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From conformal embeddings to quantum symmetries: an exceptional SU (4) example *
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We briefly discuss several algebraic tools that are used to describe the quantum symmetries of Boundary Conformal Field Theories on a torus. The starting point is a fusion category, together with an action on another category described by a quantum graph. For known examples, the corresponding modular invariant partition function, which is sometimes associated with a conformal embedding, provides enough information to recover the whole structure. We illustrate these notions with the example of the conformal embedding of SU (4) at level 4 into Spin(15) at level 1, leading to the exceptional quantum graph E 4 (SU (4)).

Foreword

There are many ways to describe the algebraic structures underlying boundary conformal field theories on a torus. Because of its concision, we choose the categorical description that was sketched in [START_REF] Ostrik | Module categories weak Hopf algebras and modular invariants Transformation groups[END_REF], in the framework of the SU (2) classification (ADE). We refer to [START_REF] Coquereaux | Orders and dimensions for sl(2) or sl(3) module categories and Boundary Conformal Field Theories on a torus[END_REF] for a more detailed presentation along those lines, in the framework of the SU (3) classification. Many properties of the associated quantum graphs can also be found there, in particular the corresponding quantum groupoïd and the Ocneanu algebra of quantum symmetries. The purpose of the present paper is to summarize this presentation, to show how conformal embeddings relate to this description, to present one exceptional example of type SU (4), starting from a conformal embedding, and to study its algebra of quantum symmetries.

The module and its quantum graph

The next ingredient is an additive category E(G), not necessarily monoidal, on which the previous one A k (G) (which is monoidal) acts, i.e., we are given a (monoidal) functor from A k to the monoidal category of endofunctors of E. The reader can think of this situation as being an analogue of the action of a group on a given space. E is called a "module category" [START_REF] Ostrik | Module categories weak Hopf algebras and modular invariants Transformation groups[END_REF][START_REF] Etingof | Finite tensor categories[END_REF], but the word "module" has so many meanings that it may be better to say that we have an action, or that E is an actegory (a substantive coined by R. Street). It may be sometimes interesting to think that E can be acted upon in more than one way, so that we can think of the action of A k as a particular "enrichment" of E. Irreducible objects of E are boundary conditions for the corresponding Conformal Field Theory specified by A k . It is useful to assume, from now on, that the category E is indecomposable (it is not equivalent to the direct sum of two non trivial categories with A k action). Like in the classical situation, we have a restriction functor A k ֒→ E and an induction functor A k ←֓ E.

Since E is additive, we have a Grothendieck group, also denoted by the same symbol. Because of the existence of an action, this (abelian) group is a module over the Grothendieck ring of A k , and it is automatically a Z + module: the structure constants of the module, usually called annulus coefficients in string theory articles, or in [START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF], and described by (annular) matrices F n = (F n ) ab , are non negative integers. The index n is a Young diagram describing an irreducible object (vertices) of A k (G), and a, b describe simple objects (vertices) of E. To the fundamental representations of G correspond particular annular matrices that can be considered as adjacency matrices of a graph (actually we obtain several graphs with the same vertices but various types of edges), that we call the McKay graph of the category E, or simply "the quantum graph", for short. We may think of the Grothendieck group of E as the vector space spanned by the vertices of the graph. It is often convenient to introduce a family of rectangular matrices called "essential matrices" [9] , via the relation (E a ) nb = (F n ) ab , and when a is the origin 1 0 of the graph, E 0 is usually called "the intertwiner".

Quantum graphs of type G = SU (2) are the (simply laced) ADE Dynkin diagram, those of type G = SU (3) were introduced by [START_REF] Francesco | SU (N )-lattice integrable models associated with graphs[END_REF]. Existence of the corresponding categories was shown by Ocneanu [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF]. Classification of SU (4) module categories is also claimed to be completed [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF].

The rigidity property of A k implies that the module E is rigid (or based [START_REF] Ostrik | Module categories weak Hopf algebras and modular invariants Transformation groups[END_REF]). In other words: (F n ) ab = (F n ) ba . This property excludes the non-simply laced cases of G = SU (2) type, since λ n = λ n . The same property holds but does not exclude double lines for G = SU (3) or higher, so that it is not appropriate to say that higher analogues of ADE Coxeter-Dynkin diagrams are "simply laced".

Let us mention that simple objects a, b, . . . of the module category E can also be thought as right modules over a Frobenius algebra F , which is a particular object in the monoidal category A k , and which plays an important role in other approaches [START_REF] Ostrik | Module categories weak Hopf algebras and modular invariants Transformation groups[END_REF][START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF], but we shall not describe its structure here.

As already mentioned, the category E is not required to be monoidal, but there are cases where it is, so that it has a tensor product, compatible with the A k action. In another terminology, one says that the corresponding graphs have self -fusion or that they define "quantum subgroups" of G, whereas the others are only "quantum modules". When it exists, the self-fusion is described, at the level of the module, by another family of matrices G a with non negative integer entries: we write a • b = c (G a ) bc c and compatibility with the fusion algebra reads

λ n • (a • b) = (λ n • a) • b, so that (G a • F n ) = c (F n ) ac G c .

Quantum symmetries

The third and final ingredient is the centralizer category of E with respect to the action of A k . It is defined as the category of module functors f from E to itself, commuting with the action of A k , i.e., such that f(λ n ⊗ λ a ) is isomorphic with λ n ⊗ f(λ a ), for λ n ∈ Ob(A k ) and λ a ∈ Ob(E), via a family of morphisms c λn,λm obeying triangular and pentagonal constraints. We simply call O = F un A k (E, E) this centralizer category 2 , but one should remember that its definition involves both A k and E.

E is both a module category over A k and over O. The later is additive, semisimple and monoidal. The Grothendieck group of E is therefore not only a Z + module over the fusion ring, but also a Z + module over the Grothendieck ring of O, called the Ocneanu ring (or algebra) of quantum symmetries and denoted by the same symbol. Structure constants of the ring of quantum symmetries are encoded by matrices O x , called "matrices of quantum symmetries"; structure constants of the module, with respect to the action of quantum symmetries, are encoded by the so called "dual annular matrices" S x .

To each fundamental irreducible representation of G one associates two fundamental generators of O, called chiral (left or right). For instance, for G = SU (4) quantum graphs, O has 6 = 2 × 3 chiral generators. Like in usual representation theory, all other linear generators of this algebra appear when we decompose products of fundamental (chiral) generators. The Cayley graph of multiplication by the chiral generators (several types of lines), called the Ocneanu graph of E, encodes the algebra structure of O.

Quantum symmetries that appear in the decomposition of products of left (right) generators span a subalgebra called the left (right) chiral subalgebra. The chiral subalgebras are not necessarily commutative but the left and the right commute. Intersection of left and right chiral subalgebras is called ambichiral subalgebra. In the particular case E = A k , left and right can be identified. Determining all quantum symmetries can be an arduous task, even in relatively simple situations. A simpler problem is to determine the chiral generators and the Ocneanu 1 A particular vertex of E is always distinguished 2 For SU (2), the structure of F unA k (E1, E2), where E1,2 can be distinct module categories was obtained by [START_REF] Ocneanu | [END_REF].

graph. We shall give an example later, in the case of a particular exceptional quantum graph of SU (4) type.

The quantum groupoïd

To E one can associate a finite dimensional weak bialgebra (or quantum groupoïd) B, which is such that the category A k can be realized as Rep(B), and also such that the category O can be realized as Rep( B) where B is the dual of B. These two algebras are finite dimensional (actually semisimple in our case) and one algebra structure (say B) can be traded against a coalgebra structure on its dual. B is a weak bialgebra, not a bialgebra, because ∆1l = 1l ⊗ 1l, where ∆ is the coproduct in B, and 1l is its unit. In our case, it is not only a weak bialgebra but a weak Hopf algebra (we can define an antipode, with the expected properties [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF][START_REF] Nikshych | L Finite quantum groupoïds and their applications in New directions in Hopf algebras[END_REF][START_REF] Nikshych | Invariant of knots and 3-manifolds from quantum groupoïds[END_REF][START_REF] Nill | Axioms for weak bialgebras[END_REF]).

Introducing a star operation and a scalar product allow identification of B and its dual, so that both products (say "product" and "convolution product") can be defined on the same underlying vector space. One construction of this bialgebra was given in [START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors Notes taken by Goto S Fields Institute Monographs[END_REF], using a formalism of operator algebras. A corresponding categorical construction is as follows: Label irreducible objects of categories A k by λ n , λ m , . . . , of E by λ a , λ b , . . . and of O by λ x , λ y , . . . . Call H n ab = Hom(λ n ⊗ λ a , λ b ), the "horizontal space of type n from a to b" (also called space of essential paths of type n from a to b, space of admissible triples, or triangles). Call V x ab = Hom(λ a ⊗λ x , λ b ) the "vertical space of type x from a to b". We just take these horizontal and vertical spaces as vector spaces and consider the graded sums H n = ab H n ab and V x = ab V x ab . To construct the weak bialgebra, we take the (graded) endomorphism algebras B = n End(H n ) and B =

x End(V x ). For obvious reasons, B and B are sometimes called "algebra of double triangles". Existence of the bialgebra structure (compatibility) rests on the properties of the pairing, or equivalently on the properties of the coefficients3 (Ocneanu cells) obtained by pairing two bases of matrix units 4 for the two products. Being obtained by pairing double triangles, Ocneanu cells (generalized quantum 6J symbols) are naturally associated with tetrahedra with two types (black "b", or white "w") of vertices, so that edges bb, bw or ww refer to labels n, a, x of A, E and O.

The A k × O module category E can be recovered from the study of the source and target subalgebras of B, but in practice it is often obtained by first determining the graph of quantum symmetries from the solution of the so-called "modular splitting equation" (see later), which involves only a single piece of data: the modular invariant.

Torus structure and modular splitting equation

From results obtained in operator algebra by [START_REF] Ocneanu | [END_REF] and [START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF][START_REF] Böckenhauer | Modular invariants graphs and α induction for nets of subfactors II[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF], translated to a categorical language by [START_REF] Ostrik | Module categories weak Hopf algebras and modular invariants Transformation groups[END_REF], one can show that existence of a braiding in the category A k leads to the bimodule property A k × O × A k → O, and this reads, at the level of Grothendieck rings, m x n = y (W x,y ) mn y, where m, n refer to irreducible objects of A k , x, y to irreducible objects of O, and where W x,y constitute a family of so -called toric matrices, with matrix elements (W x,y ) mn , again non negative integers.

When both x and y refer to the unit object (that we label 0), one recovers the modular invariant M = W 0,0 encoded by the partition function Z of conformal field theory. As explained in [START_REF] Petkova | The many faces of Ocneanu cells[END_REF], when one or two indices x and y are non trivial, toric matrices are interpreted as partition functions on a torus, in a conformal theory of type A k , with boundary type conditions specified by E, but with defects specified by x and y. Only M is modular invariant (it commutes with the generator s and t of SL(2, Z) in the Hurwitz -Verlinde representation). Toric matrices were first introduced and calculated by Ocneanu (unpublished) for theories of type SU (2). Various methods to compute or define them can be found in [START_REF] Fuchs | TFT construction of RCFT correlators I: Partition functions[END_REF]9,[START_REF] Petkova | The many faces of Ocneanu cells[END_REF]. Reference [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF] gives explicit expressions for all W x,0 , for all members of the SU (2) family (ADE graphs).

Left and right associativity constraints (m(nxp)q) = (mn)x(pq) for the A × A bimodule structure of O can be written in terms of fusion and toric matrices; a particular case of this equation reads x (W 0,x ) λµ W x,0 = N λ M N tr µ . It was presented by A.Ocneanu in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] and called the "modular splitting equation". A practical method to solve it is given in [START_REF] Isasi | From modular invariants to graphs: the modular splitting method[END_REF], with several SU (3) examples. Given fusion matrices N p (known in general) and a modular invariant matrix M = W 0,0 , solving this equation, i.e., finding the W x,0 , allows one, in most cases, to construct the chiral generators of O and obtain the graph of quantum symmetries.

Triangular cells, self-connection on E and pocket equations

Given a graph defining a module over a fusion ring A k for some Lie group G, the question is to know if it is a "good graph", ie, if the corresponding module category indeed exists. According to A. Ocneanu [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF], when the rank is ≥ 2, this will be the case if and only if one can associate, in a coherent manner, a complex number to each triangle of the graph : this defines (up to some kind of gauge choice) a self-connection on the set of triangular cells. There are two compatibility equations respectively called the small and the large pocket equations, for these triangular cells.

Summary

Obtaining the list of all quantum graphs of type G (all module categories of type G), together with their various properties, often requires a number of complementary techniques, and it may not be possible to propose a multi-purpose machinery that would work in all cases. It is clearly always possible to define the so-called "diagonal cases": E = A k (G). Then, using orbifold techniques, one can build infinite series E = D generalizing the even or odd D diagrams of SU (2) (which are Z 2 orbifolds of the A diagrams at the same level). The difficulty is to obtain the exceptional cases. One argument, due to A. Ocneanu (unpublished), shows that the number of exceptional cases corresponding to a given Lie group G is finite. The strategy followed to determine and study an exceptional case E can be summarized as follows.

• Choose a Lie group G and a level k. Determine the fusion matrices N p from the adjacency matrix of A k (G) and representation theory of G truncated at level k (known recurrence formulae).

• Determine the generators s and t for the Hurwitz-Verlinde representation of SL(2, Z).

• Choose a modular invariant. It can be obtained, either from arithmetic considerations, or from the existence of a conformal embedding.

• Solve the modular splitting equation, i.e., determine the toric matrices W x,0 .

• Determine the chiral generators of the algebra of quantum symmetries and the Ocneanu graph.

• Find possible candidates for the quantum graph of E: it is usually (but not always) a component of the graph of quantum symmetries. Check that a self-connection, for this chosen solution, indeed exists.

• Now that E is known, one can determine the annular matrices F n that encode the module structure over the fusion algebra A k . In turn, these matrices encode several other quantities of interest, in particular the induction-restriction rules, the (quantum) dimensions, and the size of the simple blocks of the quantum groupoïd B for its first multiplicative structure.

• One can investigate whereas the quantum graph under study possesses self-fusion and determine, in that case, the so-called graph matrices G a .

• Determination of the full structure of the quantum groupoïd B, in particular the pairing between B and B, is out of reach in general since it would involve a calculation of all Ocneanu cells, and this seems to be intractable. However in many cases, it is possible to exhibit a set of linear generators O x for the algebra of quantum symmetries O (remember that chiral generators have been obtained in a previous step). From this, one can determine the dual annular matrices S x encoding the module structure of E over O without having to rely on an explicit determination of the pairing. As a by-product, one obtains the size of the simple blocks of the dual of B for its multiplicative structure.

Classification results

In the case of SU (2), we have the the ADE classification of [START_REF] Cappelli A Itzykson | The ADE classification of minimal and A (1) 1 conformal invariant theories[END_REF]. Self-fusion exists only in the cases of graphs A r (then k = r -1), D even (then k = 0 mod 4), E 6 , then k = 10, and E 8 , with k = 28. The cases D odd , with levels k = 2 mod 4, and E 7 , at level 16 do not admit self-fusion.

In the case of SU (3) we have the Di Francesco -Zuber diagrams [START_REF] Francesco | SU (N )-lattice integrable models associated with graphs[END_REF] and the classification of modular invariants of type SU (3) by [START_REF] Gannon | The classification of affine su(3) modular invariant partition functions[END_REF]. Notice that, sometimes, the same modular invariant can be associated with distinct module categories (distinct quantum graphs). Existence of the corresponding categories was shown by A. Ocneanu [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF], actually one of the candidates ("fake graph") had to be discarded because it did not pass the self-connection test. Several SU (3) graphs have self-fusion, namely: A k itself, the D k (whose McKay graphs are Z 3 orbifolds of those of A k ) when k is divisible by 3, and three exceptional cases called E 5 , E 9 and E 21 , at levels 5, 9 and 21. The other quantum graphs (no self-fusion) are: the series A c k , for which the number of simple objects is equal to the number of self dual simple objects in A k , the D k series, when k = 1 or 2 mod 3, the series D c k , for all k, two modules of exceptionals called E 5 /3, E 9 /3, and finally the exceptional case D t 9 (a generalization of E 7 that can be obtained from D 9 by an exceptional twist), along with its "conjugate case" called D 9

tc . Useful information can be found in [START_REF] Hammaoui | Higher Coxeter graphs associated to affine su(3) modular invariants[END_REF].

A classification of SU (4) quantum graphs was presented by A. Ocneanu in Bariloche [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF]. One finds the A k series, with two kinds of orbifolds (the

D (2) k = A k /2 and D (4) k = A k /4 series, with self-fusion for A k /2
when k is even and for A k /4 when k is divisible by 4), together with their conjugates, three exceptional quantum graphs with self-fusion, at levels 4, 6 and 8, denoted E 4 , E 6 , E 8 together with one exceptional module for each of the last two, and finally one exceptional D . The exceptional modular invariants at level 4 and 6 were found by [START_REF] Schellekens | Modular invariants and fixed points[END_REF][START_REF] Altschuler | The Branching Rules of Conformal Embeddings[END_REF], and at level 8 by [START_REF] Aldazabal G Allekote | N=2 Coset compactifications with nondiagonal invariants[END_REF]. The corresponding quantum graphs E 4 , E 6 and E 8 were respectively determined by [START_REF] Petkova | From CFT to graphs[END_REF][START_REF] Petkova | Conformal field theory and graphs[END_REF][START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF].

For higher rank, infinite series of examples can be obtained from the A k graphs, using conjugacies, orbifold techniques (generalizations of the D graphs) or semi-simple (non simple) conformal embedding followed by contraction. Many exceptional examples can also be obtained, sometimes thanks to the existence of conformal embeddings, or using rank-level duality considerations. One can also follow arithmetical approaches (study the commutant of SL(2, Z)), this leads to modular invariants [START_REF] Gannon | The classification of affine su(3) modular invariant partition functions[END_REF][START_REF] Gannon | The classification of SU(3) modular invariants revisited[END_REF] that become candidates as possible partition functions, but their number often exceeds, by far, the "physical" ones, which are those associated with quantum graphs of type G.

Conformal embeddings 2.1 Generalities

For our purposes, it will be enough to consider the following situation : Take K, a simple Lie group of dimension d K and G a Lie subgroup of dimension d G . Denote by k and g their Lie algebras. Call S = K/G the corresponding homogenous space. Write k = g ⊕ s. The Lie group G acts on the vector space s by the isotropy representation, which is usually reducible, and one obtains its decomposition into irreducible components s = ⊕ i s i by reducing the adjoint of K with respect to the adjoint of G. The group K being simple, it has a unique Killing form, up to scale, and there is a canonical normalisation for all simple Lie groups. One can use this form to define, for each component s i a Dynkin index k i . An embedding is therefore associated with a sequence of numbers k 1 , k 2 . . . Assuming now that G is a maximal subgroup of K such that K/G is irreducible (more precisely "isotropy irreducible" i.e., such that the representation s of the group G is real irreducible 5 ), we have then a unique value for the Dynkin index k of the embedding. The embedding is conformal if k is an integer and if the following identity is satisfied :

d G k k + g G = d K 1 + g K (1)
where g K and g G are the dual Coxeter numbers of K and G. One denotes by c the common value of these two expressions. When K is simply laced, c is equal to its rank. This definition does not require the framework of affine Lie algebras to make sense, but it is justified from the fact that, given an embedding g ⊂ k of Lie algebras, and an irreducible unitary highest weight module of the affine algebra k at some level, one obtains a set of representations of the Virasoro algebra which intertwines with the action of g on the same module (in other words, we are computing multiplicities) and the embedding is called conformal when those multiplicities are finite, something which occurs precisely when the level of k is 1 and when the above identity between central charges, at respective levels k (for g), and 1 (for g), is satisfied. It would be interesting to interpret the same condition in terms of (small) quantum groups at roots of unity.

In this respect, notice that level k, for SU (N ), reads q k+N = 1, in terms of roots of unity. The study of embeddings of affine Lie algebras is a rather old subject and we shall only mention a few "historical" references : [START_REF] Schellekens | Conformal subalgebras of Kac-Moody algebras[END_REF][START_REF] Bais | A classification of subgroup truncations of the bosonic string[END_REF][START_REF] Kac | Modular and conformal invariance constraints in representation theory of affine algebras[END_REF][START_REF] Altschuler | The Branching Rules of Conformal Embeddings[END_REF][START_REF] Olive | Symmetric spaces Sugawara's energy momentum tensor in two dimensions and free fermions[END_REF], see also [START_REF] Francesco | Conformal Field Theory[END_REF]. Conformal embeddings are also used in the context of subfactors, see for instance [START_REF] Wassermann | Operator algebras and conformal field theory III Fusion of positive energy representations of LSU(N) using bounded operators Invent Math[END_REF][START_REF] Xu | New braided endomorphisms from conformal inclusions[END_REF]. Warning: One can sometimes find the claim that the previous identity between central charges (at respective levels k and 1) provides a necessary and sufficient condition for the existence of a conformal embedding, k being then interpreted as the Dynkin index of the corresponding finite dimensional Lie algebras. This should however be taken with a grain of salt, since one should check that there exists indeed a homogeneous space K/G whose Dynkin index, for the embedding G ⊂ K, is equal to the given value k. This condition will be called the "irreducibility requirement". Actually, if we choose a priori some simple Lie group G, it is rather easy to solve equation (1) over the positive integers, i.e., we can find a finite family of solutions with K a simple Lie group, and k a positive integer. Take for instance G = SU (3), one finds immediately that K could be equal to SU (5), SU (6), SU [START_REF] Böhm | A coassociative C * -quantum group with non-integral dimensions[END_REF], SU (8), Spin(8), Spin [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF], Spin [START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF], Spin( 14), E 6 , E 7 , Spin [START_REF] Coquereaux | Orders and dimensions for sl(2) or sl(3) module categories and Boundary Conformal Field Theories on a torus[END_REF], Spin [START_REF] Francesco | Conformal Field Theory[END_REF], Sp(4), Sp [START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] for appropriate values of the level k of G. But if we impose moreover the irreducibility requirement (so that K/G, with given Dynkin index k, indeed exists), only the following solutions are left: K = SU (6), Spin( 8), E 6 , E 7 , at levels k = 5, 3, 9, 21 for G. Only those solutions define conformal embeddings and their associated modular invariant gives rise to the quantum graphs E 5 , D 3 , E 9 and E 21 of SU (3) type.

Classification issues

In order to find exceptional quantum groupoïds of type G, we could give ourselves a Lie group G and try to embed it conformally in a larger group K. One can certainly use results from the (old) literature (that often proceeds from K to G rather than the converse), but for -givensimple 6 G it is easy to solve equation (1) using standard results on Lie groups.

Case SU (2). Equation (1) admits 3 solutions and the irreducibility requirement does not change this result. At levels k = 4, 10, 28 one finds K = SU (3), Spin(5) and G 2 . Their associated 5 Notice that SU (3) ⊂ SU (5), for instance, is not irreducible (SU (5) does not possess any SU (3) subgroup that could be maximal) whereas there is an embedding SU (3) ⊂ SU (6) which is maximal and irreducible since 35 ֒→ 8+27 (the representation 27 being indeed real and irreducible). The representation s is real irreducible, although it may be reducible on the field of complex numbers. For instance, if we consider the embedding of SU (3) in SO(8) obtained from the adjoint representation, we have 28 ֒→ 8 ⊕ 10 ⊕ 10 and the isotropy representation is not complex irreducible (it is 10 ⊕ 10), but it is real irreducible, of dimension 20, and the real manifold SO(8)/SU (3) is indeed irreducible. 6 Simplicity of G is a strong hypothesis that, of course, does not cover all interesting conformal embeddings.

modular invariant gives rise to the quantum graphs

D 6 = D 4 (SU (2)), E 6 = E 10 (SU (2)
) and

E 8 = E 28 (SU (2)).
Case SU (3). Equation (1) admits 14 solutions (see above) but the irreducibility requirement brings down this number to 4, at levels k = 3, 5, 9, 21, namely K = Spin(8), SU (6), E 6 and E 7 . Their associated modular invariant gives rise to the quantum graphs D 3 (SU (3)), E 5 (SU (3)), E 9 (SU (3)) and E 21 (SU (3)).

Case SU (4). Equation (1) admits 21 solutions but the irreducibility requirement brings down this number to 4, at levels k = 2, 4, 6, 8, namely K = SU (6), Spin [START_REF] Francesco | Conformal Field Theory[END_REF], SU [START_REF] Coquereaux | Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries[END_REF] and Spin [START_REF] Olive | Symmetric spaces Sugawara's energy momentum tensor in two dimensions and free fermions[END_REF]. Their associated modular invariant gives rise to the quantum graphs D 2 = A 2 /2(SU (4)), E 4 (SU ( 4)), E 6 (SU (4)) and E 8 (SU (4)).

The following regular series of inclusions are always conformal

SU (N ) N -2 ⊂ SU (N (N -1)/2) (2a) SU (N ) N +2 ⊂ SU (N (N + 1)/2) (2b) SU (N ) N ⊂ Spin(N 2 -1) (2c) 
The last inclusion being actually a particular case of the conformal embedding G gG ⊂ Spin(d G ).

For N = 2, we have only the second one SU (2) 4 ⊂ SU (3), the other two embeddings of SU (2) being "truly exceptional" in the sense that they do not belong to these regular series of inclusions. For N = 3 only the second and third case of these regular series of inclusions do exist, namely SU (3) 5 ⊂ SU (6) and SU (3) 3 ⊂ Spin(8); the two others embeddings of SU (3) are truly exceptional. For N = 4 and above, the three members of the regular series exist. Note that in the case of SU (4) one does not even find a "truly exceptional" conformal embedding, in this sense. It was written in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] that E 8 (SU (4)) does not seem to correspond to any conformal embedding but we found that it could actually be obtained from SU (4) ⊂ SO(20) and later discovered (!) that this had been known long ago [START_REF] Aldazabal G Allekote | N=2 Coset compactifications with nondiagonal invariants[END_REF]. We shall return in the conclusion to the modular invariants of the SU (4) family. For the SU (5) family, we shall have regular exceptional graphs at levels 3, 7 and 5. Notice that E 3 (SU ( 5)) is dual7 of E 5 (SU (3)) and that E 5 (SU ( 5)) is self-dual.

Remark:

The graph E 7 = E 16 (SU (2)) is not associated with a conformal embedding of the type SU (2) ⊂ K, and it does not enjoy self-fusion, but there exists a conformal embedding at level 16 of SU (2) 16 × SU (3) 6 ⊂ (E 8 ) 1 : c(SU (2) 16 ) = 8/3 and c(SU (3) 6 ) = 16/3 so that the sum of both is indeed c(E 8 ) 1 = 8. Therefore one would expect to find an exceptional quantum graph associated with the non simple Lie group SU (2)× SU (3), the graph E 7 being obtained [START_REF] Francesco | Conformal Field Theory[END_REF] from the later by contraction (followed by a subtraction involving the quantum graph D 10 ). Of course, there exist higher analogues of this phenomenon.

Modular invariants

Reminder: Modular matrices s and t. Call g a Lie algebra of rank r. Call α i the simple roots of g (i = 1, . . . , r), α ∨ i the coroots and w i the fundamental weights, which obey

w i , α ∨ i = δ ij . A weight λ is written λ = i λ i w i = (λ 1 , λ 2 , .
. . , λ r ). Call ρ the Weyl vector ρ = i w i = (1, 1, . . . , 1). Call W the Weyl group. Matrix expressions for representatives of the generators s and t of a double cover of P SL(2, Z), at level k ∈ Z + , are given by [START_REF] Kac | Infinite dimensional Lie algebras, theta functions, and modular forms[END_REF]:

(t) λµ = exp 2iπ |λ + ρ| 2 2κ - |ρ| 2 2g δ λµ = exp (2iπm λ ) δ λµ (3a) (s) λµ = σ κ -r/2 w∈W ǫ(w) exp 2iπ w(λ + ρ), µ + ρ κ ( 3b 
)
where g is the dual Coxeter number, the altitude κ = k + g, ǫ(w) is the signature of the Weyl permutation and σ a coefficient defined by

σ = i |∆+| (det(α ∨ i , α ∨ j )) -1/2
, where |∆ + | is the number of positive simple roots. s and t matrices are unitary and satisfy (s t) 3 = s 2 = C, the charge conjugation matrix satisfying C 2 = l 1. For SU (4), we have g = 4, |∆ + | = 3, the simple Weyl reflections are

s 1 (λ 1 , λ 2 , λ 3 ) = (-λ 1 , λ 1 + λ 2 , λ 3 ) s 2 (λ 1 , λ 2 , λ 3 ) = (λ 1 + λ 2 , -λ 2 , λ 2 + λ 3 ) s 3 (λ 1 , λ 2 , λ 3 ) = (λ 1 , λ 2 + λ 3 , -λ 3 )
and the full Weyl group, of order 24, is generated by products of s i with s 2 i = 1, (s 1 s 2 ) 3 = 1, (s 1 s 3 ) 2 = 1, (s 2 s 3 ) 3 = 1. The scalar product of two weights is:

λ, µ = 1 4 (λ 1 (3µ 1 + 2µ 2 + µ 3 ) + 2λ 2 (µ 1 + 2µ 2 + µ 3 ) + λ 3 (µ 1 + 2µ 2 + 3µ 3 ))
Using this, one finds explicit expressions for s and t matrices. The t matrix obeys t 8κ = l 1.

The method. Obtaining modular invariants from conformal embeddings G k ⊂ K 1 is explained for instance in [START_REF] Francesco | Conformal Field Theory[END_REF] and we only summarize part of this information here.

Using the language of affine Lie algebra, one has first to determine the integrable irreducible highest weight representations (i-irreps for short, from now on) λ at the chosen level. First of all, the level should be big enough8 : this integrability condition reads

k ≥ λ, θ (4) 
where θ is the highest root of the chosen Lie algebra. To such an i-irrep λ one associates a conformal dimension defined by

h λ = λ, λ + 2ρ 2(k + g) (5) 
where k is the level, g is the dual Coxeter number of the chosen Lie algebra, ρ is the Weyl vector and h λ is related to the phase m λ of the t matrix by m λ = h λ -c/24. We make the list of i-irreps λ of K at level 1 and calculate their conformal dimensions h λ . We make the list of i-irreps µ of G at level k and calculate their conformal dimensions h µ . A necessary -but not sufficientcondition for an (affine or quantum) branching from λ to µ is that h λ = h µ + n for some positive integer n. So we can make a list of candidates λ ֒→ j c j µ j where c j are positive integers to be determined. We write the diagonal invariant of type K as a sum s λ s λ s . It should give rise to a quantum graph of type A 1 (K). Using the affine branching rules (also quantum branching rules), we replace, in this expression, each λ s by the corresponding sum of i-irreps for G. The modular invariant M of type G that we are looking for is parametrized by

Z = s ( j c j (s) µ j (s))( j c j (s) µ j (s)) (6) 
There exist several techniques to determine the coefficients c j , for instance using information coming from the finite branching rules. One method, that may lack of elegance, but which is quite efficient, is simply to impose that M, parametrized as above, commutes with the known generators s and t of P SL(2, Z) and to determine the c j by solving linear equations.

3 The E 4 (SU (4)) example

3.1 Conformal embedding and the modular invariant.

We are interested in finding and studying an exceptional quantum graph for the A 3 = SU (4) system coming from a conformal embedding. We choose the embedding of SU (4), at level 

k = 4, into B 7 =
G[B 7 ] =          
0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0 1 0

          Q =           1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 1 2 3 3 3 3 3 2 1 2 3 4 4 4 2 1 2 3 4 5 5 5 2 1 2 3 4 5 6 3 1 2 1 3 2 2 5 2 3 7 4          
An arbitrary weight reads λ = (λ j ) in the base of fundamental weights, and in this base the Weyl vector is ρ = (1, 1, 1, 1, 1, 1, 1). The scalar product of two weights is λ, µ = (λ i )Q ij (µ j ). At level 1, there are only three i-irreps for B 7 (use equation ( 4)), namely9 (0) , (1, 0, 0, 0, 0, 0, 0) or (0, 0, 0, 0, 0, 0, 1). From equation ( 5) we calculate their conformal dimensions: 0, 1 2 , 15 16 .

• The Cartan matrix of A 3 = SU (4) is 2 Id -G[A 3 ]
, where G[A 3 ] is the adjacency matrix of the Dynkin diagram A 3 . Its quadratic form matrix Q is the inverse of the Cartan matrix.

G[A 3 ] =   0 1 0 1 0 1 0 1 0   Q =   3 4 1 2 1 4 1 2 1 1 2 1 4 1 2 3 4  
In the base of fundamental weights10 , the Weyl vector is ρ = (1, 1, 1), and at level k the i-irreps λ = (λ 1 , λ 2 , λ 3 ) are such that 0 ≤ λ 1 + λ 2 + λ 3 ≤ k, of cardinality (k + 1)(k + 2)(k + 3)/6. At level 4, we calculate the 35 conformal dimensions for SU (4) i-irreps using 

h λ = 1 16 (λ 1 + 2) 3λ 1 4 + λ 2 2 + λ 3 4 + (λ 2 + 2) λ 1 2 + λ 2 + λ 3 2 + (λ 3 + 2) λ 1 4 + λ 2 2 +
It introduces a partition on the set of exponents, defined as the i-irreps corresponding to the non-zero diagonal entries of M : {000, 210, 012, 040, 101, 400, 121, 004, 111}.

From the expression of Z, we discover that the quantum graph E 4 (SU ( 4)) has T r(M) = 12 vertices but we expect [START_REF] Ocneanu | [END_REF][START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF][START_REF] Böckenhauer | Modular invariants graphs and α induction for nets of subfactors II[END_REF][START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] T r(M † M) = 48 quantum symmetries. Because of a coefficient 4 in M we expect that the algebra Oc(E 4 ) spanned by these quantum symmetries is non commutative and possesses a block isomorphic with the algebra of matrices M (4, C).

The quantum graph E 4 and its algebra of quantum symmetries

Fusion matrices. The trivial representation is λ = (0, 0, 0) and the three fundamental iirreps are (1, 0, 0), (0, 1, 0) and (0, 0, 1). Note that λ = (λ 1 , λ 2 , λ 3 ) and λ = (λ 3 , λ 2 , λ 1 ) are complex conjugated to each other. We have also a Z 4 grading τ (4-ality) on the set of irreps, such that τ (λ) = -τ (λ) mod 4 given by τ (λ 1 , λ 2 , λ 3 ) = λ 1 + 2λ 2 + 3λ 3 mod 4. Fusion coefficients are such that λ ⊗ λ ′ = ⊕ λ ′′ N λ ′′ λλ ′ λ ′′ . Using Young tableaux techniques one obtains :

(100) ⊗ (λ 1 , λ 2 , λ 3 ) = (λ 1 + 1, λ 2 , λ 3 ) ⊕ (λ 1 -1, λ 2 + 1, λ 3 ) ⊕ (λ 1 , λ 2 -1, λ 3 + 1) ⊕ (λ 1 , λ 2 , λ 3 -1) (010) ⊗ (λ 1 , λ 2 , λ 3 ) = (λ 1 , λ 2 + 1, λ 3 ) ⊕ (λ 1 + 1, λ 2 -1, λ 3 + 1) ⊕ (λ 1 + 1, λ 2 , λ 3 -1) ⊕ (λ 1 -1, λ 2 , λ 3 + 1) ⊕ (λ 1 -1, λ 2 + 1, λ 3 -1) ⊕ (λ 1 , λ 2 -1, λ 3 ) (001) ⊗ (λ 1 , λ 2 , λ 3 ) = (λ 1 , λ 2 , λ 3 + 1) ⊕ (λ 1 + 1, λ 2 -1, λ 3 ) ⊕ (λ 1 , λ 2 + 1, λ 3 -1) ⊕ (λ 1 -1, λ 2 , λ 3 )
where one has to discard, from the right hand side, those possible terms with negative coordinates. Fusion matrices N (100) , N (010) and N (001) read from this give the adjacency matrices of the graph12 A 4 = A 4 (SU (4)) displayed in figure 2. N (100) describes oriented edges from λ to λ ′ , the arrows pointing in the direction of increasing 4-ality (τ (λ ′ ) = τ (λ) + 1 mod 4). N (001) is the transposed of N 100 , it describes oriented edges from λ ′ to λ, the arrows pointing in the direction of decreasing 4-ality. Both oriented edges of type N (100) and N (001) are drawn in red, without marking the arrows, since the direction can be deduced from the 4-ality of vertices. The generator N (010) only connects vertices λ and λ ′ such that τ (λ ′ ) = τ (λ) + 2 mod 4, its edges are drawn in blue (bi-oriented). Once these fusion matrices are known, the others can be determined from the truncated recursion formulae of SU (4) irreps, applied for increasing level ℓ, up to k (2 ≤ ℓ ≤ k = 4):

N (ℓ-p,p-q,q) = N (1,0,0) N (ℓ-p-1,p-q,q) -N (ℓ-p-2,p-q+1,q) -N (ℓ-p-1,p-q-1,q+1) (8) 
-N (ℓ-p-1,p-q,q-1) for 0 ≤ q ≤ p ≤ ℓ -1 N (0,ℓ-q,q) = (N (q,ℓ-q,0) ) tr for 1

≤ q ≤ ℓ N (0,ℓ,0) = N (0,1,0) N (0,ℓ-1,0) -N (1,ℓ-2,1) -N (0,ℓ-2,0)
The fusion coefficients can also be obtained from s and t matrices by the Verlinde formula.

The quantum dimensions µ of vertices λ = (λ 1 , λ 2 , λ 3 ) of A 4 are obtained from the matrix N 100 by calculating the normalized eigenvector associated with the eigenvalue of maximal norm

β = [4] = 2(2 + √ 2)
, where [n] = q n -q -n q-q -1 , with q = exp(iπ/κ). Here κ = k + 4 = 8. They can also be obtained from the quantum Weyl formula applied to SU (4):

µ λ = [λ 1 + 1][λ 2 + 1][λ 3 + 1][λ 1 + λ 2 + λ 3 + 3][λ 1 + λ 2 + 2][λ 2 + λ 3 + 2] [2][2][3] One finds µ 000 = [1] = 1, µ 100 = µ 001 = [4] = β, µ 010 = [4][3]/[2] = 2 + √ 2.
Quantum dimensions form a one dimensional representation of the fusion algebra. The quantum mass (or quantum order) |A 4 |, which is the corresponding sum of squares, is 128

(3 + 2 √ 2).
Toric matrices. We determine the toric matrices W z,0 , of size 35 × 35, by solving the modular splitting equation. For each choice of the pair (λ, µ) (= 35 2 possibilities), we define matrices K λµ by: K λµ = N λ M N tr µ and calculate them. The modular splitting equation reads:

K λµ = dO-1 z=0 (W 0,z ) λµ W z,0 . (9) 
It can be viewed as the linear expansion of the matrix K λµ over the set of toric matrices W z,0 , where the coefficients of this expansion are the non-negative integers (W 0,z ) λµ and where d O = T r(MM † ) = 48 is the dimension of the quantum symmetry algebra. These equations have to be solved for all possible values of λ and µ. In other words, we have a single equation for a huge tensor with 35 2 × 35 2 components but we prefer to view it as a family of 35 2 vectors K λµ , each vector being itself a 35 × 35 matrix. Using computer algebra techniques, one finds that matrices K λµ span a vector space of dimension r = 33 < 48. Therefore, the 48 toric matrices W z,0 are not linearly independent. This is not a surprise : from the presence of a block 4 × 4 in Oc(E 4 ), one indeed expects the rank to be 48 -4 2 + 1 = 33. The toric matrices W z,0 are obtained by using an algorithm explained in [START_REF] Isasi | From modular invariants to graphs: the modular splitting method[END_REF]. For each matrix K λµ we calculate its "norm" (abusive terminology) defined by norm(K λµ ) = (K λµ ) λµ , equal to the sum of the square of the coefficients appearing in the expansion of K λµ along the family (not a base) of toric matrices.

There is a subtlety here: it may happen that W z1,0 = W z2,0 with z 1 = z 2 , in that case one has to consider W z1,0 and W z2,0 as distinct when evaluating this sum.

• There are 8 linearly independent matrices K λµ of norm 1, each one therefore defines a toric matrix.

• There are 11 linearly independent matrices K λµ of norm 2. None of them is equal to the sum of two already determined toric matrices, and they cannot be written as a sum of a known toric matrix and a new one. Here and below, we rely on arguments using non negativity of the matrix elements. These 11 matrices have elements that are multiple of 2. Dividing them by 2 we obtain in this way 11 new toric matrices appearing with multiplicity 2 in the family.

• There are 8 linearly independent matrices K λµ of norm 3. Four of them are equal to the sum of three already determined toric matrices. Each of the other four can be written as a sum of an an already determined toric matrix and a new one, whose coefficients are multiple of 2. Dividing them by 2 we obtain in this way 4 new toric matrices, with multiplicity 2. At this stage we have obtained 8+11+4 = 23 linearly independent toric matrices, so we are still missing 10 of them (10 = 33-23); however, counting multiplicities, we have (8 × 1) + (11 × 2) + (4 × 2) = 38 = 48 -10. We know that we must obtain 33 linearly independent toric matrices, but there are 48 toric matrices, so the last 10, still missing, should be linearly independent.

• There are 5 linearly independent matrices X = K λµ of norm 4, none of them equal to the sum of two already determined toric matrices, and they have matrix elements that are multiple of 4. There are two writing possibilities giving length 4, either X = 2W , with a new toric matrix W defined as W = X/2, or X = W + W ′ + W ′′ + W ′′′ with W defined as X/4 and where primes refer to multiplicities. This last possibility is rejected since we already determined all toric matrices appearing with multiplicities. We obtain in this way 5 new toric matrices.

• There are 6 linearly independent matrices K λµ of norm 5, but they can be written as sums of already determined toric matrices.

• There are 12 linearly independent matrices X = K λµ of norm 6, eight of them are sums of already determined toric matrices. The other four can be written as sums X = W old + W ′ old + 2W where the first two terms are known toric matrices and the last term W is new. In this way we obtain 4 more toric matrices.

• There is nothing at norm 7.

• There are 3 linearly independent matrices X = K λµ of norm 8, but only one is not equal to the sum of already determined toric matrices; moreover its elements are multiple of 2.

It can be written as a sum X = 2W old + 2W where the last term is new.

We have therefore determined 33 linearly independent toric matrices W x,0 , 15 = 11 + 4 of them coming with multiplicity 2, so that the total number of toric matrices is indeed (18×1)+(15×2) = 48. We can check that all other K λµ matrices can be expanded along the obtained family. We can also check that the modular splitting equation ( 9) is verified.

Ideally we would have liked to summarize the torus structure by displaying one toric matrix W x,0 (a 35 × 35 matrix) for each vertex x of its graph of quantum symmetries (48 vertices), that we shall obtain later. This is obviously impossible in printed form, interested readers may obtain this information from the authors. The first matrix (which we knew already) describes the modular invariant of the SU (4) theory at level 4 with boundary types specified by the exceptional graph E 4 ; the other partition functions (48 -1 of them) are not modular invariant (however they all commute with s -1 .t.s) and can be understood, in the interpretation of [START_REF] Petkova | The many faces of Ocneanu cells[END_REF], as describing the same BCFT theory but with defects labelled by x. One possibility would be to give a table of the 48 partition functions (only 33 are distinct) but to limit the size of this paper, we shall only give those associated with three particular vertices called ambichiral and denoted 1 ⊗1, 2 ⊗1 and 9 ⊗1. Setting u = (000 + 210 + 012 + 040), v = (101 + 400 + 121 + 004) and w = (111), they read

Z(1 ⊗1) = Z = |u| 2 + |v| 2 + 4|w| 2 Z(2 ⊗1) = u v + u v + 4|w| 2 Z(9 ⊗1) = 2(u + v)w + 2 w(u + v)
Chiral generators for the algebra of quantum symmetries. Using toric matrices W x,0 and fusion matrices N λ , we calculate, for every choice of x, λ, µ, the matrices K x λµ = N λ W x,0 N tr µ . When x = 0 we recover the matrices K λµ used previously, since W 0,0 = M. We then decompose them on the family (not a base) of toric matrices W z,0 :

K x λµ = z (W x,z ) λµ W z,0 . (10) 
The coefficients of this expansion, that we want to determine, define "toric matrices with two twists" (W x,z ) λµ = (V λµ ) xz . Since the W z,0 are not linearly independent on C, the decomposition (10) is not unique, and there are some undetermined coefficients. Imposing that they should be non-negative integers fixes some of them or allows to obtain relations between them, one can also use the intertwining property

V λµ (N λ ⊗ N µ ) = (N µ ⊗ N λ )V λµ .
The group SU (4) has three fundamental irreducible representations f , therefore the graph of quantum symmetries has 6 (chiral) generators, three left f L and three right f R . Multiplication by these generators is encoded by the quantum symmetry matrices

O f L = V f 0 and O f R = V 0f .
Choosing an appropriate order on the set of indices z, we obtain the following structure for the left chiral generators V 100,000 and V 010,000 , (the last chiral left generator is V 001,000 = V tr 100,000 ).

V 100,000 =     F 100 . . . . F 100 . . . . F 100 . . . . F 100     V 010,000 =     F 010 . . . . F 010 . . . . F 010 . . . . F 010     (11) 
Here F 100 and F 010 denote explicit 12 × 12 matrices; they still have undetermined coefficients reflecting the existence of classical Z 2 symmetries but they can be determined once an ordering has been chosen (see later). The right chiral generators are also essentially known at this step: to fix the last coefficients, one uses the fact that right generators are conjugated from the left ones by an appropriate permutation matrix P , the chiral conjugation, acting on the 48 vertices of the graph:

O f R = P O f L P -1
). From the knowledge of the six chiral generators, we can draw the two chiral subgraphs making the Ocneanu graph of quantum symmetries: see figure 1. Actually, it is enough to draw the left graph, which describes the multiplication of an arbitrary vertex by a chiral left generator: red edges, oriented in the direction of increasing or decreasing 4-ality, or non-oriented blue edges. On the graph, chiral conjugated vertices are related by a dashed line. Multiplication of a vertex x by the chiral generator f R is obtained as follows: we start from x, follow the dashed lines to find its chiral conjugate vertex y, then use the multiplication by f L and finally pull back using the dashed lines to obtain the result. Remark. The six chiral generators are "generators" in the sense that all possible quantum symmetries O x appear on the right hand side when we multiply these generators together in all possible ways. However, because of existence of classical symmetries (more about it later), the chiral generators only generate a subalgebra of Oc(E 4 ), of dimension 33 : 18 quantum symmetries of type O x and 15 "composites" (sums of two) of type O x ′ + O x ′′ . Because of this compositeness, the algebra spanned by the left "generators" is only a commutative subalgebra of dimension 9 = 12-3 of the non commutative left chiral algebra (of dimension 12), same thing for the right part. Non commutativity of Oc(E 4 ) is expected from the presence of a coefficient 4 > 1 on the diagonal of the modular invariant, and non commutativity of the two chiral subalgebras is expected from the fact that they should nevertheless commute with each other. Because of the known properties of quantum symmetries, we shall actually be able to exhibit a matrix realization for all generators, i.e., to lift the degeneracy between sums of two, but first we have to discuss the graph E 4 itself, whose structure is encoded by adjacency matrices F 100 , F 010 and F 001 .

The exceptional quantum graph E 4 . It appears in its graph of quantum symmetries.

The F 100 = F tr 001 and F 010 matrices are the adjacency matrices of the graph E 4 , with 12 vertices, displayed on figure 3. This graph possesses Z 2 -symmetries corresponding to the permutation of vertices 3 -4, 6 -7 and 11 -12. The undetermined coefficients of the adjacency matrix reflect this symmetry and are simply determined once an ordering has been chosen for the vertices (something similar happens for the D even series of the su(2) family). We can define a coloring τ (4-ality) on this quantum graph. F 100 (resp. F 001 ) corresponds to edges in red, pointing in the direction of increasing (decreasing) 4-ality. F 010 corresponds to the blue edges (bi-oriented). The quantum dimensions µ a of the vertices of E 4 are obtained from the adjacency matrix of F 100 by calculating the normalized eigenvector associated with the eigenvalue of maximal norm

β = 2(2 + √ 2). One finds µ 1 = µ 2 = 1, µ 3 = µ 4 = 1 + √ 2, µ 5 = µ 10 = 2(2 + √ 2), µ 6 = µ 7 = µ 11 = µ 12 = 2 + √ 2, µ 8 = 2 + √ 2, µ 9 = √ 2.
The quantum mass (or quantum order), the corresponding sum of squares, is

|E 4 | = 16(2 + √ 2).
E 4 as a module over A 4 . The vector space of E 4 is a module over the graph algebra (fusion algebra) of A 4 , encoded by the annular matrices for the multiplication on its dual.

F n A 4 × E 4 → E 4 : λ n • a = b (F n ) ab b λ n ∈ A 4 , a, b ∈ E 4 . (12) 
The F n matrices are determined from the generators F 100 , F 010 and F 001 by the same recursion relation as for fusion matrices (9). Conjugation compatible with the A 4 action can be defined on E 4 . It reads 1 = 1, 2 = 2, (3 + 4) = (3 + 4), 5 = 10, (6 + 7) = (11 + 12), 8 = 8, 9 = 9, but it is not entirely determined at this level, since there is still an ambiguity (solved later) on the definition of conjugation for members of the doublets. Notice that fundamental matrices (for instance F 100 ) contain, in this case, elements bigger than 1. However, the "rigidity condition" (F n ) ab = (F n ) ba holds, so that this example is indeed an higher analogue of the ADE graphs, not an higher analogue of the non simply laced cases.

The first multiplicative structure of the quantum groupoïd. Now that annular matrices F λ are known, we can calculate the dimensions d λ of blocks of the quantum groupoïd B for its first multiplicative structure. They are given by d λ = a,b (F λ ) ab . These numbers appear in figure 2. Notice that the dimension of the horizontal vector space (essential paths) is d λ = 1568, and dim(B) = d 2 λ = 86816.

Self-fusion on E 4 . This graph (displayed on figure 3) has self-fusion: the vector space spanned by its 12 vertices has an associative algebra structure, with non-negative structure constants, and it is compatible with the action of A 4 . There could be, a priori, several possibilities, however, because of the expected non commutativity of Oc, and from the fact that the span of left chiral generators commute with the span of right chiral generators, we are looking for a non commutative structure for the self-fusion of E 4 . Up to isomorphism there is only one non commutative solution that we now describe. 1 is the unity and the three generators are 5, 8 and 10. (10 is conjugated to 5, 8 being self conjugated). The graph algebra matrices encoding this multiplication are given by

G 1 = l 1, G 5 = F 100 , G 8 = F 010 , G 10 = G tr 5 , G 2 = 2 (G 5 G 10 ) -G 1 -G 8 G 8 , G 9 = (1/2)(G 8 (G 5 G 10 -G 1 -G 2 )) -2G 8 and (G 3 +G 4 ) = G 5 G 10 -G 1 -G 2 , (G 6 +G 7 ) = G 8 G 10 -G 5 -G 5 , (G 11 +G 12 ) = G 5 G 8 -G 10 -G 10 .
Due to the symmetries of the graph E 4 , the knowledge of the multiplication by generators 5, 8 and 10 is not sufficient to reconstruct the whole multiplication table, even after imposing that structure coefficients should be non-negative integers, since we cannot split the doublets (3 + 4), (6 + 7), (11 + 12). Imposing the additional condition G a = G tr a such that multiplication by a is obtained by reversing the arrows in the graph of multiplication by a leads, up to isomorphism, to a unique solution. It fixes the conjugation on the graph to be 13 

a • b = t(b) • a = b • a for a, b /
∈ the same doublet 13 The other solution with 3 = 4 leads to non-integer structure coefficients and it is discarded. We can use the previous explicit realization of the graph algebra of E 4 to build explicitly all generators of its algebra of quantum symmetries Oc(E 4 ). This algebra can be realized as

Oc(E 4 ) = E 4 ⊗ J E 4 = E 4 ⊗E 4 with a ⊗(b • c) = (a • b) ⊗c for b ∈ J , ( 13 
)
where J is the modular subalgebra of the graph algebra E 4 , spanned by {1, 2, 9}, isomorphic with the ambichiral subalgebra of Oc(E 4 ) defined later; it has particular modular properties 14 (see [START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Schieber | L'algèbre des symétries quantiques d'Ocneanu et la classification des systèmes conformes à 2D PhD thesis in French or in Portuguese (Marseille: UP and Rio de Janeiro: UFRJ)[END_REF]). The left chiral subalgebra L is spanned by elements of the form a ⊗1 and the right chiral subalgebra R is spanned by elements of the form 1 ⊗a, where a are the basis elements of E 4 associated with the vertices of its graph. All elements a of E 4 can be written in the form a = c j = j c for c ∈ {1, 3, 6, 11} and j ∈ J; for example we have 4 = 3 • 2, 8 = 3 • 9. The base {1 ⊗a} of the right chiral subalgebra R can therefore be written {j ⊗1, j ⊗3, j ⊗6, j ⊗11} with a ∈ E 4 , j ∈ J. The left chiral fundamental generators are 5 ⊗1, 8 ⊗1 and 10 ⊗1. The right chiral fundamental generators are 1 ⊗5 = 9 ⊗11, 1 ⊗8 = 9 ⊗3 and 1 ⊗10 = 9 ⊗6. Their intersection defines the ambichiral subalgebra of Oc(E 4 ) (also called J) spanned by {1 ⊗1, 2 ⊗1, 9 ⊗1}. A natural basis of Oc(E 4 ) is given by elements a ⊗b, but they can be written in terms of a ⊗1, a ⊗3, a ⊗6, a ⊗11. The identifications in Oc(E 4 ) are given by:

a ⊗2 = (2 • a) ⊗1 a ⊗9 = (9 • a) ⊗ 1 a ⊗4 = (2 • a) ⊗3 a ⊗8 = (9 • a) ⊗ 3 a ⊗7 = (2 • a) ⊗6 a ⊗10 = (9 • a) ⊗ 6 a ⊗12 = (2 • a) ⊗11 a ⊗5 = (9 • a) ⊗ 11 ( 14 
)
14 Using induction, one sees that its three vertices are associated with the three blocks of the modular invariant.

The chiral conjugation is obtained by (a ⊗b) C = b ⊗a. Complex conjugation in Oc(E 4 ) is defined by (a ⊗b) * = a ⊗b. Multiplication in Oc(E 4 ) is obtained from the multiplication of E 4 :

(a ⊗b) • (a ′ ⊗b ′ ) = (a • a ′ ) ⊗ (b • b ′ ) ,
together with the identifications [START_REF] Francesco | SU (N )-lattice integrable models associated with graphs[END_REF], and it is encoded by the quantum symmetries matrices O x . Choosing the basis ordering {a ⊗1, a ⊗3, a ⊗6, a ⊗11} these matrices read:

O x=a ⊗1 =     G a . . . . G a . . . . G a . . . . G a     O x=a ⊗3 =     . G a . . G a G a (G 1 + G 2 ) . . . . G 2 G a G 9 G a . . G 9 G a G a     O x=a ⊗6 =     . . G a . . . G a G 9 G a . G 9 G a . . G a G 2 G a . .     O x=a ⊗11 =     . . . G a . . G 9 G a G 2 G a G a G a . . . G 9 G a . .    
One can check the following quantum mass rule formula:

|Oc| = |A 4 | with |Oc| = |E 4 | |E 4 | |J| Indeed, |A| = 128(3 + 2 √ 2), |E| = 16(2 + √ 2) and |J| = (1, 1, √ 2)(1, 1, √ 
2) = 4. Now that the graph of E 4 itself is known, as well as the annular matrices F λ and the realization of Ox generators as tensor products, we can check that our determination of toric matrices W x,0 was indeed correct: we calculate the rectangular essential matrices E a defined by (E a ) nb = (F n ) ab and the so-called "reduced essential matrices" E red a obtained from the (E a ) by keeping only the columns relative to the modular subalgebra J (replace all other coefficients by 0) [9], and finally check the identity W x,0 = E a .E red b whenever x = a ⊗b. More generally, once the multiplication in Oc(E 4 ) is known, we can recover the toric matrices with two twists thank's to the relation W x,y = W xy,0 . From the knowledge of the intertwiner matrix E 0 , one can also obtain the simple summands of the associated Frobenius algebra (they play the role of quantum Klein invariants): F = λ 000 ⊕ λ 210 ⊕ λ 012 ⊕ λ 040 . In this particular case, they could also be obtained from the structure of the identity block of the modular invariant or from the first column of the essential matrix relative to the unit vertex of E 4 .

E 4 as a module over Oc(E 4 ). The vector space of E 4 is a module over the algebra of quantum symmetries Oc(E 4 ), the action being defined by:

Oc × E 4 → E 4 (a ⊗b) • c . = a • c • t(b) . (15) 
We can check the module property (a 1 ⊗b 1 ) • (a 2 ⊗b 2 ) • c = (a 1 ⊗b 1 ) • (a 2 ⊗b 2 ) • c using the fact that t is an involution (b

1 • b 2 ) t = b t 2 • b t 1 .
The dual annular matrices S x encoding this action x • c = d (S x ) cd d are given by: ). The eight one-dimensional blocks have multiplicty one, whereas the block M (2, C) has multiplicity 2. From the fact that Oc(E 4 ) can be written as a tensor product over the subalgebra J of its left and right chiral subalgebras, both isomorphic with E 4 , one can block diagonalize it and show that it is isomorphic with the algebra The graph E 4 : concluding comments. The purpose of the last section, devoted to the exceptional quantum graph E 4 (SU (4)), was to illustrate in a particular example, and using conformal embeddings, the general features of the algebraic concepts described in the first part. The conformal embedding itself was known twenty years ago [START_REF] Schellekens | Conformal subalgebras of Kac-Moody algebras[END_REF], the corresponding modular invariant already appears in [START_REF] Altschuler | The Branching Rules of Conformal Embeddings[END_REF][START_REF] Schellekens | Modular invariants and fixed points[END_REF] and the associated quantum graph was first found in [START_REF] Petkova | From CFT to graphs[END_REF]. From a study of the modular splitting equation, the later was recovered in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] and presented in Bariloche (the existence of a self-connection satisfying the required compatibility equations was also checked). However, because of the heaviness of the involved calculations, only the first line of the modular invariant was used in [START_REF] Ocneanu | The Classification of subgroups of quantum SU(N)[END_REF] to achieve this goal: indeed, one can see that this provides enough information to obtain the graph itself. To our knowledge, the full modular splitting system had not been solved, the full torus structure had not been obtained, and the graph of quantum symmetries was not known; this is what we did. We have also determined the whole (non-commutative) multiplicative structure of Oc(E 4 ), not only a description of the action of its chiral generators. We obtained this information without having to rely on a separate study of the bialgebra of double triangles, something which would be intractable anyway in the SU (4) situation. To our knowledge, this also is new.

S x=a⊗J b . = G a G ′ b t , (16) 

( 4 )t 8 case

 48 without self-fusion (again a generalization of E 7 ), along with a conjugate graph called D (4)tc 8

Figure 1 :

 1 Figure 1: The Ocneanu graph of quantum symmetries Oc(E 4 ). The identity is 1 ⊗ 1. The left generators are 5 ⊗ 1, 8 ⊗ 1 and 10 ⊗ 1, the right generators are 1 ⊗ 5, 1 ⊗ 8 and 1 ⊗ 10. Multiplication by 5 ⊗ 1 (resp. 10 ⊗ 1) is encoded by oriented red edges (thick lines), in the direction of increasing (resp. decreasing) 4-ality. Multiplication by 8 ⊗ 1 is encoded by unoriented blue egdes (thin lines). Dashed lines relate chiral conjugated vertices. The three ambichiral vertices are circled on the graph. Numbers on the vertices give the dimension of the simple blocks x of the bialgebra B(E 4 ) for the multiplication on its dual.

Figure 2 :

 2 Figure 2: The A 4 quantum graph. Generators are marked with their classical dimensions[START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF],[START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] and[START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF]. Identity is[START_REF] Aldazabal G Allekote | N=2 Coset compactifications with nondiagonal invariants[END_REF]. Multiplication by[START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF] (resp[START_REF] Böckenhauer | Modular invariants from subfactors: Type I coupling matrices and intermediate subfactors[END_REF]) is encoded by red edges (thick lines) oriented from vertices of 4-ality τ to τ + 1 (resp. τ -1) modulo 4. Multiplication by[START_REF] Böckenhauer | Chiral structure of modular invariants for subfactors[END_REF] is encoded by unoriented blue edges (thin lines). Numbers in the spheres give the dimension of the simple blocks n of the bialgebra B(E 4 ) for its first multiplicative structure.

Figure 3 :

 3 Figure 3: The E 4 quantum graph. Generators are called 5, 8 and 10. Identity is 1. Vertices 5 and 10 are conjugated, 8 is self-conjugated. Multiplication by 5 (resp. 10) is encoded by red edges (thick lines) in the direction of increasing (resp. decreasing) 4-ality, multiplication by 8 is encoded by unoriented blue edges (thin lines).

  where the G ′ b matrices are defined by a• b = c (G ′ b ) ac c given by (G ′ b ) ac = (G a ) bc .The second multiplicative structure of the quantum groupoïd. Now that dual annular matrices S x are known, we can calculate the dimensions d x of blocks of the quantum groupoïd B for its second multiplicative structure (the multiplication on the dual B). These numbers d x = a,b (S x ) ab appear on figure1. The dimension of the vertical vector space isd x = 1864, and dim( B) = d 2 x = 86816, equal to dim(B) = d 2λ as it should. The "linear sum rule" does not hold (total horizontal and vertical dimensions are not equal).

  s ∈ {1, . . . 8}, the coefficients n(s) defined by n(1) = n(3) = n(6) = n(8) = 16(u+2) 3/2 , and n(2) = n(4) = n(5) = n(7) = 32.For s ∈ {1, . . . , 8} , take the eight 12 × 12 matrices defined byµ[s] = µ[s, s] = 1 n(s) q=12 q=1X(s, q)G q and finally the four matrices µ[9,9] = µ[START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF][START_REF] Coquereaux | Determination of quantum symmetries for higher ADE systems from the modular T matrix[END_REF] = 1/4(G 1 -G 2 + G 3 -G 4 ) µ[9, 10] = µ[11, 12] = 1/(2u)(G 11 -G 12 ) µ[10, 10] = µ[12, 12] = 1/4(G 1 -G 2 -G 3 + G 4 ) µ[10, 9] = µ[12, 11] = 1/(2u)(G 6 -G 7 )One can then check that the elements µ[a, b] of the algebra E 4 spanned by the G a 's are matrix units of its commutant. Indeed µ[a, a] µ[a, a] = µ[a, a], for a ∈ {1, . . . , 8}, and µ[a, b] µ[b, c] = µ[a, c], when a, b, c belong to {9, 10} or to {11, 12}. In other words, one can find a 12×12 unitary matrix U such that U.µ[a, b].U -1 are elementary matrices belonging to the algebra spanned by the G a 's: they contain only a 1 in position (a, b). The first 8 are diagonal, and the last 8 generate an algebra isomorphic with M (2, C). Conversely, any linear combination of graph matrices G a can be brought to this block diagonal form. The graph algebra of E 4 is therefore isomorphic, on the complex field C, with the algebra x=8 x=1 C x ⊕ M (2, C

  x=32 x=1 C x ⊕ M (4, C). The thirty-two one-dimensional blocks have multiplicity one, whereas the block M (4, C) has multiplicity 4. This is in agreement with what was expected from the structure of the modular invariant.

  Spin(15), at level 1. Using dim(SU (4)) = 15, g SU(4) = 4, we find c = 15/2. Using dim(Spin(15)) = dim(B 7 ) = 105, g Spin(15) = 13, we check that c = 15/2 as well. The homogeneous space Spin(15)/SU (4) is isotropy irreducible : reduction of the adjoint representation of Spin(15) with respect to SU (4) reads 105 → 15+90, and 90 is (real) irreducible. Using standard formulae, we check that the Dynkin index of this embedding is equal to 4.• The Cartan matrix of B 7 is 2 Id -G[B 7 ], where G[B 7 ] is the adjacency matrix of the Dynkin diagram of B 7 . This Lie group is non simply laced, therefore its quadratic form matrix Q is the inverse of the matrix obtained by multiplying the last line of the Cartan matrix by a coefficient 2.

  of (111) should be 4, and that all the other coefficients indeed appear, with multiplicity 1. The 35 × 35 modular invariant matrix M λµ , or the corresponding partition function 11 Z = λ χ λ M λµ χµ obtained from the diagonal invariant|0000000| 2 + |1000000| 2 + |0000001| 2 of B 7 , reads : Z(E 4 ) = |000 + 210 + 012 + 040| 2 + |101 + 400 + 121 + 004| 2 + 4|111| 2

	that the multiplicity
	3λ
	4
	and find (use obvious ordering with increasing level):

Table 1 :

 1 3 = 3, 4 = 4, and 6 = 11, 7 = 12, and the obtained multiplication structure appears to be non commutative. We give below the table of multiplication for vertices appearing in doublets. Call t the twist exchanging the two Multiplication table for vertices that are members of doublets in E 4 . Using the multiplication table of E 4 we can check that t is an involution such that t(a • b) = t(b) • t(a). The non-commutativity can be seen from:

	3 3 1 + 3 + 4 2 + 3 + 4 5 + 7 5 + 6 10 + 11 10 + 12 4 6 7 11 12 ր
	4 2 + 3 + 4 1 + 3 + 4 5 + 6 5 + 7 10 + 12 10 + 11
	6	5 + 6	5 + 7	8	8	1 + 4	2 + 3
	7	5 + 7	5 + 6	8	8	2 + 3	1 + 4
	11	10 + 12	10 + 11 1 + 3 2 + 4	8	8
	12	10 + 11	10 + 12 2 + 4 1 + 3	8	8
	members of the same doublet t(3) = 4, t(4) = 3, t(6) = 7, t(7) = 6, t(11) = 12, t(12) = 11 and
	leaving the others invariant t(i) = i.				

  Matrix units and block diagonalization of E 4 and of Oc(E 4 ). With u = √ 2 , v = u + 1 and w = u + 2, consider the 8 × 12 matrix X defined by the table

	√ w u + 2 u + 2 -u √ w v √ w v -u √ w 2v 2 √ w √ w √ w v √ w v √ w 2iv u + 2 u + 2 -u -u 2i √ w u + 2 u + 2 -u -u -2i √ w iu u + 2 -u √ w -u u + 2 √ w 2 w 3/2 iw iw -w 3/2 -u u √ w -2v √ w -2iv 2v 2 √ w -iu √ w -iu √ w -2 2v -2i √ w iu u + 2 -u √ w -u u + 2 √ w -iw -iw √ w iu √ w √ w iu √ w -2 2v 2i √ w -iu √ w -iu √ w √ w √ w v √ w v √ w -2iv -iw -iw -w 3/2 -u √ w 2iv iw iw u + 2 u + 2 -u -u -2 √ w u √ w u √ w 2 -2v -2 √ w u √ w u √ w √ w √ w v √ w v √ w -2v -u -2 -u -2 w

Constructions of B, inspired from[START_REF] Ocneanu | Paths on Coxeter diagrams: from Platonic solids and singularities to minimal models and subfactors Notes taken by Goto S Fields Institute Monographs[END_REF], and using these properties, were given in[START_REF] Petkova | The many faces of Ocneanu cells[END_REF] and[START_REF] Coquereaux | On quantum symmetries of ADE graphs[END_REF].

Definition of cells involve normalization choices: the spaces H n ab are not always one-dimensional, moreover one may decide to use bases made of vectors proportional to matrix units rather than matrix units themselves.

Rank-level duality property: if we have a conformal embedding at level k, SU (N ) ⊂ K , there is also a conformal embedding of SU (k), at level N , in some appropriate Lie group.

in terms of quantum groups at roots of unity this means that if the root of unity is too small, there will be no irreducible representation of non vanishing q-dimension.

We never write explicitly the affine component of a weight since it is equal to k -λ, θ .

We use sometimes the same notation λi to denote a representation or to denote the Dynkin labels of a weight; this should be clear from the context.

Some authors write instead Z = χ λ M λµ χµ, and therefore some care has to be taken in order to compare results since conjugated cases can be interchanged.

From now on we no longer make explicit the SU (4) argument.

The fact that the last one can also be obtained in this way[START_REF] Aldazabal G Allekote | N=2 Coset compactifications with nondiagonal invariants[END_REF] is a property that was apparently forgotten.

• The difference between conformal dimensions of B 7 and A 3 should be an integer. This selects the three following possibilities: 0000000 ֒→ ? 000 + 210 + 012 + 040, 1000000 ֒→ ? 101 + 400 + 121 + 004, 0000001 ֒→ ? 111.

The above three possibilities give only necessary conditions for branching : all representations on the right hand side do not necessarily appear, or they may appear with multiplicities. One may determine these coefficients, for instance by introducing arbitrary parameters and imposing that the candidate for the modular invariant matrix indeed commutes with the generators s and t of SL(2, Z). In this way one discovers

Afterword

Quantum graphs may have self -fusion or not: as mentioned before, in the case of SU (4), besides several infinite series of graphs with self-fusion, there are also three exceptional quantum graphs with self-fusion, at levels 4, 6 and 8, and the three corresponding modular invariants can be obtained from appropriate conformal embeddings 15 . To conclude, we give the modular invariant partition functions Z corresponding to modular invariant matrices M of respective sizes 35×35, 84 × 84 and 165 × 165, for the graphs E 4 (SU ( 4)), E 6 (SU (4)) and E 8 (SU ( 4)).

Z(E 4 ) = |000 + 210 + 012 + 040|