ℓ + + (T -τ ℓ + ) P ( Āℓ ∩ Bℓ ) c | F τ ℓ + ≤ ξ L h 1 2 + γ -1 h 1 2 + ξ ε L (T -τ ℓ + ) 1 2 P ( Āℓ ∩ Bℓ ) c | F τ ℓ + 1-ε . 2 
It remains to control the different terms that appear in the upper bound of Lemma 5.1.

For notational convenience, we now introduce the sets (recall that 0 < η < 1/4)

E ℓ := {d ℓ (X τ ℓ ) ≤ h 1 2 -η } and Ēℓ := {d ℓ ( Xτ ℓ + ) ≤ h 1 2 -η } , 1 ≤ ℓ ≤ m .
Remark 5.1. Observe that

P E c ℓ ∩ {τ ℓ < τ ℓ + } ≤ P E c ℓ ∩ {τ ℓ < T } ≤ P {d ℓ (X τ ℓ ) -d ℓ ( Xτ ℓ ) ≥ h 1 2 -η } ∩ {τ ℓ < T } ,
since d ℓ ( Xτ ℓ ) ≤ 0 on {τ ℓ < T }. Using (5.3), Tchebychev's inequality and Proposition 4.1, we then deduce that, for each ε ∈ (0, 1), there is C ε L > 0 such that

P E c ℓ ∩ {τ ℓ < τ ℓ + } ≤ C ε L h 1-ε .
Similarly, if τ ℓ denotes the first exit time of (t, X t ) t≥0 from [0, T ) × O ℓ , we have

P Ēc ℓ ∩ {τ ℓ > τ ℓ + } ≤ P {d ℓ ( Xτ ℓ + ) -d ℓ (X τ ℓ + ) ≥ 1 2 h 1 2 -η } ∩ {d ℓ (X τ ℓ + ) ≤ 1 2 h 1 2 -η } ∩ {τ ℓ + < T } + P {d ℓ (X τ ℓ + ) -d ℓ (X τ ℓ ) > 1 2 h 1 2 -η } ∩ {τ ℓ + < T } ≤ C ε L h 1-ε ,
where the last inequality follows from Tchebychev's inequality, Proposition 4.1 and the fact that τ ℓ +τ ℓ ≤ h. Note that the term d ℓ (X τ ℓ + )d ℓ (X τ ℓ ) could be controlled by Bernstein type inequalities in order to avoid the explosion of the constant with ε. However, to the best of our knowledge, such inequalities are not available in the existing literature for the term

d ℓ ( Xτ ℓ + ) -d ℓ (X τ ℓ +
) and Tchebychev's inequality remains the most natural tool to apply here.

Combining the above Remark with the next two technical Lemmas allows to control the right hand-side terms in the upper bound of Lemma 5.1. Thus, the statement of Proposition 5.1 is a direct consequence of Lemma 5.1 combined with Remark 5.1, Lemma 5.2 and Lemma 5.3 below, applied for η small enough. Lemma 5.2. Assume that (HL), (D1) and (C) hold. Then, for each ε ∈ (0, 1),

P [A c ℓ | F τ ℓ ] 1 E ℓ ∩{τ ℓ + >τ ℓ } + P Āc ℓ | F τ ℓ + 1 Ēℓ ∩{τ ℓ + <τ ℓ } ≤ ξ ε L h ( 1 2 -η)(1-ε) , ∀ ℓ ≤ m . (5.7)
Lemma 5.3. Assume that (HL), (D1) and (C) hold. Then, for each ε ∈ (0, 1),

P [A ℓ ∩ B c ℓ | F τ ℓ ] 1 E ℓ ∩{τ ℓ + >τ ℓ } + P Āℓ ∩ Bc ℓ | F τ ℓ + 1 Ēℓ ∩{τ ℓ + <τ ℓ } ≤ ξ ε L h ( 1 2 -η)(1-ε) T -τ ℓ ∧ τ ℓ + , ∀ ℓ ≤ m .
(5.8)

Proof of Lemma 5.2. 1. We first prove the bound for the first term. Let V be defined by V t := d ℓ (X τ ℓ +t ) for t ≥ 0 and let ϑ y be the first time when V reaches y ∈ R.

Using A c ℓ = A c ℓ ∩ ({ϑ 0 ≥ ϑ r } ∪ {ϑ 0 < ϑ r }), we deduce that on {τ ℓ + > τ ℓ } ∩ E ℓ P [A c ℓ | F τ ℓ ] ≤ P ϑ 0 ≥ ϑ r | F τ ℓ + P { sup s∈[τ ℓ ,τ ℓ + ] |d ℓ (X s )| ≥ r} ∩ {τ ℓ < T } | F τ ℓ ,
where, by (5.3), Tchebychev's inequality and Proposition 4.1, on {τ ℓ + > τ ℓ } ⊂ {τ ℓ > τ ℓ },

P { sup s∈[τ ℓ ,τ ℓ + ] |d ℓ (X s )| ≥ r} ∩ {τ ℓ < T } | F τ ℓ ≤ r -2 E sup s∈[τ ℓ ,τ ℓ + ] |d ℓ (X s ) -d ℓ (X τ ℓ )| 2 | F τ ℓ ≤ ξ L h , recall that τ ℓ + -τ ℓ ≤ h.
It remains to provide a suitable bound for P ϑ 0 ≥ ϑ r | F τ ℓ . From now on, we assume, without loss of generality, that 2h 1 2 -η ≤ r .

(5.9)

Set ϑ := ϑ 0 ∧ ϑ r . Thanks to (C) and (HL), we can define Q ∼ P by the density

H = E τ ℓ +ϑ - • 0 1 E ℓ 1 s≥τ ℓ (n ℓ σ)(X s )((n ℓ an * ℓ )(X s )) -1 Ld ℓ (X s )dW s .
Let

W Q := W + 1 [τ ℓ ,∞) 1 E ℓ (τ ℓ +ϑ)∧• τ ℓ (n ℓ σ) * (X s )((n ℓ an * ℓ )(X s )) -1 Ld ℓ (X s )ds
be the Brownian motion associated to Q by Girsanov's Theorem. We have

V t∧ϑ = V 0 + τ ℓ +t∧ϑ τ ℓ n ℓ (X s )σ(X s )dW Q s on E ℓ . Set Λ t := τ ℓ +t τ ℓ n ℓ (X s∧(τ ℓ +ϑ) )σ(X s∧(τ ℓ +ϑ) ) 2 ds .
By the Dambis-Dubins-Schwarz theorem, see Theorem 4.6 Chapter 3 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF], there exists a one dimensional Q-Brownian motion Z such that

V t∧ϑ = V 0 + Z Λ t∧ϑ on E ℓ ∩ {τ ℓ + > τ ℓ } = {V 0 ≤ h 1 2 -η , τ ℓ + > τ ℓ } .
This implies that

Q ϑ 0 ≥ ϑ r | F τ ℓ ≤ h 1 2 -η /r on E ℓ ∩ {τ ℓ + > τ ℓ } ,
see e.g. Exercise 8.13 Chapter 2.8 in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]. We conclude by using Hölder's inequality and (5.3).

2. The bound for the second term in (5.7) is derived similarly. We now write

V t := d ℓ ( Xτ ℓ + +t ) , t ≥ 0 .
As above, we denote by ϑ y the first time when V reaches y ∈ R and observe that, by (5.9),

P Āc ℓ | F τ ℓ + ≤ P ϑ -h 1 2 -η > ϑ r | F τ ℓ + + P sup s∈[τ ℓ ,τ ℓ +h] |d ℓ ( Xs ) -d ℓ ( Xτ ℓ )| > h 1 2 -η | F τ ℓ + where τ ℓ := τ ℓ + + ϑ -h 1 2
-η , and, by (5.3), Tchebychev's inequality and Proposition 4.1,

P sup s∈[τ ℓ ,τ ℓ +h] |d ℓ ( Xs ) -d ℓ ( Xτ ℓ )| > h 1 2 -η | F τ ℓ + ≤ ξ η L h .
In order to bound the term P ϑ -h 1 2

-η > ϑ r | F τ ℓ + , we observe that (5.6) imply that, for h small enough,

n ℓ ( Xs )σ( Xφ(s) ) ≥ L -1 2 / √ 2 on Ēℓ ∩ {s ∈ [τ ℓ + , θ ℓ ]} ∩ { Xs -Xφ(s) ≤ r} ,
where θ ℓ := inf{t ≥ τ ℓ + : Xt / ∈ B(∂O ℓ , r)} ∧ T . Moreover, it follows from Proposition 4.1 that

P sup s≤T Xs -Xφ(s) > r ≤ C L r -4 h .
Up to obvious modifications, this allows us to reproduce the arguments of Step 1 on the event set Ēℓ .

Proof of Lemma 5.3. We only prove the bound for the first term. The second one can be derived from similar arguments (see step 2 in the proof of Lemma 5.2). We use the notations of the proof of Lemma 5.2. We first observe that, on E l ∩ {τ ℓ > τ ℓ },

P [A ℓ ∩ B c ℓ | F τ ℓ ] ≤ P A ℓ ∩ {ϑ 0 > (T -τ ℓ )} | F τ ℓ + P {τ ℓ < T } ∩ sup s∈[τ ℓ ,τ ℓ + ] |d ℓ (X s ) -d ℓ (X τ ℓ )| ≥ h 1 2 -η | | F τ ℓ ≤ P A ℓ ∩ { min t∈[0,T -τ ℓ ] Z Λt > -h 1 2 -η } | F τ ℓ + ξ η L h ,
where the second inequality follows from Tchebychev's inequality, (HL) and Proposition 4.1, recall that τ ℓ +τ ℓ ≤ h. Using Hölder's inequality, we then observe that

P A ℓ ∩ { min t∈[0,T -τ ℓ ] Z Λt > -h 1 2 -η } | F τ ℓ ≤ ξ ε L Q A ℓ ∩ { min t∈[0,T -τ ℓ ] Z Λt > -h 1 2 -η } | F τ ℓ 1-ε . Since, by (5.6), Λ T -τ ℓ ≥ (T -τ ℓ )(2L) -1 on A ℓ ∩ {ϑ 0 > (T -τ ℓ )} ∩ {τ ℓ < τ ℓ + } ⊂ A ℓ ∩ {τ ℓ < τ ℓ + = T } , we deduce from Chapter 2 of [18] that, on E ℓ ∩ {τ ℓ < τ ℓ + }, Q A ℓ ∩ { min t∈[0,T -τ ℓ ] Z Λt > -h 1 2 -η } | F τ ℓ ≤ Q min t∈[0,(T -τ ℓ )(2L) -1 ] Z t > -h 1 2 -η | F τ ℓ ≤ C L (T -τ ℓ ) -1 2 h 1 2 -η .
We conclude by combining the above estimates. 2

6. Regularity of the BSDE and the related PDE

Interpretation in terms of parabolic semilinear PDEs with Dirichlet boundary conditions

In this section, we denote by X t,x the solution of (1.1) with initial condition x ∈ Ō at time t ≤ T . We also denote by τ t,x the first exit time of (s, X t,x s ) s≥t from O × [0, T ) and write (Y t,x , Z t,x ) for the solution of (1.2) with (X t,x , τ t,x ) in place of (X, τ ). As usual the deterministic function (t, x) ∈ D → u(t, x) := Y t,x t can be related to the semilinear parabolic equation

0 = -Lu(t, x) -f (x, u(t, x), Du(t, x)σ(x)) , (t, x) ∈ O × [0, T ), u| ∂pD = g . (6.1) 
where we recall that L denotes the Dynkin operator associated to the diffusion X, Lψ := ∂ t ψ + b, Dψ + 1 2 Tr aD 2 ψ with a := σσ * , and

∂ p D := ([0, T ) × ∂O) ∪ ({T } × Ō)
is the parabolic boundary of D. Proposition 6.1. Let (HL), (D1), (D2), (C) and (Hg) hold. Then the function u has linear growth and is the unique continuous viscosity solution of (6.1) in the class of continuous solutions with polynomial growth.

A similar result is proved in [START_REF] Darling | BSDE with random terminal time[END_REF] but in the elliptic case. For the sake of completeness, we provide a slightly different complete proof of the viscosity property in the Appendix, where the standard associated comparison result leading to uniqueness is also stated.

Boundary modulus of continuity

Adapting some barrier techniques for PDEs, we first prove the following bound for the modulus of continuity on the boundary. Proposition 6.2. Let (HL), (D1), (D2), (C) and (Hg) hold. Then, there is

C L > 0 such that for all (t 0 , x 0 ) ∈ [0, T ) × ∂O, lim y∈O, y→x0 |u(t 0 , y) -u(t 0 , x 0 )| y -x 0 ≤ C L . (6.2) 
In particular, if the gradient of u exists at (t 0 , x 0 ), it is uniformly bounded.

Proof. Let (t 0 , x 0 ) ∈ [0, T )×∂O and A := [t 0 , T )×N , where N ⊂ O is an open set and x 0 ∈ ∂N . We only show that, for all y ∈ N ,

u(t 0 , y) -u(t 0 , x 0 ) y -x 0 ≤ C L . (6.3) 
The lower bound is obtained similarly. By (D2), there is ε > 0 and a family (e i ) i∈[ [1,d]] such that

x 0 + εe i ∈ N for all i ∈ [[1, d]] and span(e i , i ∈ [[1, d]]) = R d .
Thus, (6.2) implies the statement concerning the gradient, whenever it is well defined. We now prove (6.3). 1. Assume that there exists a smooth function ψ : Ā → R with first derivative bounded by

C L such that (a) ψ ≥ u on ∂ p A := ([t 0 , T ) × ∂N ) ∪ ({T } × N ). (b) Lψ(t, x) + f (x, ψ(t, x), Dψ(t, x)σ(x)) ≤ 0 for (t, x) ∈ A. (c) ψ(t 0 , x 0 ) = u(t 0 , x 0 ) = g(t 0 , x 0 ).
Using Proposition 6.1 and a standard maximum principle, see Lemma A.2 in the Appendix, we then derive that u ≤ ψ on Ā. In view of (c) this yields We specify the construction of the barrier function only for x 0 ∈ ∂O\B(C, L -1 ). Indeed, for x 0 ∈ B(C, L -1 ), assumption (C) ensures that the diffusion coefficient is uniformly elliptic in a neighborhood of x 0 . The expression of the barriers below can then be simplified. Namely, we do not need the additional localization with the cone, i.e. we can take κ = 0 in (6.6) below.

u(t 0 , y) -u(t 0 , x 0 ) y -x 0 ≤ ψ(t 0 , y) -ψ(t 0 , x 0 ) y -x 0 ≤ C L , ∀y ∈ N \ {x 0 } .
Let y := y(x 0 ) be the point of Ōc associated to x 0 by the exterior sphere property, see (D2). Set r := r(x 0 ) = y(x 0 )x 0 . Recall that, by assumption, B := B(y, r) satisfies B ∩ Ō = {x 0 } . It follows from (HL) and (C) that

a(x)n(x 0 ), n(x 0 ) ≥ L -1 /2 on the set D 1 := {x ∈ O : x -x 0 ≤ η L } (6.4) 
for some η L > 0 small enough, but depending only on L. For x ∈ O, we now set

d B (x) := d(x, ∂B) = x -y -r so that d B ∈ C 2 ( Ō) with Dd B (x) = x -y x -y , D 2 d B (x) = I d x -y - (x -y) * (x -y) x -y 3 (6.5) 
where I d denotes the identity matrix of M d . We now introduce a cone

K := {x ∈ R d : x -y, n(x 0 ) ≥ cos(θ) x -y }, θ ∈ [0, π/2]
and

D 2 := {x ∈ O : d B (x) ≤ δ} , δ > 0 ,
where δ ≤ δ L small enough to ensure D 2 ⊂ D 1 . We finally set N := O ∩ K ∩ D 2 and define the barrier function by

ψ(t, x) := g(t, x) + 4α(ϕ(x) 1/2 -δ 1/2 ) + κ x -y, n(x 0 ) 1 - x -y, n(x 0 ) x -y (6.6) for (t, x) ∈ [t 0 , T ] × N , where ϕ(x) := δ + d B (x)
. for some (α, κ) ∈ (0, ∞) 2 to be chosen later on.

∂O ∂D 1 ∂D 2 K y x n(x) θ Figure 1. Domain for the barrier 2.b. Since x 0 -y ∈ span(n(x 0 )), ψ(t 0 , x 0 ) = u(t 0 , x 0 ) = g(t 0 , x 0 ), so that (c) is satisfied. 2.c. Recall from the beginning of Step 2. that M := sup (t,x)∈[t0,T ]× D1 |u(t, x)| ∨ sup (t,x)∈[t0,T ]× D1 |g(t, x)| < ∞ . (6.7) 
On ∂O ∩ ∂N , ψ(t, x) ≥ g(t, x). On ∂D 2 ∩ ∂N , ψ(t, x) ≥ -M + 4α(2 1/2 -1)δ 1/2 . Thus, for α ≥ M 2(2 1/2 -1)δ 1/2 , (6.8) 
one has ψ(t, x) ≥ u(t, x) for (t, x) ∈ [t 0 , T ] × ∂D 2 ∩ ∂N . On ∂K ∩ ∂N , we have

ψ(t, x) ≥ -M + κ cos(θ) x -y (1 -cos(θ)) ≥ -M + κr cos(θ)(1 -cos(θ)) .
Hence, for

κ ≥ 2M r cos(θ)(1 -cos(θ)) , (6.9) 
we obtain that ψ(t, x) ≥ u(t, x) ∀(t, x) ∈ [t 0 , T ] × ∂K ∩ ∂N . This concludes the proof of (a). 

≤ C(1 + M + αϕ(x) -1/2 + κ(1 + r -1 )) - α 2 a(x) x -y x -y , x -y x -y ϕ(x) -3/2 + C α r ϕ(x) -1/2 ≤ C (1 + M + κ(1 + r -1 )) - α 2 ϕ(x) -3/2 a(x) x -y x -y , x -y x -y -C(1 + r -1 )ϕ(x) ,
recall (Hg), (6.5), (6.7) and (6.10). For a suitable angle of the cone θ, we shall show below that we can find C > 0 such that C-1 ≤ C L and

a(x) x -y x -y , x -y x -y ≥ C , ∀x ∈ N . (6.11) 
Recalling that ϕ(x) ≤ 2δ for x ∈ N ⊂ D 2 , we get

Θ(t, x) ≤ C(M + κ(1 + r -1 )) - α 2 ϕ(x) -3/2 C -2C(1 + r -1 )δ .
For δ := (1/4) C(C(1+r -1 )) -1 ∧δ L > 0, we then have Θ(t, x) ≤ C(M +κ(1+r -1 ))-Cα2 -7 2 δ -3 2 . It is then clear that (α, κ) can be chosen in order to satisfy (6.8), (6.9) and so that Θ(t, x) ≤ 0. This shows (b). It remains to prove (6.11). This is done by suitably choosing the angle of the cone K. Let Z ∈ ∂B(0, 1) be such that Z + y ∈ K. Introduce the basis (n(x 0 ), (n

⊥ i (x 0 )) i∈[[1,d-1]] ) where (n ⊥ i (x 0 )) i∈[[1,d-1]
] is an orthonormal basis of {n(x 0 )} ⊥ for the euclidean scalar product. Let (β i ) i∈ [[0,d-1]] denote the coefficients of Z in this basis, i.e. Z = β 0 n(x 0 ) + d-1 i=1 β i n ⊥ i (x 0 ) . One has, for all x ∈ N ,

a(x)Z, Z = β 2 0 a(x)n(x 0 ), n(x 0 ) + 2 d-1 i=1 β 0 β i a(x)n(x 0 ), n ⊥ i (x 0 ) + a(x) d-1 i=1 β i n ⊥ i (x 0 ), d-1 i=1 β i n ⊥ i (x 0 ) ≥ β 2 0 a(x)n(x 0 ), n(x 0 ) + 2 d-1 i=1 β 0 β i a(x)n(x 0 ), n ⊥ i (x 0 ) .
Since Z + y ∈ K and Z = 1, we must have β 0 ≥ cos θ, by definition of K, and therefore

|β i | ≤ sin(θ) for all i ∈ [[1, d -1]].
Hence, (6.4) and the above equation leads to

a(x)Z, Z ≥ cos 2 (θ) L -1 2 -2(d -1) sin(θ) sup x∈ N a(x) , ∀x ∈ N .
This yields (6.11) with C = L -1 cos 2 (θ)
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for θ small enough. 2 6.3. Representation and weak regularity of the gradient in the regular uniformly elliptic case

In the section, we strengthen the initial assumptions and work under: From now on, given a matrix M , we denote by M •j its j-th column, viewed as a column vector. 

Du(t, x) = E Du(τ t,x , X t,x τ t,x )∇X t,x τ t,x V t,x τ t,x + τ t,x t ∂ x f (Θ t,x s )∇X t,x s V t,x s ds (6.12)
where ∇X t,x is the first variation process of X t,x :

∇X t,x s = I d + d j=1 s t Dσ •j (X t,x v )∇X t,x v dW j v + s t Db(X t,x v )∇X t,x v dv , s ≥ t ,
and V t,x is defined by

V t,x s := exp s t ∂ y f (Θ t,x v )dv + s t ∂ z f (Θ t,x v )dW v - 1 2 s t ∂ z f (Θ t,x v ) 2 dv , s ≥ t ,
with Θ t,x = (X t,x , Y t,x , Z t,x ).

Proof. The result is obvious for (t, x) ∈ ∂D. We then assume from now on that (t, x) ∈ D. We derive from Theorems 12.16 and 12.10 in [START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF] and the definition of Hölder spaces at p. 46 of this reference that Du ∈ C 0 ( D). Let us consider the systems of differential equations obtained by formally differentiating the PDE (6.1) w.r.t. (x i ) i∈[ [1,d]] . For i = 1, . . . , d, we have

0 = ∂ t v i + b + σ * D z f (Θ) + 1 2 D x i a •i , Dv i + 1 2
Tr aD 2 v i (6.13)

+ D x i b i + D y f (Θ) + D z f (Θ), D x i σ •i v i + D x i f (Θ) + k =i h i,k , where h i,k = D x i b k + D z f (Θ), D x i σ •k D x k u + d l=1 D x i a kl D x k x l u
and Θ(t, x) = (x, u(t, x), Duσ(t, x)).

Given n large enough, set

O n := {x + B(0, n -1 ), x ∈ O c } c ⊂ O, T n := T -n -1 > 0 and D n := [0, T n ) × O n .
Note that by construction O n satisfies a uniform exterior sphere property (with radius 1/2n). Then, the PDE (6.13) on D n with the boundary condition D x i u on ∂ p D n = ([0, T n )×∂O n )∪({T n }× Ōn ) admits a unique C 0 ( Dn )∩C 1,2 (D n ) solution v i n , see Theorem 12.22 in [START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF]. Using the maximum principle, we can then identify D x i u and v i n on Dn by considering the PDE satisfied by ε

-1 (u(•, x+εe i )-u(•, x))-v i n (•, x) on Dn .
Here, e i is the i-th canonical basis vector of R d , see e.g. Theorem 10 Chapter 3 in [START_REF] Friedman | Partial Differential Equations of Parabolic Type[END_REF]. In particular, Du ∈ C 0 ( Dn )∩C 1,2 (D n ). By a usual localization argument, we then deduce from Itô's Lemma applied to Du(•, X t,x )∇X t,x V t,x , with (t, x) ∈ D n , that

Du(t, x) = E Du(τ n , X t,x τn )∇X t,x τn V t,x τn + τn t ∂ x f Θ t,x s ∇X t,x s V t,x s ds
where τ n := inf{s ∈ [t, T n ] : (s, X t,x s ) / ∈ D n }. Observe that lim n τ n = τ Pa.s. by continuity of X. We then derive the statement of the Proposition by sending n → ∞, using the a-priori smoothness of u, Du ∈ C 0 ( D), and the dominated convergence theorem. We can now prove Theorem 3.2 under the conditions (D'), (C') and (H'). Corollary 6.2. Theorem 3.2 holds under the conditions (D'), (C') and (H').

Proof. 1. Proof of (3.4) and (3.5). Recalling that u ∈ C 1,2 (D) ∩ C 1 ( D), see Proposition 6.3, we deduce from a standard verification argument that Z = Du(•, X)σ(X). Set (∇X, V ) := (∇X 0,X0 , V 0,X0 ) and observe that (∇X t,Xt s , V t,Xt s ) = (∇X s ∇X -1 t , V s V -1 t ) for s ≥ t, by the flow property. Thus, by Proposition 6.3,

Z t = E Du(τ, X τ )∇X τ V τ + τ t ∂ x f (Θ s ) ∇X s V s ds | F t σ(X t )(∇X t V t ) -1 , t ≤ τ . (6.14)
It then follows from Proposition 6.2 (boundedness of the gradient of u), (HL) and standard estimates that sup t≤τ Z t ≤ ξ L . This readily implies (3.5) 

, i.e. E ϑ θ Z s p ds | F θ ≤ E [ξ p L |ϑ -θ| | F θ ], p = 1, 2
)| ≤ C L |x -x ′ |. Moreover, for t ≤ t ′ ≤ T , u(t, x) -u(t ′ , x) = Y t,x t -u(t ′ , x) = Y t,x t -Y t,x t ′ + u(t ′ , X t,x t ′ ) -u(t ′ , x) .
The Lipschitz continuity of u in space (Corollary 6.1) and standard estimates on SDEs imply

that |E[u(t ′ , X t,x t ′ )-u(t ′ , x)]| ≤ C L |t -t ′ | 1 2 . On the other hand, E |Y t,x t -Y t,x t ′ | 2 ≤ C L (t ′ -t)
, by the above estimate. 3. Proof of (3.3). The bound on R(Y ) π S 2 follows from (3.4). Using (6.14) and exactly the same arguments as in the proof of Proposition 4.5 in [START_REF] Bouchard | Discrete time approximation of decoupled Forward-Backward SDE with jumps[END_REF], see also [START_REF] Ma | Path Regularity of Solutions to Backward Stochastic Differential Equations[END_REF], we deduce that

n-1 i=0 E ti+1 ti Z t -Z ti 2 dt ≤ C L h , which implies n-1 i=0 E ti+1 ti Z t -Ẑti 2 dt ≤ C L h since Ẑ is the best approximation of Z in L 2 (Ω × [0, T ]) by an element of H 2 which is constant on each time interval [t i , t i+1 ). 2 
6.4. Regularization procedure: proof of Theorem 3.2 in the general case

Step 1. Truncation of the domain: We first prove that Theorem 3.2 holds under the conditions (D1), (D2), (C') and (H').

Let φ be a C ∞ density function with compact support on R d . Given ε > 0, we define ∆

ε := ε -d φ(ε -1 •) ⋆ (d ∧ d ε -1
) + where d ε -1 denotes the algebraic distance to ∂B(X 0 , ε -1 ) and ⋆ denotes the convolution. Set O ε := {x ∈ R d : ∆ ε (x) > 0} and D ε := [0, T ) × O ε . It follows from the compact boundary assumption that ∂O ⊂ Ōε , for ε small enough. Note that O ε is bounded, even if O is not. Let (Y ε , Z ε ) be defined as in (1.2) with O ε in place of O and τ ε be the first exit time of (•, X) from D ε . Observe that, by continuity of X, τ ε → τ Pa.s. Since, by (Hg), (HL) and Theorem 1.5 in [START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of semilinear parabolic and elliptic PDE's of second order[END_REF],

Y -Y ε 2 S 2 + Z -Z ε 2 H 2 ≤ C L E |g(τ, X τ ) -g(τ ε , X τ ε )| 2 + τ ∨τ ε τ ∧τ ε f (X s , Y s , Z s ) 2 ds ≤ C L E τ ∨τ ε τ ∧τ ε (1 + X s 2 + |Y s | 2 + Z s 2 )ds ,
we deduce from Proposition 4.1 and a dominated convergence argument that Y -

Y ε 2 S 2 + Z - Z ε 2
H 2 → 0. Since the domain O ε satisfies (D'), we can apply Corollary 6.2 to (Y ε , Z ε ). Recalling that the associated constants depend only on L and are uniform in ε, we thus obtain the required controls on (Y, Z). Let u ε be the solution of (6.1) associated to D ε . The above stability result, applied to general initial conditions, implies that u ε → u pointwise on D. Corollary 6.2 thus implies that u satisfies (3.6).

Step 2. Regularization of the coefficients: We now prove that Theorem 3.2 holds under the conditions (D1), (D2), (C), (HL) and (Hg). For ε > 0, define b ε , σ ε and f ε by

(b ε , σ ε , f ε )(x, y, z) := (b, σ, f ) ⋆ ε -2d+1 φ(ε -1 (x, y, z)) where φ is a C ∞ density function with compact support on R d × R × R d . Let us consider the FBSDE    X ε t = x + t 0 b ε (X ε s )ds + t 0 σ ε (X ε s )dW s + √ ε Wt , Y ε t = g(τ ε , X ε τ ε ) + τ ε t∧τ ε f ε (X ε s , Y ε s , Z ε s )ds - τ ε t∧τ ε Z ε s dW s - τ ε t∧τ ε Zε s d Ws , (6.15) 
where ( Wt ) t≥0 is an additional d-dimensional Brownian motion independent of W and

τ ε := inf{s ≥ 0 : (s, X ε s ) ∈ D} .
This system satisfies the conditions of Step 1. Therefore, the estimates of Theorem 3.2 can be applied to (Y ε , Z ε ). Note that the associated constant depends only on L and are uniform in ε. Moreover, it follows from (HL) and Theorem 1.5 in [START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of semilinear parabolic and elliptic PDE's of second order[END_REF] that

Y -Y ε 2 S 2 + Z -Z ε 2 H 2 ≤ C L E |g(τ, X τ ) -g(τ ε , X ε τ ε )| 2 + T 0 X s -X ε s 2 ds + E τ ∨τ ε τ ∧τ ε (|f (X s , Y s , Z s )| + |f ε (X ε s , Y s , Z s )|) 2 ds + L ε .
Clearly, X ε → X in S 2 . Since f and g are Lipschitz continuous, f and f ε have linear growth and (X, X ε , Y, Z) is bounded in S 2 × S 2 × S 2 × H 2 , it suffices to check that τ ε → τ in probability to obtain the required controls on (Y, Z). This is implied by the non-characteristic boundary condition of (C), see e.g. the proof of Proposition 3 in [START_REF] Gobet | Exact approximation rate of killed hypoelliptic diffusions using the discrete Euler scheme[END_REF]. The control (3.6) is obtained by arguing as above. 2

Appendix: Proof of Proposition 6.1

In the following, we use the notations u * (t, x) = lim sup (s,y)∈D→(t,x) u(s, y) , u * (t, x) = lim inf (s,y)∈D→(t,x) u(s, y) , (t, x) ∈ D.

The statement of Proposition 6.1 is a direct consequence of Lemmas A.1 and A.2 below.

Lemma A.1. Let the conditions of Proposition 6.1 hold. Then, the function u has linear growth and u * (resp. u * ) is a viscosity subsolution (resp. supersolution) of (6.1) with the terminal conditions u * ≤ g (resp. u * ≥ g) on ∂ p D.

Proof. 1. The linear growth property property is an immediate consequence of Proposition 4.1.

2. It remains to prove that u * and u * are respectively sub-and supersolution of (6.1) with the boundary conditions u * ≤ g and u * ≥ g on ∂ p D. We concentrate on the supersolution property, the subsolution property would be derived similarly. The proof is standard, as usual we argue by contradiction. Let (t 0 , x 0 ) ∈ [0, T ] × Ō and ϕ ∈ C 2 b be such that 0 = min (t,x)∈ D(u *ϕ)(t, x) = (u *ϕ)(t 0 , x 0 ) where the minimum is assumed, w.l.o.g., to be strict on D. Assume that (-Lϕ(t 0 , x 0 )f (x 0 , ϕ(t 0 , x 0 ), Dϕσ(t 0 , x 0 ))) 1 (t0,x0)∈D + (ϕg)(t 0 , x 0 )1 (t0,x0)∈∂pD =: -2ζ < 0 . Let (t n , x n ) n be a sequence in D ∩ V η such that (t n , x n , u(t n , x n )) → (t 0 , x 0 , u * (t 0 , x 0 )). Let (X n , Y n , Z n ) be the solution of (1.1)-(1.2) associated to the initial conditions (t n , x n ) and define θ n as the first exit time of D ∩ V η by (•, X n ). By applying Itô's Lemma on φ and using (A.17 where χ is a bounded random variable satisfying χ ≥ ζ P-a.s. and η is an adapted process in L 2 such that η ≥ ζ dt×dP-a.e. Following the standard argument of the proof of Theorem 1.6 in [START_REF] Pardoux | Backward stochastic differential equations and viscosity solutions of semilinear parabolic and elliptic PDE's of second order[END_REF], we deduce that φ(t n , x n ) ≤ Y tn,xn tn -ζe -LT = u(t n , x n )-ζe -LT . Since φ(t n , x n )-u(t n , x n ) → 0, this leads to a contradiction.

2

We now state a comparison theorem for the PDE (6.1). The proof is quite standard, see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF], but we give it for the sake of completeness.

Lemma A.2. Let the conditions of Proposition 6.1 hold. Fix t 0 ∈ [0, T ) and N ⊂ O an open set. Let U (resp. V ) be an upper-semicontinuous subsolution (resp. lower-semicontinuous supersolution) with polynomial growth of (6.1) on A := [t 0 , T ) × N such that V ≥ U on ∂ p A := ([t 0 , T ) × ∂N ) ∪ ({T } × N ). Then, V ≥ U on Ā.

Proof. Fix ρ > 0 and observe Ũ and Ṽ defined by Ũ (t, x) = U (t, x)e ρt and Ṽ (t, x) = V (t, x)e ρt are sub-and supersolution of 0 = ρψ(t, x) -Lψ(t, x)e ρt f (x, e -ρt ψ(t, x), e -ρt Dψ(t, x)σ(x)) , (t, x) ∈ [t 0 , T ) × N .(A. [START_REF] Kobylanski | Backward Stochastic Differential Equations and Partial Differential Equations with quadratic growth[END_REF])

As usual we argue by contradiction and assume that sup (t,x)∈A ( Ũ (t, x) -Ṽ (t, x)) > 0. Define 

β

Proposition 4 . 1 .

 41 Let (HL) hold. Fix p ≥ 2. Let ϑ be a stopping time with values in [0, T ].

2 .

 2 It remains to construct a smooth function satisfying (a), (b) and (c). Recall that the spatial boundary ∂O is compact. Since u is continuous on D, see Proposition 6.1, the compactness assumption (D1) ensures the uniform boundedness of u in a neighborhood of [0, T ] × ∂O.

  2.d. It remains to show thatψ satisfies (b). Set Γ(x) := xy, n(x 0 ) 1 -xy, n(x 0 ) xy ,and observe that, for someC ≤ C L , DΓ(x) ≤ C , D 2 Γ(x) ≤ C/r (6.10)uniformly in x ∈ N . Define, Θ(t, x) := Lψ(t, x) + f (x, ψ(t, x), Dψ(t, x)σ(x))

  (D'): O is a C 2 bounded domain satisfying (D1) and (D2) for the constant L. (C'): a is uniformly elliptic with ellipticity constant L -1 . (H'): the coefficients b, σ, f and g satisfy (Hg)-(HL) and are uniformly C 2 ( D).

Proposition 6 . 3 (

 63 Representation of the gradient). Let the conditions (D'), (C') and (H') hold. Then, u ∈ C 0 ( D) ∩ C 1,2 (D), Du ∈ C 0 ( D) and for all (t, x) ∈ D

Corollary 6 . 1 .

 61 Let (D'), (C') and (H') hold. Then, Du ∞, D ≤ C L .

  Recall from (D2) that if x 0 ∈ ∂O then we can find an open ball B 0 ⊂ O c such that B0 ∩ Ō = {x 0 }. If x 0 ∈ ∂O, we denote by d B0 the algebraic distance to B 0 . On D, we setφ(t, x) = ϕ(t, x) -( √ Tt)1 t0=Td(x) 1 -d(x) η 1 x0∈∂O\B(C,L -1 ) -d B0 (x) 1 -d B0 (x) η 1 x0∈∂O∩B(C,L -1 ) , for some η > 0. Observe that (t 0 , x 0 ) is still a strict minimum of (u *φ) on V η ∩ D for some open neighborhood V η of (t 0 , x 0 ) on which (d B0 ∨ d) ≤ η/2 if x 0 ∈ ∂O.Without loss of generality, we can then assume thatu ≥ u * ≥ φ + ζ on ∂V η \ Dc , (A.16) while φ ≤ ϕ ≤ gζ on Vη ∩ ∂ p D , if (t 0 , x 0 ) ∈ ∂ p D . (A.17) Moreover, observe that for F equal to d or d B0 , D(F (1 -F/η)) = DF (1 -2η -1 F ) and D 2 (F (1 -F/η)) = (1 -2η -1 F )D 2 F -2η -1DF * DF where DF = 1. Thus, (C) implies that, for η and V η small enough,-L φf (•, φ, D φσ) ≤ -ζ < 0 on V η ∩ D . (A.18) 

  ), (A.18), (A.[START_REF] Gobet | Stopped diffusion processes: overshoots and boundary correction[END_REF]) and the identity u = g on ∂ p D, we getφ(t n , x n ) = -χ + u(θ n , X n θn ) + θn tn (f (X n s , φ(s, X n s ), D φσ(s, X n s ))η s )ds θn tn D φσ(s, X n s )dW s ,

  2 , where we denote by S 2 the set of real valued adapted continuous processes ξ satisfying ξ S 2 := E sup t≤T |ξ t | 2 < ∞ , and by H 2 the set of progressively measurable R d -valued processes ζ for which ζ H 2

	1
	2

  2 θ with θ = T or θ = τ + ∧ τ , we first state an abstract version of Proposition 3.1 for some stopping time θ with values in π. Proposition 4.2. Assume that b, σ and f satisfy (HL). Then, for all stopping time θ with values in π, we have

  3) below, which is a key argument in the proof of Proposition 4.2. Observe that the above inequality does not apply if ϑ and θ do not take values in π. This explains why it is easier to work with τ + instead of τ , i.e. work on Err(h) 2 τ+∧τ instead of Err(h) 2 τ ∧τ . Proof of Proposition 4.2. We adapt the arguments used in the proof of Theorem 3.1 in [4] to our setting. By applying Itô's Lemma to (Y -Ȳ ) 2 on [t ∧ θ, t i+1 ∧ θ] for t ∈ [t i , t i+1 ] and i < n,

	we first deduce from (1.2) and (2.6) that
	∆ θ t,ti+1

2

  Remark 6.1. Note that the various localizations in the previous proof are needed because we do not assume any compatibility condition on the parabolic boundary, i.

e. Lg + f (•, g, σDg) = 0 on ∂ p D. Otherwise, Theorem 12.14 in

[START_REF] Lieberman | Second Order Parabolic Differential Equations[END_REF] 

would give u ∈ C 1,2 ( D) which would allow to avoid the introduction of the subdomains O n .

Observe that, by Proposition 6.2 and the continuity of Du stated in Proposition 6.3, we have Du(τ t,x , X t,x τ t,x ) ≤ C L . The representation (6.12) and standard estimates then give Du ∞, D ≤ C L .

  . By Burkholder-Davis-Gundy's inequality, (HL) and Proposition 4.1, this also yieldsE sup t∈[θ,ϑ] |Y t -Y θ | 2p ≤ E [ξ p L |ϑ -θ| p ], p ≥ 12. Proof of(3.6). By the same arguments as above, we first obtain that |u(t, x)u(t, x ′

  , let (t n , x n , y n ) ∈ [t 0 , T ] × N 2 be a maximum point of ( Ũ (t, x) -Ṽ (t, y)ε(β(t, x) + β(t, y)) -|tt ε | 2 + xx ε 4 + n xy 2 .It is easy to check, see e.g. Proposition 3.7 in[START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF], thatŨ(t n , x n )-Ṽ (t n , y n ) → ( Ũ -Ṽ )(t ε , x ε ) and |t nt ε | 2 + x nx ε 4 + n x ny n 2 → 0 . (A.21)Since (t ε , x ε ) ∈ A, we can assume that (t n , x n ) ∈ A for all n ∈ N * , after possibly passing to a subsequence. It then follows from Ishii's Lemma, Theorem 8.3 in[START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF], that we can find real coefficients a n , b n and symmetric matrices X n and Y n such that (a n , p n , X n ) ∈ P+ N Ũ (t n , x n ) and (b n , q n , Y n ) ∈ P-N Ṽ (t n , y n ) ,

(t, x) := e -κt (1 + x 2p ) , (t, x) ∈ Ā for p ∈ N * such that (|U (t, x)| + |V (t, x)|)/(1 + x p ) is bounded on Ā, and κ > 0 to be chosen later on. For all ε > 0 small enough, we can then find (t ε , x ε ) ∈ Ā such that sup

(t,x)∈A ( Ũ (t, x) -Ṽ (t, x) -2εβ(t, x)) =: ( Ũ (t ε , x ε ) -Ṽ (t ε , x ε ) -2εβ(t ε , x ε )) > 0 . (A.20) Clearly, (t ε , x ε ) / ∈ ∂ p A since Ũ ≤ Ṽ on ∂ p A. For n ∈ N *

see [START_REF] Crandall | User's guide to viscosity solutions of second order Partial Differential Equations[END_REF] for the standard notations P+ N and P-N , where

with

where I d is the identity matrix of M d . Since Ũ and Ṽ are sub-and supersolution of (A. [START_REF] Kobylanski | Backward Stochastic Differential Equations and Partial Differential Equations with quadratic growth[END_REF]), it follows that

We then deduce from (HL), (A.22), (A.21), and standard computations that

Taking ρ > 2L and κ large enough so that Lβ + L σDβ ≤ -κ 2 exp(-κT ) on Ā, which is possible thanks to (HL), we finally obtain