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Atomistic calculations of structural and elastic properties of serpentine
minerals: the case of lizardite

Abstract The physical properties of the hydrous phyl-
losilicate lizardite have been investigated by atomistic
simulation using the GULP code based on transferable
semi-empirical interatomic potentials. Lizardite behav-
ior was first investigated during structure relaxation at
room temperature. The Helmholtz free energy is mini-
mum for an equilibrium structure that is in agreement
with experiment. The bulk, shear, and Young modulii
for lizardite were calculated along with the Poisson ra-
tio. From the shear and bulk modulii, we also calculated
translational and longitudinal acoustic wave velocities
that are important quantities for tectonophysics models.
As expected, lizardite is stiffer in the a direction parallel
to the layers than in the c perpendicular direction; the
variation of the unit cell parameters with pressure is in
good agreement with experiment. The cohesive energy
between two successive layers along c direction was
calculated at 0.33 eV (i.e., 0.11 eV per OH bond) in
good agreement with recent ab initio calculations. Upon
pressure and temperature variations, we evidenced that
structural changes are mainly pressure induced; pressure
being accommodated by a decrease of the c parameter
up to 10 GPa. We also found that the change of slope in
the derivative of the c cell parameter with respect to
pressure occurring around 2 GPa originates from the
bending of the interlayer hydroxyl groups with respect
to the layer normal direction.

Keywords Atomistic simulation Æ GULP Æ Serpentine
minerals Æ Bulk modulus

Introduction

Serpentine minerals are hydrous magnesium 1:1 phyl-
losilicates which can adopt various structural configu-
rations: lizardite exhibits flat independent not chemically
bonded layers (see Fig. 1), chrysotile is tubular, and
antigorite shows a corrugated structure (Wicks and
O’Hanley 1988). Serpentine minerals are of prime geo-
logical interest, as they are implied in several major
geodynamical processes including earthquakes (Hattori
et al. 2003). However, the scarcity of thermodynamic,
structural, or elastic data characterizing these minerals
makes difficult to predict their behavior in geological
conditions. Single crystal x-ray diffraction studies
(XRD) provided structural refinements for lizardite
(Mellini 1982; Mellini and Zanazzi 1989; Mellini and
Viti 1994; Gregorkiewitz et al. 1996) and more recently
for antigorite (Capitani and Mellini 2004). However, to
our knowledge, no P–V–T equation of state is yet
available for any of the serpentine varieties.

Computer simulations significantly contribute to a
better understanding of minerals behavior. These meth-
ods are now intensively used in Earth sciences allowing
predicting structure to properties relationships for min-
erals. Among the various approaches, atomistic calcu-
lations based on transferable semi-empirical interatomic
potentials have successfully reproduced the structure and
properties of many silicates (Post and Burnham 1986;
Price and Parker 1988; Dove et al. 1993; Winkler et al.
1991; Archer et al. 2003) and, among them, of some
phyllosilicates (Collins and Catlow 1992; Teppen et al.
1997; Sainz-Diaz et al. 2001; Palin et al. 2003). This
method consists in minimizing the system (potential and/
or free) energy assuming that interactions between the
atoms are fairly well described by semi-empirical inter-
action potentials. The significant advantage of such an
approach compared to first-principle ab initio quantum
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mechanical methods is that one can compute structural,
thermodynamic, and elastic properties of large systems
with low symmetry (Sauer et al. 1994). Semi-empirical
interatomic potentials are analytical functions that allow
calculating the energy between pairs and triplets of
atoms. They depend on the choice of some parameters
that can be advantageously calculated using ab initio
calculations in some simple cases; the transferability of
such potential parameters in the case of more complex
systems can then be checked or assumed.

In this paper, we report an atomistic simulation study
of lizardite-1T using the General Utility Lattice Program
(GULP) atomistic simulation code based on such semi-
empirical interatomic potentials. We optimized lizardite
structure by lattice relaxation at finite pressure and
temperature in order to constrain the structural evolu-
tion under geological conditions. Preexisting experi-
mental (Mellini and Viti 1994; Mellini and Zanazzi 1989)
and ab initio data (Balan et al. 2002) are used to eval-
uate the efficiency of the method in the case of serpentine
minerals. In particular, we aim at testing the core–shell
electrostatic model for ionic and iono-covalent crystals
(see below) and validating the transferability of related
potential parameters to the Mg, Si, O, H (serpentine)
system.

Computational method

Interatomic potentials

Potential energy minimization for finding an equilibrium
structure consists in tracking stationary points that
correspond to a minimum energy gradient with positive
energy curvature (i.e., finding a set of atomic positions
that minimizes system energy and give an Hessian
operator with positive eigenvalues only). Such minimi-
zation procedure necessarily gives a zero temperature
solution. If one aims at calculating system equilibrium
properties at finite temperature then free energy calcu-
lations are to be considered. Along with Monte-Carlo or
Molecular Dynamics simulations, a third possible route
to study crystalline structures at a microscopic scale is
the lattice dynamic theory. From the set of the system
Hessian eigenvalues, one can compute the vibration
partition function in the harmonic approximation and
deduce all thermodynamic functions including entropy
hence system free energy. Finite temperature equilibrium
configuration can then be deduced by minimizing sys-
tem’s free energy. Free energy calculations were per-
formed with the GULP code using the Newton–
Raphson minimization method (Gale 1996, 1997; Gale
and Rohl 2003). Along with the finite temperature cal-
culations of thermodynamics properties, it allows the
calculations of the elastic tensor (Cij). Using the elastic
tensor obtained from the GULP code, further calcula-
tions of the compliance matrix (Sij) with our own
FORTRAN90 code allow obtaining the Poisson ratio,
the bulk, shear, and Young modulii (using both Reuss

and Voigt definitions) and the longitudinal and trans-
verse acoustic wave velocities.

For ionic and iono-covalent crystal structure, the
GULP code uses the Born model description which
considers a collection of point charges that interacts by
means of electrostatic and short range semi-empirical
potential functions. The electrostatic (coulombic) inter-
actions are evaluated using the Ewald sum technique
expressed by two convergent series in the real and re-
ciprocal space and using the formal ionic charges:

U recip
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where erfc is the complementary error function, rij the
distance between two atoms i and j, G a reciprocal space
vector (G „ 0), qi the ionic charge of atom i. V is the
volume of the unit cell and g a parameter that controls
the division of work between real and reciprocal space.
Note that (1) the total electrostatic energy now refers to
the ionic self-energy given by Uself ¼ �

PN
i¼l q2i g=pð Þ1=2

that is constant in canonical conditions (fixed number N
of ions); (2) the choice of g controls the number of G
vectors to be chosen for a given convergence accuracy,
here set to 10�5 eV (Gale and Rohl 2003). In modeling
oxygen in silicate materials, electronic polarizability

Fig. 1 Crystal structure of lizardite along (010) (Mellini and Viti
1994)
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effects are taken into account by splitting the anion into
two entities: a core and a massless shell, the (formal)
ionic charge (qt=qs+qc) being shared between these two
species (Dick et al. 1958). The core and the shell interact
via an harmonic oscillator with a spring constant Kcs.
The shell polarizability is then expressed by

Y ¼ q2
s

Kcs þ Fsð Þ ð3Þ

where Fs is a force acting on the shell and due to the local
environment. During energy minimization process, the
shell is allowed to relax relatively to its core, creating a
local instantaneous dipole mimicking ion polarizability.

The short-range interactions are described by a
Buckingham potential which gathers an exponential
repulsive and an attractive dispersive term:

Ushort ¼ Aij exp �
rij

qij

 !
� Cij

r6ij
ð4Þ

The energy contribution of the latter term is summed
within a predetermined cutoff Rmax set to 12 Å through-
out this work.

When using formal ionic charges in the case of iono-
covalent systems such as silicates, a three-body har-
monic term has to be further considered in order to
mimic the correct angle O–Si–O distribution:

U3B ¼
1

2
b h� h0ð Þ2 ð5Þ

where b is an adjustable parameter and h0 an equilib-
rium angle.

As lizardite is a hydrous phyllosilicate, the O–H
covalent interaction is simulated by a so-called Morse
analytical form:

UMorse ¼ D 1� exp �a R� R0ð Þð Þ½ �2 ð6Þ

where R0 is the equilibrium position, D the potential well
depth, and a its width. All potential parameters used in
this work were taken from literature and are reported in
Table 1. They were optimized to describe SiO2 and MgO
simple structures (bulk and surfaces). No further fitting
to some lizardite properties was attempted in this work.
Thus, the results presented here are predictions for the
used potential models and related parameters.

As already mentioned, lizardite is made of a stack-
ing of layers; each layer being constituted of one
magnesium oxide octahedral sheet and one silicate
tetrahedral sheet (see Fig. 1). Two crystallographic
distinct OH groups occur in serpentine minerals. Inner
O4–H4 bonds point towards the center of the hexagonal
rings inside the layer thickness while surface O3–H3 lies
within the interlayer space between two layers. The
latter are considered to be responsible for the cohesion
between two successive layers by forming hydrogen
bonds. Note that from the fundamentals of interatomic
or intermolecular interactions, hydrogen bonding does

not result from a particular term in the interaction
Hamiltonian operator that describes the system ener-
getics. Hydrogen bonding is in fact, the consequence of
the combination of terms such as electrostatics,
induction, dispersion, and repulsive interactions that
naturally occur in the perturbative and variational
methods of quantum mechanics theory. The starting
atomic positions and unit cell parameters used to
model lizardite-1T are those reported from the single
crystal structure refinement by Mellini and Viti (1994):
the lizardite unit cell is built from a primitive cell using
the P31m space group symmetry elements; it includes
three Mg, two Si, five O, four OH (oxygen atoms that
are linked to hydrogen atoms), and four H. Note that
since all oxygens are considered within the (core + -
shell) model, in our simulations, one unit cell of lizar-
dite consists of 27 interactions centers. Note that all
calculations in this work were done with no constrain
based on space group symmetry elements nor on
atomic positions in order to really check the perfor-
mance of potential model (see Table 2).

Thermodynamics

System free energy can be obtained form the vibrational
partition function. Helmholtz free energy writes:

F ¼ Ulattice þ Uvib � TSvib ð7Þ

where Ulattice is the minimized 0 K potential energy, Uvib

represents the vibrational internal energy derived in the
harmonic approximation from the partition function
Zvib calculated at the center of the Brillouin zone:

Zvib ¼
X

mi

1� exp � hmi

kT

� �� ��1
ð8Þ

where T is the temperature, k the Boltzmann constant,
and mi is the lattice vibration frequencies (the histogram
of such frequencies forms the so-called vibration density
of state). Uvib is then obtained:

Uvib ¼ kT 2 @LnZvib

@T

� �
ð9Þ

Then follows the vibrational entropy:

Svib ¼ k ln Zvib þ
Uvib

T
ð10Þ

The pressure P in the sum of an internal contribution
(phonons) with an external isostatic contribution. The
internal pressure is simply obtained as

Pvib ¼ kT
@ln Zvib

@V

� �
ð11Þ

System free energy can be minimized with respect to the
simulation cell volume. At convergence (equilibrium at
finite temperature), the total pressure is zero.
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Energy minimization

The first step is finding the minimum energy structure
of the present material, i.e., the local minimum on the
global potential energy surface that the starting
experimental coordinates lie closest to. This can be
considered as a first test of the set of interatomic po-
tential functions used to model layered magnesium
silica materials such as lizardite. The task consisting in
locating the global energy minimum is a far more
challenging task that can be done using simulated
annealing approaches combined with Monte-Carlo or
Molecular Dynamics methods. Here, our strategy is a
quest for the closest (local) minimum to the experi-
mental structure using the BFGS minimization algo-
rithm (Press et al. 1986). The practical approach taken
in a BFGS optimization procedure is to initialize the
Hessian matrix by performing an exact inversion of the
second derivatives and then subsequently updating for
a number of cycles. Criteria for convergence between
successive cycles are the energy gradient norm, the
change in the function (energy, enthalpy or free en-
ergy). GULP allows switching from the BFGS algo-
rithm to the so-called rational functional optimization
(RFO) when energy gradient is smaller than a dispos-
able threshold. In the RFO method, the inverse Hes-
sian matrix is diagonalized to obtain the eigenvalues
and eigenvectors. From the eigenvalues it is possible to
examine whether the matrix has the required charac-
teristics that guarantee that a true minimum is ob-
tained. If the number of negative eigenvalues is

incorrect, then their spectrum is level-shifted to correct
this and the search direction constructed appropriately
until the Hessian has the right structure (only positive
eigenvalues). A vibration density of state at the center
of the Brillouin zone (C-point) can be used as a final
validation from which one gets the list of lattice
vibration frequencies that should be all positive except
the first three that should be zero (unit cell transla-
tional invariance).

Results and discussion

Elastic properties of lizardite

As most phyllosilicates, lizardite is expected to be softer
along c direction (perpendicular to the layers, see Fig. 1)
compared to the other directions. Relaxations were first
performed at room temperature by artificially changing
each cell parameter step by step with increments of
0.05 Å. The free energy is calculated for each cell volume
after obtaining potential energy minimum by allowing
all atomic positions to relax. The minimum free energy is
obtained for a unit cell volume V0 of 184 Å3 (see Fig. 2).
The relaxed simulated structure is therefore in good
agreement with available experimental data (see Ta-
ble 3): for instance, the difference between the simulated
and experimental cell volumes is less than 3%. At first
sight, the set of interatomic potentials (see Table 1) gives
a fairly good description of lizardite structure. Elastic
proprieties of lizardite can be estimated from the evo-

Table 1 Parameter values used in the interatomic potentials

Analytical form Inter/Intra Species 1 Species 2 A (eV) q (Å) C6(eV Å6) Rmin (Å) Rmax (Å)

Short range interatomic interactions (Gale 1997; De Leeuw et al. 1995)
Buck Inter Mg core O shell 946.6270 0.3181 0.0000 0.0 12.0
Buck Inter Mg core OH shell 946.6270 0.3181 0.0000 0.0 12.0
Buck Inter Si core O shell 1,283.9070 0.3205 10.6620 0.0 12.0
Buck Inter Si core OH shell 983.5560 0.3205 10.6620 0.0 12.0
Buck Inter O shell O shell 22,764.0000 0.1490 27.8790 0.0 12.0
Buck Inter O shell OH shell 22,764.0000 0.1490 13.9400 0.0 12.0
Buck Inter OH shell OH shell 22,764.0000 0.1490 6.9700 0.0 12.0
Buck Inter H core O shell 311.9700 0.2500 0.0000 0.0 12.0

Analytical form Inter /Intra Species 1 Species 2 Species 3 b (eV rad�2) h 0 (�) Rmax
1–2

(Å6)
Rmax
2–3

(Å)
Rmax
1–3

(Å)

Three Inter Si core O shell O shell 2.0972 109.47 1.80 1.80 3.20
Three Inter Si core O shell OH shell 2.0972 109.47 1.80 1.80 3.20

Long range interactions in the core–shell model (Gale 1997; De Leeuw et al. 1995)

Species Core charge
(e)

Shell charge
(e)

Core–shell coupling constant (eV Å2)

Mg 2
Si 4
H 0.426
OH�1.426 0.869020 �2.29502 74.92
O�2 0.869020 �2.86902 74.92
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lution of the free energy as a function of the cell volume.
The bulk modulus (B0) is a parameter describing the
hardness of the material. By definition, it writes:

B0 ¼ V
@2F
@V 2

ð12Þ

The value of B0 can be obtained by fitting F as a func-
tion of the unit cell volume V around the equilibrium
volume V0 by the Murnaghan equation of state (Mur-
naghan 1994; Pisani 1996) (see Fig. 2):

F ¼ V0B0

B00

1

B00 � 1

V0

V

� �B0
0
�1
þ V

V0

� �" #
þ Cte

with Cte ¼ E0 �
B0V0

B00 � 1
ð13Þ

In the above equation, F is the Helmoltz free energy, B¢0
is the derivative of B0 with respect to pressure. The
simulated bulk modulus of lizardite is 87 GPa (B¢0 being
equal to 3.3). When using the Voigt definition of the
bulk modulus based on elastic constants (Gale and Rohl
2003):

BVoigt
0 ¼ 1

9
C11 þ C22 þ C33 þ 2 C12 þ C13 þ C23ð Þð Þ ð14Þ

(where Cij are elastic constants given in Table 4), we
found B0=82 GPa; a value that is indeed consistent
with the one obtained with the Murnaghan equation of
state. When using Reuss definition of B0 from compli-
ance matrix elements (Gale and Rohl 2003) given in

Table 5, one obtains a lower bound value B0=40 GPa.
Note that the compliance matrix is the inverse of the
elastic constant matrix (Nye 1957):

BReuss
0 ¼ S11 þ S22 þ S33 þ 2 S12 þ S13 þ S23ð Þð Þ�1 ð15Þ

The Hill definition is the average of the two (Gale
and Rohl 2003). It gives B0=61 GPa, a value that seems
at first sight in good agreement with the experimental
data of Tyburczy et al. (1991) for their low pressure
phase of serpentine B0=63.5±3.5 GPa obtained using
shock wave experiments. The use of Hill route for bulk
modulus determination may not be meaningful in the
context of anisotropic layered materials such as lizar-
dite. Note that the additional calculation for quartz with
the same set of potential parameters for O and Si shows
that Reuss and Voigt routes give very close results for
the bulk modulus 47.2 and 46.8 GPa, respectively.
Simulated (or experimental) values of lizardite bulk
modulus are significantly larger than that of micas such
as muscovite (B0=48 GPa; Catti et al. 1994), phengite
(B0=56 GPa; Pavese et al. 1999), Na-muscovite
(B0=54 GPa; Commodi and Zanazzi 1995), and
phlogopite (B0=58 GPa; Hazen and Finger 1978).
Lizardite bulk modulus is lower than that of magnesium
containing chlorite (B0=83 GPa for clinochlore, Welch
and Crichton 2002). Clinochlore is known as being
much stiffer along the c direction compared to micas.
Welch and Crichton (2002) proposed that the lower
compressibility of clinochlore compared to micas arises

Table 2 Relaxed fractional
coordinates in lizardite unit cell No. Atomic Label Core/shell x y z

1 H c 0.658317 0.999945 0.725929
2 H c 0.990734 0.667527 0.725942
3 H c 0.323152 0.332362 0.725942
4 H c 0.990734 0.999945 0.135283
5 Mg c 0.326618 0.999948 0.442053
6 Mg c 0.990738 0.335829 0.442052
7 Mg c 0.654847 0.664057 0.442052
8 O c 0.324068 0.666612 0.287454
9 O c 0.657401 0.333278 0.287454
10 O c 0.489887 0.999945 0.987327
11 O c 0.990735 0.499097 0.987326
12 O c 0.491582 0.500792 0.987326
13 OH c 0.658679 0.999945 0.601383
14 OH c 0.990735 0.667889 0.601389
15 OH c 0.322789 0.332000 0.601389
16 OH c 0.990734 0.999945 0.261445
17 Si c 0.324068 0.666612 0.063936
18 Si c 0.657401 0.333278 0.063936
19 O s 0.324068 0.666611 0.270587
20 O s 0.657401 0.333279 0.270587
21 O s 0.490254 0.999946 0.000822
22 O s 0.990735 0.499465 0.000823
23 O s 0.491213 0.500424 0.000823
24 OH s 0.658484 0.999946 0.592063
25 OH s 0.990736 0.667694 0.592072
26 OH s 0.322984 0.332194 0.592072
27 OH s 0.990735 0.999945 0.268871
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from the very different layer to layer bonding due to
different occupancy of the interlayer space. Note that in
chlorite, TOT silicate sheets have interlayer spaces
occupied by a brucite-like octahedral sheet. The struc-
ture of both chlorites and serpentines is held by inter-
layer weak electrostatic interactions (often called
hydrogen bonds, see below). As a consequence, similar

elastic behavior of serpentines and chlorite may be ex-
pected. The anisotropy of the bulk modulus in lizardite
structure can be understood looking at the shape energy
wells when varying a and c unit cell parameters sepa-
rately (see Fig. 2a, b). We obtained a value for B0 of 144
and 29 GPa in the a and c directions, respectively.
As expected, lizardite is softer along the c direction.

Fig. 2 a Evolution of the
Helmholtz free energy at room
temperature K as a function of
cell volume, when the structure
is relaxed along directions a and
c and isotropically ac,
respectively. The inset displays
the evolution of the Helmholtz
free energy variations adjusted
by the Murnaghan equation
(see Eq. 13). b A zoom showing
the evolution of the Helmholtz
free energy as a function of cell
volume, when the structure is
relaxed along direction c
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This was predicted by Mellini and Zanazzi (1989) who
observed experimentally a higher decrease of lizardite c
parameter compared to a as a function of pressure (see
below).

Acoustic transverse wave velocity, Vt, and longitu-
dinal wave velocity, Vl, are key quantities in the inter-
pretation of seismic data. They can be derived
combining data for the bulk modulus but also that for
the shear modulus G0 and the material density
q(=2.5155 g/cm3).

GVoigt
0 ¼ 1

15
C11þC22þC33þ3 C44þC55þC66ð Þð

�C12�C23�C13Þ
ð16Þ

GReuss
0 ¼15 4 S11þS22þS33�S12�S13�S23ð Þð

þ3 S44þS55þS66ð ÞÞ�1
ð17Þ

Then,

Vt ¼
ffiffiffiffiffiffi
G0

q

s

ð18Þ

and

Vl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G0 þ 3B0

3q

s

ð19Þ

Using G0 and B0 values, we found Vt=6.4±1.1 km/s
and Vl=3.6±1.0 km/s (note that error bars include data
dispersion that arises from the use of Reuss or Voigt set
of data). These data are to be compared with those re-
ported in Christensen’s (2004) paper that are around 6
and 2.5 km/s for Vl and Vt, respectively. From trans-
verse and longitudinal wave velocities, one can calculate
the Poisson ratio using

r ¼ V 2
l � 2V 2

t

2 V 2
l � V 2

t

� � ð20Þ

We found r=0.265, a value that compares favorably
with that reported by Christensen (2004); additional
calculations for quartz lead to a Poisson ratio of 0.15
markedly lower than that of lizardite as found in
experiment (Christensen 2004).

We also calculated Young modulii, which describe
the hardness of the material with respect to deformation.
For each axis, this modulus is defined by the ratio of
stress to strain:

ca ¼
raa

eaa
ð21Þ

Youngmodulii can be calculated from the elements of the
compliance matrix (see Table 5). We found
cx=cy=S11

�1=S22
�1=188 GPa and cz=S33

�1=45 GPa.
These results confirm that lizardite preferentially accom-
modates deformation along the c direction.

Interaction energy between the layers

Another important result from this study is the possi-
bility to assess the nature of the layer to layer interac-
tion. Within the tetrahedral and the octahedral sheets,
the structure is held by iono-covalent bonds. Recent
atomistic modeling studies show that a good description
of layer to layer interactions in phyllosilicates can be
obtained using transferable potentials (Sainz-Diaz et al.
2001). In lizardite, the weak interactions which link the
successive sheets in the c direction are usually considered
to be hydrogen bonding (Mellini 1982; Benco and
Smrcok 1998). As already mentioned in the hydrogen

Table 3 Comparison between the simulated and experimental
structural properties of lizardite unit cell (at room temperature and
0 pressure)

Experimental structurea Modeled structure

a (Å) 5.338 5.434
c (Å) 7.257 7.153
V (Å3) 179.1 184.0
Si–Oav (Å) 1.638 1.647
Mg–Oav (Å) 2.073 2.125
O3–H3 (Å) 0.891
O4–H4 (Å) 0.902

aFrom Mellini and Viti (1994)

Table 4 Calculated elastic constants (units = GPa)

ij indices 1 2 3 4 5 6

1 229.08 89.044 13.558 �0.0001 4.6025 0.0001
2 89.044 229.08 13.557 0.0001 �4.6016 0.0001
3 13.558 13.557 45.838 �0.0001 0.0015 0.0001
4 �0.0001 0.0001 �0.0001 12.765 �0.0001 �4.4598
5 4.6025 �4.6016 0.0015 �0.0001 12.774 0.0001
6 0.0001 0.0001 0.0001 �4.4598 0.0001 70.0166

Table 5 Calculated compliance matrix (units = GPa�1)

ij indices 1 2 3 4 5 6

1 5.267·10�3 �2.045·10�3 �9.540·10�4 0.000000 �2.635·10�3 0.000000
2 �2.045·10�3 5.267·10�3 �9.540·10�4 0.000000 2.635·10�3 0.000000
3 �9.540·10�4 �9.540·10�4 2.238·10�2 0.000000 0.00000 0.000000
4 0.000000 0.000000 0.000000 8.024·10�2 0.00000 5.270·10�3
5 �2.635·10�3 2.635·10�3 0.000000 0.000000 8.018·10�2 0.000000
6 0.000000 0.000000 0.000000 5.270·10�3 0.00000 1.462·10�2

7



bonding process is not clearly defined in the general
intermolecular theory; it results from a balance between
electrostatic and short-range interactions. When gradu-
ally increasing the interlayer distance along the c axis
(and relaxing all atomic degrees of freedom at each
stage), the Helmholtz free energy tends towards an
asymptotic value that is twice the energy of one single
isolated layer (see Fig. 2). The difference between the
energy minimum and this value and this asymptotic
value thus gives the layer to layer cohesive energy.
According to our data, this cohesion energy between
successive layers is 0.33 eV (32 kJ/mol). Considering
that in one lizardite cell, there are three outer hydroxyl
groups, the average energy for one O–H..O layer-to-
layer bond is close to 11 kJ/mol, assuming the whole
interlayer energy to originate from hydrogen bonds.
This value is consistent with classical hydrogen bonding
energies usually deduced from the (internal) energy of
liquid water (44 kJ/mol); each water molecule having
between four and five neighbors. It is also fairly close to
the 0 K value of 13 kJ/mol obtained by Balan et al.
(2002) who investigated lizardite structure with ab initio
calculations. This result further confirms the reliability
of the set of interatomic potentials used in this work in
describing magnesium silica solids.

Simulation of lizardite as a function of pressure
and temperature

We studied the effect of pressure and temperature on
lizardite structure in the range of stability of serpentine
minerals: external pressure from 0 to 10 GPa, and
temperatures from 373 to 923 K. The structure was re-
laxed with pressure steps between 0.1 and 0.5 GPa and
temperature steps of 50 K. In Fig. 3, only data obtained
at 373 K are reported; temperature having a very small
effect on the structural behavior in agreement with the
experimental data of Guggenheim and Zhan (1998). As
expected, the a and c cell parameters decrease upon
compression and pressure is mainly accommodated by
the decrease of the c parameter (see Fig. 3) in rather
good agreement with the experiment. In particular, at
2 GPa, we find an axial compression ratio of 5:1 which
is in agreement with the value given by Mellini and

Zanazzi (1989). The use of the third-order Birch–Murna-
ghan expression giving the unit cell volume variation as a
function of the applied external pressure in hydrostatic
conditions (Birch 1947) allows to obtain another esti-
mation of the bulk modulus (and its derivative with
respect to pressure):

PðV Þ ¼ 3B0

2

V0

V

� �7=3

� V0

V

� �5=3
" #

� 1þ 3

4
B00 � 4
� � V0

V

� �2=3

�1
" #( ) ð22Þ

In Fig. 4, we show the fit of data at 373 K using the
Birch–Murnaghan equation. The B0 value is found at
52 GPa in relatively good agreement with the Hill value
(61 GPa) averaged from Reuss and Voigt values but
significantly smaller than the value of 87 GPa found
using the Murnaghan equation (see Eq. 13). Following
the Birch–Murnaghan route, B0¢ is found at 5.2.

While the evolution of the a parameter is linear with
pressure, a change of behavior for the c parameter is
evidenced around 2 GPa (see Fig. 3). Above this
pressure, the structure becomes less compressible. The
linear and continuous evolution of the free energy (not
shown) suggests that there is no first-phase transition of
lizardite in this pressure–temperature domain. Consid-
ering that compression is mainly accommodated by
reduction of the interlayer space, we investigated the
behavior of the surface O–H bonds lying in the interlayer
void (Fig. 5). Up to 10 GPa, the O3–H3 bond length does
not display any significant change, which is in agreement
with experimental studies (Kleppe et al. 2003) in contrast
to that expected for a typical hydrogen bond (Benco and
Smrcok 1998). However, the angle that O3–H3 bond
forms with respect to the normal direction to the layer
significantly varies, showing a bending of the OH bonds
upon pressure (see Fig. 4). From quasi-vertical up to
2 GPa, they start bending up reaching an angle shift of 9�
at 10 GPa. It appears that the structure can compress up
to 2 GPa by decreasing the interlayer space without
affecting the OH group geometry. Above this pressure,
OH groups are forced to bend, implying a hardening of
the structure. This bending was evocated in a recent
paper dealing with the effect of pressure on serpentine

Fig. 3 Evolution of the a and c
parameters (normalized to the
corresponding room
temperature and 0 pressure cell
parameter) as a function of the
applied external pressure.
Hollow circles (triangles)
simulated (experimental) data
along the a direction, black
circles (triangles) simulated
(experimental) data along the c
direction. Experimental data
from Melini and Zanazzi (1989)
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structures (Auzende et al. 2004) but the authors, on the
basis of their data, rather explained Raman band shifts
by a shortening of the O–H bonds. These data could be
reinterpreted at the light of the present study.

Conclusion

In this study, we checked the ability of ionic (shell–core)
empirical potentials in describing the properties of ser-
pentine minerals. Simulations of lizardite using the
GULP code proved to yield reliable information. The
simulated equilibrium structure of lizardite is in good
agreement with the experimental one determined by
Mellini and Viti (1994). The evolution of simulated li-
zardite under pressure and temperature is also in
agreement with experiment. The calculated layer to layer
interaction energy is compatible with H bonding and is
in good agreement with ab initio calculations of Balan
et al. (2002). In addition, our simulations correctly
reproduced the anisotropy of compressibility of lizardite
that is evidenced from high-pressure experiments. We
thus conclude that serpentine minerals can be ade-
quately modeled by ionic semi-empirical interatomic
potentials. We also predict a bending of the interlayer
OH groups for pressures larger than 2 GPa. This

corresponds to a hardening of the structure at larger
pressure. This study also allowed investigating lizardite
elastic properties and calculating average bulk, shear,
and Young modulii as well as acoustic wave longitudinal
and transversal velocities; data that are needed in tec-
tonophysics geophysical modeling of oceanic hydrated
lithosphere.

Antigorite and chrysotile, the two other main ser-
pentine varieties, display more complex unit cell and
presently cannot be investigated by ab initio calcula-
tions. There is currently a lack of data for these minerals
due to the complexity of their structures, the lack of
suitable single crystals for x-ray diffraction studies, and
the high amount of structural defects encountered in
their microstructures. Investigations of these phases by
energy minimization calculation using the approach
described in this work will provide insights on the rela-
tive stability of these serpentine varieties and their elastic
properties.
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