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0.1 Isoperimetric profile, examples

Definition 0.1. Let M be a Riemannian manifold of dimension n (possibly
with infinite volume).
Denote by τM the set of relatively compact open subsets of M where the
boundary is a submanifold of class C∞.
The function I : [0, V ol(M)[→ [0,+∞[ such that I(0) = 0

I :











]0, V ol(M)[ → [0,+∞[
v 7→ Inf





Ω ∈ τM
V ol(Ω) = v







{V oln−1(∂Ω)}

is called the isoperimetric profile function (or shortly the isoperimetric pro-
file) of the manifold M.

Here is a list of examples of Riemannian manifolds whose profiles are
knowns.

1. In constant sectional curvature spaces the solutions of the isoperimetric
problem are geodesic balls, this fact allow us, in the Euclidean case,
to have an explicit formula for the isoperimetric profile and in the
case of strictly positive or strictly negative curvature an implicit but
satisfactory one.

2. In dimension 2, Frank Morgan, Michael Hutchings et Hugh Howards
show in [MHH00] page 4899 (Main isoperimetric theorem) that on R

2

endowed with a complete rotationally invariant metric whose sectional
curvature is a strictly increasing fonction of the distance to the origin,
the solutions of the isoperimetric problem are the following:

• a disk centered at the origin,

• the complement of a disk centered at the origin,

• a ring centered at the origin.

This result generalises a previous result of Itai Benjamini and Jianguo
Cao [BC96] page 361 (Main Theorem) that contains the case of the
isoperimetric profile of a metric of paraboloids of revolution. Finally
Manuel Ritoré in [Rit01] with different methods extends the list of
surfaces for which the isoperimetric profile is known including planes
of revolution with increasing sectional curvature etc. (see page 1094).
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3. Antonio Ros and Manuel Ritoré determine the isoperimetric profile of
RP 3 in [RR92], Laurent Hauswirth, Joaqúin Pérez, Pascal Romon and
Antonio Ros in [HJRR04] do the same for certains flat tori of dimension
3.

4. Per Tomter [Tom93] determines the profile only in a neighborhood of
0, for the Heisenberg group of dimension 3.

5. On certain surfaces of non trivial topology, one can construct metrics
with somewhat prescribed isoperimetric profile, see [GP07].

For a more detailed exposition of the state of the art we refer to the P.H.D.
thesis of Vincent Bayle [Bay04] and to the survey by Ros and Ritoré (on
line on the web page of department of mathematics of the University of
Granada).

0.2 Results

The problem that we study in this article is the behaviour of the fonction IM
in a neighborhood of the origin. We compute the first nontrivial coefficient
of its asymptotic expansion and open the way to the computation of other
ones.

We show that the isoperimetric problem reduces, in a natural manner
(in particular, compatible with the symmetry of the ambient manifold) to
a variational problem in finite dimension. The geometric content of the
following statement will become clear in subsequent paragraphs.

Theorem 1. There exists a smooth function f : M× R → R and a map β
that to an arbitrary point p of M and a real r associates a domain β(p, r),
such that, for sufficiently small r > 0, the solutions of the isoperimetric
problem at volume v = ωnrn are exactly the images via β of the minima of
the function p 7→ f(p, r). f and β are invariant (resp. equivariant) under
the group of isometries of M.

As a consequence of theorem 1, in [Tom93], Per Tomter determines the
isoperimetric profile of the Heisenberg group of dimension 3 endowed with a
left invariant Riemannian metric of maximal symmetry, for small volumes.
Tomter uses an unpublished work of Bruce Kleiner, dating back to 1985,
that we can state as follows.

Theorem 0.1 (Kleiner). Let M be a Riemannian manifold, G a group of
isometries that acts transitively on M, K ≤ G the stabilizer of a point.
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Then for small v, there exists a solution of the isoperimetric profile in volume
v that is K-invariant.

We first learned of this result in may 2005, because there is no written
trace and no other reference than [Tom93].

One of the goals of this paper is in particular to recover the proof of
theorem 0.1. With some generic hypotheses on the Riemannian metric, we
can make more precise the statement of theorem 1 and we can show the
differentiability properties of the isoperimetric profile in a neighborhood of
0, for details see section 3.

The basic idea of the proof is to apply the implicit function theorem to
the map that to a small hypersurface, seen like a small perturbation of a
small geodesic sphere, associates its mean curvature. The linearization of
this map is not invertible. Hence we modify this map, introducing a new
class of hypersurfaces satisfying a weaker condition than the constancy of
mean curvature. We call this new kind of hypersurfaces pseudo-balls. On
the other hand it will be nedeed to show that a solution of the isoperimetric
problem is a perturbation of a small geodesic sphere.

The proof of theorem 1 has two essentials steps,

1. the construction of pseudo balls,

2. the proof that the solutions of the isoperimetric profile are pseudo balls.

The second step is the subject of a separate article [Nar06].

0.3 Pseudo-balls

Definition 0.2. We call pseudo-ball a hypersurface N embedded in M
such that there exists a point p ∈ M and a function u ∈ C2,α(T 1

p M ⋍

S
n−1, R), such that N is the graph of u in normal polar coordinates centered

at p, i.e. N =
{

expp(u(θ)θ), θ ∈ T 1
pM

}

and

Q(H(u)) = const. ∈ R,

where H is the mean curvature operator, Q = id − P , P is the orthogonal
projector of L2(T 1

p M) on the first eigenspace of the Laplacian on the unit
sphere S

n−1 of R
n, and T 1

p M is the fiber over p of the unit tangent bundle
over the Riemannian manifold M.

To state a uniqueness theorem for pseudo-balls we need the notion of
center of mass.
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Definition 0.3. Let (Ω, µ) be a probability space and f : Ω → M a measur-
able function. we consider the following function E : M → [0,+∞[:

E(x) :=
1

2

∫

Ω
d2(x, f(y))dµ(y).

We call center of mass of f with respect to the measure µ the unique mini-
mum of E on M, provided that it exists.

Proposition 0.1. We assume that the sectional curvature of M satisfies
KM ≤ δ. We assume also that f(Ω) has a diameter less than one half of the
injectivity radius and than π

2
√

δ
.

Then E has a unique minimum c, i.e. the unique nearest point to f(Ω) such
that

∫

Ω exp−1
c f(y)dµ(y) = 0.

In particular, we can speak about the center of mass of a hypersurface of
small diameter (we apply proposition 0.1 to the (n−1)-dimensional measure
of the boundary).

Definition 0.4. Let F2,α be the fiber bundle on M with fiber at p equal to
C2,α(T 1

p M, R)

Theorem 2. There exists a C∞ map, β : M× R → F2,α such that for all
p ∈ M, and all sufficiently small r > 0, the hypersurface expp(β(p, r)(θ)θ)
is the unique pseudo-ball whose center of mass is p enclosing a volume ωnrn

where ωn := V ol(Rn,can)(B
n) is the Euclidean volume of the unit ball B

n of
R

n.

Remark: If g is an isometry of M, g sends pseudo-balls to pseudo-balls
and g ◦ β = β ◦ g (g acts only on the first factor M).

Examples:

1. In constant curvature, pseudo-balls are geodesics spheres.

2. In the 3 dimensional Heisenberg group, pseudo-balls have been calcu-
lated by Per Tomter [Tom93].

0.4 Geometric measure theory

We use the following result, from [Nar06].

Theorem 3. Let Mn be a compact Riemannian manifold, gj a sequence of
Riemannian metrics of class C∞ that converges C4 to a fixed metric g∞.
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Let B be a domain in M with smooth boundary ∂B, Tj a solution of the
isoperimetric problem in (Mn, gj) such that

(∗) : Mg∞(B − Tj) → 0.

Then ∂Tj is the graph of a function uj in normal exponential coordinates to
∂B. Furthermore for all α ∈]0, 1[, uj ∈ C2,α(∂B), and if we assume that
∂B has constant mean curvature for g∞, then ||uj ||C2,α(∂B) → 0.

In section 3, we deduce the following theorem, that completes the proof
of theorem 1.

Theorem 4. Let T be a current solution of the isoperimetric problem, of
sufficiently small volume. Then T is a pseudo-ball.

0.5 Expansion of the isoperimetric profile near 0

The asymptotic expansion of the volume of pseudo-balls and the volume of
their boundary can be computed with theorem 1, this yields an expansion
for the profile.
The paper [Dru02] of O. Druet provides an alternative approach to theo-
rem 7. But our method gives more information. For instance, when scalar
curvature is constant, the next term in the expansion of the profile can be
obtained.

0.6 Plan of the article

1. Section 1 describes the construction of pseudo balls via the implicit
function theorem in an infinite dimensional context.

2. Section 2 describes why and in what sense approximate solutions, of
the isoperimetric problem, in the case of small volumes, are close to
Euclidean balls.

3. In section 3 the results of preceding sections and those of [Nar06] are
applied to obtain the first two non zero coefficients of the asymptotic
expansion of the isoperimetric profile.
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1 Construction of pseudo-balls

1.1 The normal coordinates context

We place ourselves in TpM, the tangent space of M at p, endowed with
the Riemannian metric exp∗p(g). This is a smooth Riemannian metric in a
neighborhood of the origin, ||x|| < ε. Let u be a function on T 1

pM ∼= S
n−1

the unit sphere of TpM, such that ||u||L∞ < ε, we are interested in the
hypersurface

Nu = {expp(u(θ)θ)|θ ∈ T 1
p M}.

Such hypersurfaces will be called normal graphs. Denote by θ the radial unit
vector field on Tp(M) − {0}.

1.2 The mean curvature

Let N be an arbitrary hypersurface. It’s mean curvature is

HN
ν (x) =

n−1
∑

1 i

IINx (ei, ei) = −
n−1
∑

1 i

< ∇ei
ν, ei >g (x) (1)

where (e1, . . . , en−1) is an orthonormal basis of TxN , ν a normal unit vector
field to N and IINx the second fundamental form of N in x.
We will use in the sequel an extension of ν to the whole Tp(M) − {0} into
a vector field that is independent from the distance to the origin, i.e. such
that [θ, ν] = 0 where [, ] is the Lie bracket of two vector fields.
We set

ν = a + bθ,

where the vector field a is tangent to geodesic spheres S(p, r) centered at p
and satisfies obviously [a, θ] = 0. In this case, after calculations analogous
to what can be found in paragraph 3.3 of [Nar06] one gets:

Hν(r, θ) = −divS(p,r)(a)+ < ∇aa, a > −bIIr
θ (a, a) + bHr

θ + b∇ab (2)

where divS(p,r)(a) is the divergence of the vector field a restricted to the
geodesic sphere of radius r centered at p, IIr

θ is the second fundamental
form of the sphere of radius r centered at p in the outward radial direction
and Hr

θ is the trace of IIr
θ .

The next task is to reformulate (2) in terms of objects that live on the sphere
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T 1
p M. We denote ã(r) := (dir)

−1(a) if a ∈ Texpp(rθ)M,

ir :

{

T 1
pM → M

θ 7→ expp(rθ),

we consider the pull-back gr of the metric g with respect to ir (i.e. gr =
i∗r(g)).

Hν = −div(Sn−1,gr)(ã)+ < ∇ãrã, ã >gr −br2IIr
θ (ã, ã) + bHr

θ + b∇rãb (3)

We introduce the family of metrics g̃r := 1
r2 gr that have the advantage to

have no singularities in r = 0, to highlight the nature of the singularity in 0
of (2), thus (3) becomes

Hν = −div(Sn−1,g̃r)(ã) + r2 < ∇ãrã, ã >g̃r −br2IIr
θ (ã, ã) + bHr

θ + b∇rãb (4)

1.3 The mean curvature of a normal graph

In this paragraph we interpret formulae (3) and (4) in the particular case of
hypersurfaces Nu. Let

Wu :=
√

1 + ‖−→∇ i∗u(g)u‖2
i∗u(g).

Then

b =

{ 1
Wu

< ν, θ >≥ 0 ν outward

− 1
Wu

< ν, θ >≤ 0 ν inward

a = −buIθ,u(θ)θ

(−→∇guu
)

(5)

where Iθ,u(θ)θ is the identification of R
n ∼= TpM of TθTpM with Tu(θ)θTpM

that is induced by the chosen system of normal coordinates centered in p
(notation inspired by [Cha95]). In the sequel we always make the choice of
b = − 1

Wu
, hence

a =
u

Wu
Iθ,u(θ)θ

(−→∇guu
)

. (6)

For r sufficiently small, formula (3) becomes

HN
νinw

(u, θ) = −div(Sn−1,gu)(

−→∇guu

Wu
) − 1

W 2
u

< ∇−→∇guu
(
u
−→∇guu

Wu
),
−→∇guu >gu(7)

+
u2

W 3
u

IIu
θ (
−→∇guu,

−→∇guu) − 1

Wu
Hu

θ (u, θ)

+
1

Wu
<

−→∇gu(
1

Wu
), u

−→∇guu

Wu
) >gu .
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Formula (4) becomes

HN
νinw

(u, θ) = −div(Sn−1,g̃u)(

−→∇ g̃uu

u2Wu
) − 1

u2W 2
u

< ∇−→∇ g̃uu
(

−→∇ g̃uu

uWu
),
−→∇ g̃uu >g̃u(8)

+
1

u2W 3
u

IIu
θ (
−→∇ g̃uu,

−→∇ g̃uu)

− 1

Wu
Hu

θ (u, θ) +
1

Wu
<

−→∇ g̃u(
1

Wu
),

−→∇ g̃uu

uWu
) >g̃u .

1.4 Linearization of the modified mean curvature

In this paragraph we denote by T 1
pM = S

n−1TpM the unit sphere of TpM.

Definition 1.1. Let Fk,α be the fiber bundle on M where the fiber over p
is the space of Ck,α functions on the unit tangent sphere T 1

pM and Γ(Fk,α)

the topological space of C∞ sections of Fk,α.

In other words, if y ∈ Γ(Fk,α), p ∈ M, then x = y(p) is a function on
T 1

p M. Let y0 denote the zero section.
In the rest of this section we are interested in the local behaviour of cer-
tain functions on this fiber bundle in view of the application of the implicit
function theorem to the solution of equations in a neighborhood of the zero
section y0. In order to do this, it is convenient to denote y = (p, x) and
to identify a neighborhood in the fiber bundle Fk,α with the trivialization
U × C2,α(Sn−1, R) (U open set of M ) with the aid of an atlas of the differ-
entiable structure of M.
We define, now, the domains and codomains of the functionals of modified
curvature.

Definition 1.2. We let

Ψ :

{

R × Γ(F2,α) → Γ(F0,α)
(r, y) 7→ r

(

H(p, r(1 + x)) − n−1
r

)

.

In other words, if p ∈ M, r ∈ R and x is a C2,α function on T 1
p M, then

Ψ(p, r, x) is the C0,α function on T 1
pM defined by

Ψ(p, r, x) := r

(

H(p, r(1 + x)) − n − 1

r

)

.

Proposition 1.1. Ψ is C∞ on the open subset where ||x||∞ < 1. (here
|| · ||∞ is the L∞-norm)
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Proof: We put u = r(1 + x) in the formula (8) and we get

1. Wr(1+x) =
√

1 + 1
r2(1+x)2 ||

−→∇ g̃r(1+x)
r(1 + x)||2g̃r(1+x)

= h0(p, r, x),

h0(p, 0, x) =
√

1 + 1
(1+x)2

||−→∇ g̃0x||2g̃0

2. −div(Sn−1,g̃r(1+x))(

−→∇ g̃r(1+x)
r(1+x)

r2(1+x)2Wr(1+x)
) = 1

r
h1(p, r, x),

h1(p, 0, x) = −div(Sn−1,can=g0)(
−→∇ g̃0

x

(1+x)2h0(p,0,x)
)

3. 1
r2(1+x)2W 2

r(1+x)

< ∇−→∇ g̃r(1+x)
rx

(

−→∇ g̃r(1+x)
rx

r(1+x)Wr(1+x)
),
−→∇ g̃r(1+x)

rx >g̃r(1+x)
= h2(p, r, x),

h2(p, 0, x) = 1
(1+x)2h0(0,x)2 < ∇−→∇ g̃0

x
(

−→∇ g̃0
x

(1+x)h0(p,0,x)),
−→∇ g̃0x >g̃0

4. 1
r2(1+x)2W 3

r(1+x)

II
r(1+x)
θ (

−→∇ g̃r(1+x)
rx,

−→∇ g̃r(1+x)
rx) = 1

r
h3(p, r, x),

h3(p, 0, x) = 1
(1+x)3h0(p,0,x)3 (

−→∇ g̃0x,
−→∇ g̃0x)Rn−1

5. − 1
Wr(1+x)

H
r(1+x)
θ (r(1 + x), θ) = 1

r
h4(p, r, x)

h4(p, 0, x) = n−1
(1+x)h0(p,0,x)

6. 1
Wr(1+x)

<
−→∇ g̃r(1+x)

( 1
Wr(1+x)

),

−→∇ g̃r(1+x)
rx

r(1+x)Wr(1+x)
) >g̃r(1+x)

= h5(p, r, x),

h5(p, 0, x) = 1
h0(p,0,x)2

<
−→∇ g̃0(

1
h0(p,0,x)),

−→∇ g̃0
x

(1+x)) >g̃0.

The functions h0, h1, h2, h3, h4, h5 are in C∞(R×Γ(F2,α),Γ(F0,α)) provided
||x||∞ < 1. From the following formulae

rH(p, r(1 + x)) = h1(r, x) + rh2(r, x) + h3(r, x) + h4(r, x) + rh5(r, x), (9)

Ψ(p, r, x) = rH(p, r(1 + x)) − (n − 1), (10)

we get that Ψ is C∞. 2

We can compare proposition 1.1 with the calculation of the papers [Ye91,
page 383] and [MPM04].
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Lemma 1.1. Let P be the orthogonal projector of L2(T 1
p M) on the first

eigenspace of the Laplacian on the unit sphere S
n−1 and let Q be Id − P .

Denote by

L :

{

Ck+2,α(Sn−1) → Ck,α(Sn−1)
v 7→ −△

Sn−1v − (n − 1)v

Then
[

∂
∂x

Q(Ψ(p, r, x))
]

r=0,x=0
= L.

Furthermore, let C l,α
1 (Sn−1) := Ker(L)⊥ ∩ C l,α(Sn−1) where Ker(L)⊥ is

taken in the L2 sense. Then L : Ck+2,α
1 (Sn−1) 7→ Ck,α

1 (Sn−1) is an isomor-
phism.

Proof: The following straightforward calculation shows that

L(v) = −△
Sn−1v − (n − 1)v.

With the notations of proposition 1.1,

Ψ(p, 0, tv) = h1(0, tv) + h3(0, tv) + h4(0, tv) − (n − 1).

From h0(0, tv) = 1 + O(t2) we argue that

1. h3(0, tv) = O(t2),

2. h1(0, tv) =
(

−△
Sn−1v

)

t + O(t2),

3. h4(0, tv) = (n − 1) − (n − 1)tv + O(t2),

and hence

Ψ(p, 0, tv) =
(

−△
Sn−1v − (n − 1)v

)

t + O(t2). (11)

It follows that
[

∂

∂x
Ψ(p, r, x))

]

r=0,x=0

(v) = −△
Sn−1v − (n − 1)v. (12)

Concerning the bijectivity, the proof is an immediate application of the fol-
lowing lemma with T = L, and this completes the proof. 2

Lemma 1.2. [Bes87, Cor. 32 Appendix, page 464]
Let E,F be two complex or real vector bundles on M.
Let T : C∞(E) → C∞(F ) be a linear differential operator of order k.
We consider an extension of T : L2(E) → L2(F ).
If T is elliptic or underdetermined elliptic then
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• Ker(T ∗) ⊂ C∞(F )

• dimC(Ker(T ∗)) < ∞

• W k,p(F ) = T (W k+l,p(E))
⊕

Ker(T ∗) (1 < p < +∞)

• C l,α(F ) = T (Ck+l,α(E))
⊕

Ker(T ∗)

• C∞(F ) = T (C∞(E))
⊕

Ker(T ∗)

1.5 Differentiability of center of mass

Lemma 1.3. There exists a smooth map

c :

{

R × Γ(F2,α) → M
(r, p, x) 7→ c(r, p, x)

defined implicitly by the equation

∫

Np,r,x

exp−1
c zdV ol(z) = 0 (13)

in TcM where

Np,r,x = {expp(r(1 + x(θ))θ)|θ ∈ S
n−1}.

Remark: c(r, p, x) is the center of mass of Nr,p,x and c(0, p, x) = p.

Proof: We rewrite formula (13) in the following more suitable form for
our purposes:

∫

Sn−1TpM
exp−1

c (expp(r(1 + y(p)(θ))θ))f∗(dV olNr,p,y(p)
)(θ) = 0 (14)

in TcM where
f∗(dV olNr,p,y(p)

) = σdV ol(Sn−1,can) (15)

f :

{

S
n−1 → Np,r,x

θ 7→ expp(r(1 + x(θ))θ).
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Let o ∈ M be such that p and c are in a normal neighborhood of o, we choose
a local field of orthonormal frame, this choice gives an isometry θ̃ 7→ θ(p, θ̃)
of S

n−1ToM on S
n−1TpM. Then (14) becomes

∫

Sn−1ToM
exp−1

c (expp(r(1 + y(p)(θ))θ))f∗(dV olNr,y)JdV ol(Sn−1,can)(θ̃) = 0,

(16)
because |det(dθ(θ̃, p))| = J = 1.
We set

f̃(c, r, p, x) :=

∫

Sn−1TpM
exp−1

c (expp(r(1 + y(p)(θ))θ))σdV olSn−1(θ) (17)

F :

{ M× R × Γ(F2,α) → TM
(c, r, p, x) 7→ f̃(c, r, p, x)

We verify that F is C∞ with respect to all variables,

• by exchanging the operation of derivation and integration, and the
differentiability of the exponential map on TM one gets the differen-
tiability with respect to c of F ,

• x 7→ dx is smooth from C2,α to C1,α by continuity and linearity,

• θ 7→ r(1 + x(θ))θ is C∞(Sn−1, TpM),

• (r, p, x) 7→ f∗(dV olNp,r,x) is C∞(R × F2,α, C1,α(Sn−1, R)) because it
is the norm of a multivector of ∧n−1TpM whose components are the
determinants in smooth functions of r, p, x, dx,

• expp(r(1 + x(θ))) is C∞,

• we take composition with exp−1
c ,

• we multiply by σ,

• at last we integrate on S
n−1, that is a linear continuous operation.

Now, we can see that F is divisible by rn−1 without changing the smoothness
of the resulting function G and finally, that we can apply the implicit function
theorem to G = F

rn−1 . From the preceding arguments we see that G is C∞

with respect to all variables.

∂G

∂c
(c(0, p, 0), 0, p, 0) =

∂

∂c

[

∫

Sn−1TpM
exp−1

c (p)dV ol(Sn−1,can)(θ)

]

c=p

= αn−1 △
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where αn−1 := V ol(Sn−1,can)(S
n−1) is the (n − 1)-dimensional volume of the

unit sphere with respect to the canonical metric induced by the Euclidean
one of R

n and

△:

{

TpM → TpM× TpM
y 7→ (y,−y).

Let us chose a trivialisation of TpM and compose G with the projection π1

on vertical fibers. So

∂π1 ◦ G

∂c
(c(0, p, 0), 0, p, 0) = π1(αn−1 △) = −αn−1Id.

Hence the implicit function theorem applies, there exists a unique c(r, y) of
class C∞ such that π1(G(c(r, y), r, y)) = 0, i.e. G(c(r, y), r, y) is the zero
section. 2

Lemma 1.4. There exists a smooth map A such that

exp−1
p (c(r, y)) = rA(r, y) (18)

and

A(0, y) =

∫

Sn−1(1 + x(θ))n−1θ
√

||dx||2 + (1 + x)2
∫

Sn−1(1 + x(θ))n−2
√

||dx||2 + (1 + x)2
. (19)

Proof: In order to show (18) it suffices to remark that

c(0, y) = p.

We now show (19). We choose a trivialisation of the tangent bundle.

Lemma 1.5.

exp−1
c (expp(v)) = exp−1

c (p) + v + o(||p − c|| + ||v||). (20)

This reflects the fact that Riemannian manifolds are Euclidean at small scale.

Proof: In an arbitrary system of coordinates of a neighborhood of p,
(20) becomes

exp−1
c (expp(v)) = p − c + v + o(||p − c|| + ||v||). (21)

In order to show this, we set q := p − c and H(p, q, v) = exp−1
p−q(expp(v)).

Expanding the C∞ function H at first order in a neighborhood of (0, 0), for
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all p, in function of q and v.
H(p, 0, v) = v implies that ∂

∂v
H(p, 0, 0) = id.

H(p, q, 0) = exp−1
p−q(p) = q+o(|q|) because if w := exp−1

p−q(p) then expp−q(w) =
p − q + w + o(|w|) = p due to the fact that d0expz = id for all z and hence
q = w + o(|w|) which implies that w = q + o(q). 2

We choose a trivialisation of the tangent bundle and we identify y =

(p, x(p)), then from the equation G(c(r, y), r, y) = 0 we deduce

A(r, y) =

∫

Sn−1(1 + x(θ))n−1θ
√

||dx||2 + (1 + x)2 + o(r)
∫

Sn−1(1 + x(θ))n−2
√

||dx||2 + (1 + x)2 + o(r)
+ o(1).

If, we put in the preceding equation r = 0 we obtain (19).
This follows from the fact that

σ = (1 + x(θ))n−2rn−1
√

||dx||2 + (1 + x)2 + o(r) (22)

and

exp−1
c (expp(r(1 + y(p)(θ))θ)) ∼ exp−1

c (p) + r(1 + x)θ + o(r) (23)

from which it follows

1

rn

∫

Sn−1TpM
(exp−1

c (p) + r(1 + x)θ + o(r))σdV ol(Sn−1,can) = 0 (24)

and finally
∫

Sn−1TpM
−A(r, y)

σ

rn−1
+

∫

Sn−1TpM
(1 + x)

σ

rn−1
= o(1) (25)

which proves the lemma. 2

1.6 Existence and uniqueness of pseudo-balls

Lemma 1.6. Let

Φ :

{

R × Γ(F2,α) → TM×
(

C0,α(Sn−1) ∩ (ker(L))⊥
)

(r, p, x) 7→ (A(r, y), Q ◦ Ψ(r, p, x))

Then, for r sufficiently small,
there exists a unique x(p, r) in C2,α(Sn−1) of small C2,α norm, solution of
the implicit equation

Φ(r, p, x(p, r)) = Φ(r, yr) = (y0, 0).
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Here y0 is the zero section of TM.
Furthermore, x depends smoothly on p and r.

Proof: Like in the preceding lemma, we remark that Φ is C∞ in all its
arguments. Trivialising TM in the usual manner we have:

∂Φ

∂x
(p, 0, 0) = (

d

dt
A(0, tv)|t=0, L)

∂Φ

∂x
(p, 0, 0) :

{

C2,α(Sn−1) → TpM× C0,α(Sn−1) ∩ (ker(L))⊥

v 7→ ( n
αn−1

∫

Sn−1 v(θ)θdV ol(Sn−1,can), L(v)).

Remember that here L = −△Sn−1 − (n − 1).
In order to obtain this result we combine the lemma with the following
calculations:

A(0, tv) =
nt
∫

Sn−1 v(θ)θ + O(t2)

αn−1 +
∫

Sn−1(n − 1)tvdV olcan + O(t2)
(26)

that follows by putting x = tv in (19).
Hence

d

dt
A(0, tv)|t=0 =

n

αn−1

∫

Sn−1

v(θ)θdV ol(Sn−1,can). (27)

If we identify TpM and ker(L) via the isomorphism of vector spaces that
maps vectors of TpM to the restriction of linear functions to the sphere
S

n−1TpM, it can be easily seen that ∂Φ
∂x

(p, 0, 0) is an isomorphism. From the
previous discussion we conclude the existence of a smooth function x(p, r) in
the two variables such that c(r, p, x(p, r)) = p and H(p, r(1+x(p, r)))− n−1

r
∈

Ker(L). Furthermore the implicit function theorem also asserts that x(p, r)
is the unique small solution of these equations. 2

Lemma 1.7. There exists ρ : M×]r0, r0[→ (−ρ0, ρ0) of class C∞ defined
implicitly by

V oln(x(p, r))V oln(N+
p,r,x(p,r)) = ωnρ(p, r)n,

and there exists r : M×]ρ0, ρ0[ defined by

V oln(x(p, r(p, ρ)) = ωnρn.

Here N+
p,r,x(p,r) = {expp(tθ)|0 ≤ t ≤ r(1 + x(p, r))}.
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Proof: Because V oln(x(p, r)) = ωnrnh(p, r) where h is a C∞ function

with h(p, 0) = 1, then we can write ρ(p, r) := rh(p, r)
1
n . Furthermore it is

easy to see that ∂ρ
∂r

(p, 0) = 1, hence we can solve

rh(p, r)
1
n = ρ

in r and obtain a function r(p, ρ(p, r)) = r. 2

Theorem 5. There exist ρ0 and a smooth map β : M×R → F2,α such that
for all p ∈ M, and for all ρ0 > ρ > 0, the hypersurface expp(β(p, ρ)(θ)θ)
is the unique pseudo-ball which has its center of mass at p and enclosing a
volume ωn|ρ|n.

Proof: β(p, ρ) := r(p, ρ)(1 + x(p, r(p, ρ))) where x(p, r) is produced by
the preceding lemma. 2
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2 Approximate solutions of the isoperimetric prob-

lem for small volumes are nearly round spheres

2.1 Introduction

In this section it is assumed that

1. M has bounded geometry (|K| ≤ Λ and injM ≥ ε > 0) where injM is
the injectivity radius of M ,

2. the domains Dj ∈ τM are approximate solutions i.e.
V oln−1(∂Dj)
I(V oln(Dj))

→ 1

for j → +∞.

We prove in this section the following theorem.

Theorem 2.1. Let (M, g) be a Riemannian manifold with bounded geom-
etry, Dj a sequence of approximate solutions of the isoperimetric problem
such that V olg(Dj) → 0. Then there exist pj ∈ M, and radii Rj such that

lim
j→+∞

V ol(Dj∆B(pj, Rj))

V ol(Dj)
→ 0. (28)

The proof of theorem 2.1 occupies the rest of the section.

2.2 Taylor’s theorem revisited

Jean Taylor has shown that polyhedral chains in R
n which are approximate

solutions of the isoperimetric problem are close to balls in the mass norm,
as stated in the following theorem.

Definition 2.1. We denote by cn := V oln−1(Sn−1)

[V oln(Bn)]
n−1

n

the constant in the Eu-

clidean isoperimetric profile.

Theorem 2.2. Let W be the n-ball of R
n centered to the origin, of volume

1.
Let {Sj} ⊂ Pn(Rn) be a sequence of polyhedral chains (i.e. of density 1)
contained in a big ball of R

n, of barycenter at the origin, M(Sj) = 1 and
satisfying

lim
j→+∞

M(∂Sj) = M(∂W ).

Then
M(Sj − W ) → 0.
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Proof: Apply Taylor’s theorem as stated in pages 420-421 of [Tay75] to
the constant function F equal to 1. 2

It turns out that the same theorem it’s true if the minimizing sequence
is composed of more general currents than polyhedral chains, for example
of integral currents (by the strong approximation theorem of Federer 4.2.20)
and also if the minimizing sequence is not of bounded diameter. This follows
from arguments which are somehow hidden in [Alm76]. A good reference for
the following theorem is [LR03].

Theorem 2.3. Let {Tj} ⊂ In(Rn) be a sequence of integral currents, satis-
fying

lim
j→+∞

M(∂Tj)

M(Tj)
n−1

n

= cn.

Then there exist balls Wj such that

M(Tj − Wj)

M(Wj)
→ 0.

2.3 Lebesgue numbers

Let (M, g) be a Riemannian manifold with bounded geometry. We can
construct a good covering of M by balls having the same radius.

Lemma 2.1. Let (M, g) be a Riemannian manifold with bounded geometry.
There exist an integer N , some constants C, ǫ > 0 and a covering U of M
by balls having the same radius 3ǫ and having also the following properties.

1. ǫ is a Lebesgue number for U , i.e. every ball of radius ǫ is entirely
contained in at least one element of U and meets at most N elements
of U .

2. For every ball B of this covering, there exist a C bi-Lipschitz diffeo-
morphism on an Euclidean ball of the same radius.

Proof: Let ǫ = injM
2 . Let B = {B(p, ǫ)} be a maximal family of balls

of M of radius ǫ that have the property that any pair of distinct members
of B have empty intersection. Then the family 2B := {B(p, 2ǫ)} is a cover-
ing of M. Furthermore, for all y ∈ M, there exist B(p, ε) ⊂ B such that
y ∈ B(y, 2ǫ) and thus B(y, ε) ⊆ B(p, 3ǫ). Hence ǫ is a Lebesgue number for
the covering 3B. Let B(p, 3ǫ) and B(p′, 3ǫ) be two balls of 3B having non
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empty intersection. Then d(p, p′) < 6ǫ, hence B(p′, ǫ) ⊆ B(p, 7ǫ). The ratios
V ol(B(p, 7ǫ))/V ol(B(p, ǫ)) are uniformly bounded because the Ricci curva-
ture of M is bounded from below, and hence the Bishop-Gromov inequality
applies. The number of disjoints balls of radius ǫ, contained in B(p, 7ǫ), is
bounded and does not depend on p. Thus the number of balls of 3B that
intersect one of these balls is uniformly bounded by an integer N . We con-
clude the proof by taking U := 3B. In fact by Rauch’s comparison theorem,
for every ball B(p, ǫ), the exponential map is C bi-Lipschitz with a constant
C that depends only on ǫ and on upper bounds for the sectional curvature
K. 2

2.4 Cutting domains in small diameter subdomains

This section is inspired by the article of Bérard and Meyer [BM82] lemme
II.15 and the theorem of appendix C page 531.

Proposition 2.1. Let I be the isoperimetric profile of M. Then

lim sup
a→0

I(a)

a
n−1

n

≤ cn.

Proof: Fix a point p ∈ M.

lim sup
a→0

I(a)

a
n−1

n

≤ lim sup
a→0

V ol(∂B(p, r(a)))

V ol(B(p, r(a)))
n−1

n

with r(a) such that V ol(B(p, r(a))) = a.
Changing variables in the limits, we find

lim sup
a→0

V ol(∂B(p, r(a)))

V ol(B(p, r(a)))
n−1

n

= lim sup
r→0

V ol(∂B(p, r))

V ol(B(p, r))
n−1

n

lim sup
r→0

rn−1V ol(Sn−1) + · · ·
[rnV ol(Bn) + · · · ]n−1

n

= cn.

2

Definition 2.2. Let r > 0. We define the unit grid of R
n and we denote

by G1 the set of points which have at least one integer coordinate (∈ Z). We
call grid of mesh r in R

n a set G of the form v + rG1 where v ∈ R
n. We

denote by Gr := ([0, r]n,Ln) the set of all grids of mesh r, endowed with its
natural Lebesgue mesure.
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Proposition 2.2. Let D be an open set of R
n.

1

rn

∫

Gr

V oln−1(D ∩ G)Ln(dG) =
n

r
V oln(D).

Proof: We observe that every grid G decomposes as a union of n sets

G(i) of the type v + tG
(i)
1 where G

(i)
1 is the set of points with integer i−th

coordinate.
Moreover G(i) ∩ G(j) has (n − 1)-dimensional Hausdorff measure equal to
zero.

1

rn

∫

Gr

V oln−1(D ∩ G)Ln(dG) =
1

rn

n
∑

i=1

∫

[0,r]n
V oln−1(D ∩ G(i))Ln(dG)

=
1

rn

n
∑

i=1

∫ r

0
rn−1V oln−1(D ∩ G(i))Ln(dG)

=
n

r
V oln(D).

2

Corollary 2.1. Let r > 0. Let D be an open set of R
n. There exists a grid

G of mesh r such that

V oln−1(D ∩ G) ≤ n

r
V oln(D). (29)

Proposition 2.3. We denote DG,k the connected components of D \ G.
Then

∑

k V ol(∂DG,k) − V ol(∂D)

V ol(D)
n−1

n

→ 0

for
V ol(D)

1
n

r
→ 0.

Proof: For every grid G,
∑

k

V ol(∂DG,k) − V ol(∂D) = 2V oln−1(D ∩ G).

By corollary 2.2, there exists a grid G such that V oln−1(D∩G) ≤ n
r
V oln(D).

We deduce that

0 ≤
∑

k V ol(∂DG,k) − V ol(∂D)

V ol(D)
n−1

n

≤
2n
r

V oln(D)

V ol(D)
n−1

n

=
2nV oln(D)

1
n

r
.
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Thus if r is very large with respect to V ol(D)
1
n then

∑

k V ol(∂DG,k) − V ol(∂D)

V ol(D)
n−1

n

is close to 0. 2

Proposition 2.4. Let M be a Riemannian manifold with bounded geometry.
Let Dj be a sequence of domains of M so that

1. V oln(Dj) → 0.

2. lim supj→+∞
V oln−1(∂Dj)

V ol(Dj)
n−1

n

≤ cn.

For any sequence (rj) of positive real numbers that tends to zero (rj → 0 )

and
V ol(Dj)

1
n

rj
→ 0, there exists a cutting Dj =

⋃

k Dj,k of Dj in domains

Dj,k with Diam(Dj,k) ≤ constM · rj such that

lim sup
j→+∞

∑

k V oln−1(∂Dj,k)

(
∑

k V ol(Dj,k))
n−1

n

≤ cn.

Proof: We apply lemma 2.1 and we take a covering {U} of M by balls
of radius 3ǫ, of multiplicity N and Lebesgue number ǫ > 0. For every ball
B(p, 3ǫ) of this family, we fix a diffeomorphism φp : B(p, 3ǫ) → BRn(0, 3ǫ) of
Lipschitz constant C.
For every j we fix also a radius rj >> V oln(Dj)

1
n and we map the grids of

mesh rj of R
n in B(p, 3ǫ) via φp, i.e. for G ∈ Grj

, we have

Gp = φ−1
p (G).

Let us denote by Dj,k the connected components of Dj\(∪pGp). We are look-
ing for an estimate of the supplementary volume introduced by the cutting
in this Dj,k,

∑

k

V oln−1(∂Dj,k) − V oln−1(∂Dj) = 2V oln−1(Dj ∩ (∪lGl)).
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First estimate the average m = 1
rn
j

∫

Grj
V oln−1(Dj ∩ (∪lGl))Ln(dG) of this

volume over all possible choices of the grids G ∈ Grj
.

m ≤ 1

rn
j

∑

p

∫

Grj

V oln−1(Dj ∩ Gp)Ln(dG)

≤ 1

rn
j

∑

p

∫

Grj

V oln−1(Rn,φ−1
p

∗
(g))

(φp(Dj) ∩ G)Ln(dG)

≤ C

rn
j

∑

p

∫

Grj

V oln−1(Rn,can)(φp(Dj ∩ Up) ∩ G)Ln(dG)

≤ C
n

rj

∑

p

V oln(φp(Dj ∩ B(p, 3ǫ)))

≤ C2 n

rj

∑

p

V oln(Dj ∩ B(p, 3ǫ))

≤ C2 n

rj
NV oln(Dj).

This is true because every point of M is contained in at most N balls
B(p, 3ǫ). Then there exists G in Grj

such that

V oln−1(Dj ∩ (∪pGp)) ≤ C2 n

rj
NV oln(Dj),

and so

0 ≤
∑

k V oln−1(∂Dj,k) − V oln−1(∂Dj)

V oln(Dj)
n−1

n

≤ 2C2 n

rj
NV oln(Dj)

1
n .

From the last inequality we obtain

lim sup
j→+∞

∑

k V olMn−1(∂Dj,k)

(
∑

k V olMn (Dj,k))
n−1

n

= lim sup
j→0

V olMn−1(∂Dj)

V olMn (Dj)
n−1

n

≤ cn.

Now, fix x ∈ Dj . By construction, ǫ is a Lebesgue number of the covering
{U}, and there exists a ball B(p, 3ǫ) that contains BM(x, ǫ). Let Dj,k de-
note the connected components of D \ (∪pGp) that contains x, and D′

j,k the
connected components of φp(B(p, ǫ)) \ G that contains φp(x). We observe
that D′

j,k is a cube of edge rj , if j is large enough so that rj ≤ ǫ/C
√

n, then

D′
j,k is contained in φp(B(p, ǫ)), hence Dj,k is contained in φ−1

p D′
j,k, which

have diameter at most C rj . 2
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2.5 Selecting a large subdomain

We first show that an almost Euclidean isoperimetric inequality can be ap-
plied to small domains.

Lemma 2.2. Let M be a Riemannian manifold with bounded geometry.
Then

V ol(∂D)

V ol(D)
n−1

n

≥ cn(1 − η(diam(D))) (30)

with η → 0 as diam(D) → 0.

Proof: In a ball of radius r < inj(M), we reduce to the Euclidian
isoperimetric inequality via the exponential map, that is a C bi-Lipschitz
diffeomorphism with C = 1+O(r2). This implies for all domains of diameter
< r,

V ol(∂D)

V ol(D)
n−1

n

≥ cnC−2n+2 = cn(1 −O(r2)).

2

Second, we have a combinatorial lemma that tells us how in a cutting
the largest domain contains almost all the volume.

Lemma 2.3. Let fj,k ∈ [0, 1] be numbers such that for all j,
∑

k fj,k = 1.
Then

lim sup
j→+∞

∑

k

f
n−1

n

j,k ≤ 1

implies that
lim

j→+∞
max

k
fj,k = 1.

Proof: We argue by contradiction. Suppose there exists ε > 0 for which
there exists jε ∈ N so that for all j ≥ jε, we have maxk{fj,k} ≤ 1− ε. Then
for all j ≥ jε, we have fj,k ≤ 1 − ε. From this inequality,

∑

k

f
n−1

n

j,k =
∑

k

fj,kf
−1
n

j,k ≥
∑

k fj,k

(1 − ε)
1
n

≥ 1

(1 − ε)
1
n

,

hence

lim sup
j→+∞

∑

k

f
n−1

n

j,k ≥ 1

(1 − ε)
1
n

> 1,



27

which is a contradiction. 2

Proposition 2.5. Let M be a Riemannian manifold with bounded geometry.
Let Dj be a sequence of approximate solutions in M with volumes that tend
to zero. Let rj be a sequence of positive real numbers such that rj → 0 and

V ol(Dj)
1
n

rj
→ 0.

There exist pj ∈ M and εj ≤ constMrj and subdomains D′
j ⊂ Dj such that

1. D′
j ⊆ B(pj, εj)

2.
V ol(∂D′

j)

V ol(D′
j)

n−1
n

→ 0

3. limj→+∞
V oln

M(Dj)

V oln
M(Dj)

= 1.

Proof: Apply proposition 2.4. By definition of isoperimetric profile and
lemma 2.2 we have

V ol(∂Dj,k) ≥ I(V ol(Dj,k)) ≥ cnV ol(Dj,k)
n−1

n (1 − ηj)

where ηj → 0. Since

lim sup
j→+∞

∑

k cnV ol(Dj,k)
n−1

n (1 − ηj)

V ol(Dj)
n−1

n

≤ lim sup
j→+∞

∑

k V ol(∂Dj,k)

V ol(Dj)
n−1

n

≤ cn,

lim sup
j→+∞

∑

k V ol(Dj,k)
n−1

n

V ol(Dj)
n−1

n

≤ lim sup
j→+∞

1

1 − ηj
= 1.

Now, we set fj,k =
V ol(Dj,k)
V ol(Dj)

. We can suppose that fj,1 = maxk{fj,k}. We

apply lemma 2.3 and we deduce that

V ol(Dj,1)

V ol(Dj)
→ 1.

But by construction Dj,1 ⊂ BM(pj , constMrj) with (pj) sequence of points
pj in M.
Finally, proposition 2.4 gives

lim sup
V ol(∂Dj , 1)

V ol(Dj)
n−1

n

≤ lim sup ≤ cn.

Thus one can take D′
j = Dj,1 2
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2.6 Application of Taylor’s Theorem

Let Dj be a sequence of approximate solutions with V ol(Dj) → 0. According
to proposition 2.5 there exist subdomains D′

j ⊆ Dj , points pj ∈ M and radii
εj → 0 such that

1. D′
j ⊆ B(pj, εj).

2.
V ol(D′

j)

V ol(Dj)
→ 0.

3.
V ol(∂D′

j)

V ol(Dj)
n−1

n

.

We identify all tangent spaces Tpj
M with a fixed Euclidean space R

n and
consider the domains D′′

j = exp−1(D′
j) in R

n. Since the pulled back metrics
g̃j = exp∗pj

(gM) converge to the Euclidean metric,

V ol(∂D′′
j )

V ol(D′′
j )

n−1
n

→ cn.

According to theorem 2.3, there exist Euclidean balls Wj = Beucl.(q̃j, Rj) in
R

n such that
V oleucl.(D

′′
j ∆Wj)

V oleucl.(D
′′
j )

→ 0.

Note that g̃j-balls are close to Euclidean balls,

V oleucl.(D
′′
j ∆Wj)

V oleucl.(Wj)
→ 0.

Thus
V oleucl.(D

′′
j ∆Bg̃j(q̃j , Rj))

V oleucl.(D
′′
j )

→ 0,

and then, for qj = exppj
(q̃j),

V oleucl.(D
′
j∆Bg(q̃j , Rj))

V oleucl.(D
′
j)

=
V oleucl.(D

′′
j ∆Bg̃j(q̃j, Rj))

V olg̃(Wj)
→ 0.

Finally, since
V olDj∆D′

j

V ol(Dj)
→ 0,

V olg(Dj∆B(qj ,Rj))
V olg(Dj)

→ 0.

This completes the proof of theorem 2.1
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2.7 Case of exact solutions

Remark: When we consider the solutions of the isoperimetric problem (this
is the case treated in [MJ00]), and not approximate solutions, the conclusion
is stronger. In fact we can prove directly by the monotonicity formula that
Dj is of smal diameter and we can apply Taylor’s theorem to the dilated of
Dj without passing throught any kind of cutting procedure.

Lemma 2.4. Assume Dj is asolution of the isoperimetric problem. The

dilated domains D′′′
j :=

exp−1
pj

(Dj)

V olg(Dj)
1
n

are of bounded diameter and hence we can

find a positive constant R > 0 in the proof of the preceding theorem so that
for all j ∈ N we have

D′′′
j ⊆ B(0, R).

Proof: For the domains D′′′
j , the mean curvature of the boundary in

(Rn, eucl) heucl
j ≤ M = const. for all j (apply the Lévy-Gromov isoperi-

metric inequality [Gro86a], [Gro86b]) and hence the monotonicity formula
of [All72][5.1 (3)] page 446 gives for a fixed r0 and all j

||∂D′′′
j ||(B(aj , r0)) ≥ e−Mr0Θn−1(||∂D′′′

j ||, aj)ωn−1r
n−1
0 (31)

aj ∈ spt||∂D′′′
j ||, r0 for a fixed r0 and all j. We argue

const ≥ V olgcan,n−1(∂D′′′
j ) ≥

[

Diamgcan(D′′′
j )

2r0

]

ωn−1r
n−1
0

and we can conclude that Diamgcan(D′′′
j ) are uniformly bounded. 2
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3 Application to compact Riemannian manifolds

3.1 From the pseudo-balls viewpoint

In this section, M is a compact Riemannian manifold.

Lemma 3.1. Let Dj be a sequence of solutions of the isoperimetric problem
such that V olg(Dj) → 0. Then eventually extracting a subsequence, there
exist a point p ∈ M such that the domains Dj are graphs in polar normal
coordinates of funcions uj of class C2,α on the unit sphere of TpM of the
form uj = rj(1 + vj) with ||vj ||C2,α(∂BTpM(0,R′)) → 0 and radii rj.

Proof: Theorem 2.1 provides points pj and radii rj such that Dj is
close to B(pj, rj) volumewise. Since M is compact, one can assume that pj

converges to p. Let Tj be exp−1
p (Dj) rescaled by 1

rj
. Then Tj is a solution of

the isoperimetric problem for the rescaled pulled back metric gj = 1
r2
j

exp∗p(g)

which converges volumewise to a unit ball. Since the sequence gj converges
smoothly to a Euclidean metric, the regularity theorem of [Nar06] applies
hence ∂Tj is the graph in normal coordinates of a smooth function vj on
the unit sphere and ||vj ||C2,α(Sn−1) tends to zero. In other words, ∂Dj is the
normal graph of uj = rj(1 + vj). 2

We can rewrite this lemma in the following form.

Lemma 3.2. Let M be a compact Riemannian manifold of class C3. There
exists v1 > 0 so that for all current D solution of the isoperimetric problem
with M(D) ≤ v1, there exists a point pD ∈ M (depending on D) such that
D is the normal graph of a function uD ∈ C2,α(Sn−1) with uD = rD(1 + vD)
and ||vD||C2,α(Sn−1) → 0 when M(D) → 0.

Proof: By contradiction using the preceding lemma.
If the thesis were not true then there exist p ∈ M, a sequence Dj of solutions
of the isoperimetric problem with volumes V ol(Dj) → 0, and for which ∂Dj

is not the graph on the sphere S
n−1 of TpM of a function uj = rj(1 + vj)

where ||vj ||C2,α goes to 0. This is in contradiction with the preceding lemma.
2

Theorem 6. There exist v0 such that if v < v0 then all current solutions of
the isoperimetric problem with volume v are pseudo-balls.
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Proof: Let v1 be as in the preceding lemma and ρ0 be given by lemma
1.7. We set v0 := min {ωnρn

0 , v1}. Assume v < v0. Let T be a current
solution of the isoperimetric problem with volume v. Then ∂T is the normal
graph centered at a point p of a function u ∈ C2,α(Sn−1), u = r(1 + v) with
||v||C2,α small and r small. Let q be the center of mass of ∂T . According
to lemma 1.4, exp−1

p (q) = rA(r, p, v) where A is smooth and A(0, p, 0) = 0.
Thus d(p, q) ≤ const(r2 + r||v||C1) ≤ εr for ε arbitrarily small. It follows
that the radial projection of ∂T onto the sphere ∂B(q, r) is C∞ close to
identity. As a consequence, ∂T is the normal graph centered at q of a
function ũ = r(1 + ṽ) on T 1

q M, with ||ṽ||C2,α small. Since q is the center of

mass of ∂T ,
∫

Sn−1 ṽ(θ)θdθ = 0, i.e. ṽ belongs to the space C2,α
1 (Sn−1). Since

∂T has constant mean curvature, it satisfies Q(Ψ(r, q, ṽ)) = 0. Therefore ∂T
coincides with the pseudo-ball β(q, r̃) where V ol(T ) = ωnr̃n. 2

Corollary 3.1. Let T be a solution of the isoperimetric problem with small
enclosed volume v, let p ∈ M be its center of mass. Let Stp ≤ Isom(M)
be the stabilizer of p for the canonical action of the group of isometries
Isom(M) of M.
Then for all k ∈ Stp, k(T ) = T .

Proof: Following theorem 5, ∂T is the pseudo-ball β(p, r) where ωnρn =
V oln(T ).
If k ∈ Stp, then, k(β(p, r)) = β(k(p), r) = β(p, r) hence k(T ) = T . 2

3.2 Asymptotic expansion of the isoperimetric profile

In the preceding section, we reduced the variational problem with volume
constraint v smaller than v0 to an optimization problem on the set of pseudo-
balls of enclosed volume v.
It is natural at this moment to consider the function

f :

{

M×]0, v0[ → [0,+∞[
(p, v) 7→ V oln−1(Np,r(p,ρ))

where Np,r = {expp (r(1 + x(p, r)(θ))) | θ ∈ T 1
pM} is the pseudo-ball of cen-

ter of mass p, of enclosed volume v = ωnρn. The following result is a
reformulation of theorem 6.
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Proposition 3.1. For all v < v0 it is true that

IM(v) = Infp∈M{f(p, v)}.

We give an asymptotic expansion of the function v 7→ f(p, v). We use
unpublished results of Pacard and Xu. For completeness sake, the proof
of the following theorem is included. Furthermore, we agree that any term
denoted O(rk) is a smooth function on S

n−1 that might depend on p but
which is bounded by a constant independent of p times rk in C2 topology.

Theorem 3.1. Asymptotic expansion of the area of pseudo-balls with re-
spect to the radius r of perturbed geodesic spheres.

V oln−1(Np,r) = rn−1αn−1

(

1 − 1

2n
Sc(p)r2 + O(r4)

)

. (32)

V oln(N+
p,r) =

rn

n
αn−1

(

1 + γn(p)r2 + O(r4)
)

(33)

with γn := − n+1
2(n−1)(n+2)Sc(p)

and N+
p,r := {expp(tθ)|0 ≤ t ≤ r(1 + x(p, r)(θ)) , θ ∈ T 1

pM}.

Proof: To prove (32) and (33) we need some preliminary lemmas that
allows one to expand the required quantities highlightening the geometrical
meaning of the coefficients of the respective asymptotic expansions.

Lemma 3.3. Asymptotic expansion of the outward mean curvature of geodesic
spheres of radius r.

Hr
θ (r, θ) = −(n − 1)

r
+

1

3
Ric(p)(θ)r + O(r2) (34)

Proof: Denote by U(r, θ) the shape operator of geodesic spheres of radius
r in the direction θ considered, as usual, as a linear operator on a fixed finite
dimensional real vector space, TpM for example. By standard results in
Riemannian geometry (see [Cha95]) U satisfy the following Riccati equation

U ′ + U2 + R = 0 (35)

where R is a suitable curvature operator and primes means derivatives taken
with respect to the r variable. We are looking for an asymptotic expansion
of H = tr(−U). To this aim, we start by observing that U = J ′J−1 for
J being the matrix whose entries are the components of the Jacobi fields
vanishing at the origin, with respect to a parallel transported orthonormal
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basis of TpM and with the initial condition J ′(0) = I. This means that
J(r)

r
→ I when r → 0 what implies rJ−1 → I when r → 0. For this reason

rU(r) → I when r → 0. The last argument allows us to have the following
asymptotic expansions

U =
1

r
I + A + Br + · · ·

hence

U2 =
1

r2
I +

2

r
A + A2 + 2B + · · ·

and

U ′ = − 1

r2
I + B + · · ·

where A and B are unknown linear operators. Putting all these expansions
in the Riccati equation (35) we obtain the conditions on A and B. So A = 0
and B = −1

3R.
Finally taking traces we get equation (34), the desired result. 2

Lemma 3.4. Let x(p, r) as in lemma 1.6 then

x(p, r)(θ) = r2x2(p, θ) + r3x3(p, r, θ) (36)

with x2(p, θ) ∈ C2,α
1 (Sn−1), and

Lx2 =
1

3
Ric(p). (37)

Proof: We already know that x has an asymptotic expansion without
terms of zero degree in r. Let x(r, p, θ) = rx1(p, θ) + r2x2(p, θ) + O(r3), we
put it into

(A(r, x(p, r)), Q ◦ Ψ(r, p, x)) = (0, 0), (38)

and combining with lemma 1.1 and equation (27) we must have

Lx1 = 0,

and
n

αn−1

∫

Sn−1

x1(θ)θdV ol(Sn−1,can) = 0,

the last equation means that x1 ∈ C2,α
1 hence x1 ∈ C2,α

1 ∩ Ker(L) = {0}
(i.e. x1 = 0). At this point, the more detailed expansion of x gives

x(r, p, θ) = r2x2(p, θ) + O(r3)
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and in the same manner, we substitute analogously to what is already done
in this proof we put this latter equation into (38), this yields

Lx2 =
1

3
Ric(p),

because we have the following expansion

rH(r(1 + x)) = (n − 1) + Lx + r2h(r, p, x)

for a smooth function h(r, p, x) = h(r, p, 0)+ h̃(r, p, x) with h̃(r, p, x) contain-
ing in his Taylor expansion terms that vanish at least linearly in x at x = 0.
To show (37) we observe that h̃(r, p, r2x2+· · · ) = r2h̃′(r, p, x2+· · · ) = O(r2)
hence we get

Q (Lx2 + h(0, p, 0)) = 0,

by equating to zero the coefficient of r2 of the resulting asymptotic expansion,

but h(0, p, 0) = ∂2Ψ
∂r2 (0, p, 0) = −∂2Hr

θ
(r(1+0),θ)

∂r2 |r=0
= −1

3Ric(p) and this is

easy to see by differentiating rH(r(1 + 0)) = h4(r, 0) twice with respect
to r (see calculations of proposition 1.1). This implies (37) by observing
Q
(

1
3Ric(p)

)

= 1
3Ric(p), (Ric(p) is the restriction to S

n−1 of a quadratic
form on R

n) and Q(Lx2) = Lx2 by definition of L and Q.
We finally observe that it must be

n

αn−1

∫

Sn−1

x2(θ)θdV ol(Sn−1,can) = 0,

by equating to zero the coefficient of r2 in the expansion of A(r, r2x2(p)+· · · )
and this proves that x2(p, θ) ∈ C2,α

1 (Sn−1).
This finishes the proof of the lemma. 2

Now we need an asymptotic expansion of the (n−1)-dimensional volume
of perturbed normal graphs on geodesic spheres.

Lemma 3.5. Let σ be defined by equation (15) then

σ(r, p, θ) = rn−1

[

1 + (n − 1)r2x2 −
1

6
Ricp(θ)r2 + O(r3)

]

.

Proof: We proceed by computing first an expansion of the pulled-back
metric gij on the unit sphere from Np,r,x the general perturbed normal graph,
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then we compute σ =
√

det(gij).
Set t = r(1 + x)

gij = < d(expp)|t(rdx(ei)θ + tei), d(expp)|t(rdx(ej)θ + tej) >

= t2
(

δij +
dx(ei)dx(ej)

(1+x)2 − 1
3 < Rθ,ei

θ, ej > t2 + t4(· · · )
)

,
(39)

σ = tn−1

√

det
(

δij +
dx(ei)dx(ej)

(1+x)2
− 1

3 < Rθ,ei
θ, ej > t2 + t4(· · · )

)

. (40)

Now we put in the last equation the expansion x = r2x2 + · · ·

σ = rn−1
(

1 + (n − 1)x2r
2 + · · ·

) (

1 − 1
6Ricp(θ) + r4(· · · )

)

= rn−1
{

1 +
[

(n − 1)x2 − 1
6Ricp(θ)

]

r2
}

+ · · · (41)

2

We now come back to the proof of the theorem.
Integration of (37) over S

n−1 yields

(n − 1)

∫

Sn−1

x2dV ol(Sn−1,can) = −1

3

∫

Sn−1

Ric(p)dV ol(Sn−1,can).

To complete the proof of (32) observe that

V oln−1(Np,r) =

∫

Sn−1

σdV ol(Sn−1,can)

and by using the fact that
∫

Sn−1

Ric(p)dV ol(Sn−1,can) =
1

n
V ol(n−1,can)(S

n−1)Sc(p),

we get (32).
The proof of (33) is easier and requires only the expansion of the volume
density in normal polar coordinates as a function of the distance to the
origin.

V oln(N+
p,r) =

∫

Sn−1

{

∫ r(1+x)
0 sn−1

[

1 − 1
6Ric(p)s2

]

ds
}

dV ol(Sn−1,can) + · · ·
=

∫

Sn−1

{

rn

n
+ rn+2

[

x2 − 1
6(n+2)Ric(p)

]}

dV ol(Sn−1,can) + · · ·
= αn−1rn

n

{

1 − r2

3

[

1
n−1 + 1

2(n+2)

]

Sc(p)
}

+ · · ·
= αn−1rn

n

{

1 − n+1
2(n−1)(n+2)Sc(p)r2

}

+ · · ·
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V ol(N ) and V ol(N+) are even functions of r variables, hence there are no
terms in r3 in their respective asymptotic expansions. By compactness of
M, the remainders are uniformly bounded in p. These remarks and the last
equation complete the proof. 2

Lemma 3.6. Asymptotic expansion of the area of pseudo-balls as a function
of the enclosed volume.

f(p, v) = cnv
n−1

n

{

1 + ap

(

v

ωn

)
2
n

+ O(v
4
n )

}

(42)

with ap := − 1
2n(n+2)Sc(p).

Proof: We set v = V oln(N+
p,r) so

v =
rn

n
αn−1

(

1 + γn(p)r2 + O(r4)
)

(43)

We reverse the latter asymptotic expansion to obtain an asymptotic expan-
sion of r as a function of v. Then we substitute this expansion in (32) and
we get equation (42). In fact,

rn =
n

αn−1
v − γn

(

n

αn−1

)
n+2

n

+ · · · (44)

rn−1 =

(

n

αn−1

)
n−1

n

v
n−1

n

[

1 − n − 1

n
γn

(

n

αn−1

)
2
n

v
2
n + · · ·

]

(45)

rn+1 =

(

n

αn−1

)
n+1

n

v
n+1

n

[

1 − n + 1

n
γn

(

n

αn−1

)
2
n

v
2
n + · · ·

]

(46)

f = αn−1r
n−1 − αn−1

2n
Sc(p)rn+1 + · · ·

= αn−1r
n−1 − αn−1

2n
Sc(p)

(

n
αn−1

)
n+1

n
v

n+1
n + · · ·

= cnv
n−1

n

[

1 −
(

n
αn−1

)
2
n (n−1

n
γn + 1

2n
Sc(p)

)

v
2
n

]

+ · · ·

= cnv
n−1

n

[

1 − 1
2n(n+2)Sc(p)

(

n
αn−1

)
2
n

v
2
n

]

+ · · ·

(47)
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here it is no difficult to check that ωn = αn−1

n
.

Finally it follows that

f(p, v) = cnv
n−1

n

{

1 + ap

(

v

ωn

)
2
n

+ Op(v
4
n )

}

.

2

Lemma 3.7. Let vk be a sequence of volumes tending to 0. Let Tk be a
solution of the isoperimetric problem with enclosed volume vk. Let pk ∈ M
be the center of mass of ∂Tk. Suppose that the sequence pk converges to a
point p ∈ M.
Then p is a point of global maximum of the scalar curvature function of M
i.e. Supp̃∈M{Sc(p̃)} = Sc(p). Furthermore,

lim
k→∞

IM(vk)v
−1−n

n

k − cnv
−2
n

k =
cn

ω
2
n
n

ap. (48)

Proof: By definition of the isoperimetric profile,

IM(vk) = f(pk, vk) = Infp∈M{f(p, vk)}.

We consider the function g(p̃, v) =
[

f(p̃,v)

v
n−1

n

− cn

]

1

v
2
n

.

It is easy to see that f(pk, vk) = Infp̃∈M{f(p̃, vk)} if and only if g(pk, vk) =
Infp̃∈M{g(p̃, vk)}. By lemma 42, we know that g(p, v) tends to uniformly
in p.has the following expansion in a neighborhood of 0.

cn

ω
2
n
n

ap

as v tends to 0, uniformly in p.
It follows that

• g(pk, vk) = Infp̃∈M{g(p̃, vk)} → cn

ω
2
n
n

ap,

• Infp̃∈M{g(p̃, vk)} → Infp̃∈M{g(p̃, 0)} = Infp̃∈M

{

cn

ω
2
n
n

ap̃

}

.
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hence Infp̃∈M

{

cn

ω
2
n
n

ap̃

}

= cn

ω
2
n
n

ap and by the presence of minus sign − in the

coefficient ap, we can conclude that Sc(p) = Supp̃∈M{Sc(p̃)}.
To show (48) it is sufficient to observe that

IM(vk)v
−1−n

n

k − cnv
−2
n

k =
cn

ω
2
n
n

apk
+ Opk

(vk

1
n )

which completes the proof. 2

Corollary 3.2. The solutions of the isoperimetric problem enclosing a small
volume v are pseudo-balls of constant mean curvature in a small neighbor-
hood of the maxima of the scalar curvature function.

Theorem 7. Let M be a compact Riemannian manifold, let

S = Supp̃∈M{Sc(p̃)}.

Then
the isoperimetric profile IM(v) has the following asymptotic expansion in a
neighborhood of the origin:

IM(v) = cnv
n−1

n

(

1 − S

2n(n + 2)

(

v

ωn

)
2
n

+ o(v
2
n )

)

. (49)

Proof: By contradiction, applying lemma 3.7. 2

Under stronger conditions, we can improve the remainder of this asymp-
totic expansion.

Theorem 8. Let M be a compact Riemannian manifold, let

S := Supp̃∈M{Sc(p̃)}.

We assume that absolute maxima of Sc are non degenerate critical points.
Then
the isoperimetric profile IM(v) has the following asymptotic expansion in a
neighborhood of the origin:

IM(v) = cnv
n−1

n

(

1 − S

2n(n + 2)

(

v

ωn

)
2
n

+ O(v
4
n )

)

. (50)
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Proof: Let us set N+
r,p := {expp(tθ)|0 ≤ t ≤ r(1 + x(p, r)(θ))}. The

critical points of f(p, v) : p 7→ V oln−1(β(p, v)) that are close to the maxima
of the scalar curvature function, p1, · · · , pl are C∞ functions of r denoted by
p1(r), · · · , pl(r). This can be seen by an application of the implicit funcion
theorem to the function ∇g.
If v is sufficiently small, IM is achieved by a pseudo-ball β(pi(v), v) where
ωnρ(p, r)n = v and the link between r and ρ is described at the end of section

1. We set fi(v) = V oln−1(β(pi(v), v)), this is C∞ a function of v
1
n and

IM(v) = Mini∈{1,··· ,l} {fi(v)} .

From lemma 42 we deduce easily that

IM(v) = cnv
n−1

n

(

1 − 1

2n(n + 2)
S

(

v

ωn

)
2
n

+ O(v
4
n )

)

.

2

Let B be a ball in the model space of constant sectional curvature K0.
It is no difficult to check that for balls of small volume,

V ol(∂B) = cnV ol(B)
n−1

n

[

1 − 1

2n(n + 2)
(n(n − 1)K0)

(

n

αn−1

)
2
n

V ol(B)
2
n

]

+· · ·

This permits to check that the expansion in theorem 7 coincides with theo-
rem 1 of [Dru02].
To finish, we verify that, under the assumptions of the article [Ye91], solu-
tions of the isoperimetric problem for small volumes belong to the family of
constant mean curvature spheres built by Ye. In order to make this possible
we first show that this family coincides with the cmc pseudo-balls.
Here we use the notations of the paper [Ye91] and we use a trivialisation of
the tangent bundle by an orthonormal frame field.

Lemma 3.8. Let p be a non degenerate critical point of the scalar curvature
function of M. Then there exist r1 so that for all r < r1

Sr,τ(r),r2ϕ(r),p = β1(p(r), r) = Nr,p(r),x(r)

where Sr,τ(r),r2ϕ(r),p is constructed in the paper [Ye91] and is a parametriza-
tion of a foliation by cmc spheres that is constructed in the same article
and β1(p(r), r) := β(p(v(r)), v(r)) where β is constructed in the preceding
theorem.
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Proof:
1. The Riemannian center of mass q(r) of the hypersurface Sr,τ(r),r2ϕ(r),p of
Ye is close to p.

We apply lemma 1.4 to p = p and x(θ) = r2φ(r). We find that d(p, q(r)) =
r|A(r, p, r2φ(r))|. This is due to the fact that A(0, p, 0) = 0, |A(r, p, r2φ(r))| =
O(r), from which we deduce d(p, q(r)) = O(r2).

2. The center of Ye expp(τ(r)) is close to p. Indeed, following Ye, [Ye91]
page 390, d(p, expp(τ(r))) = O(r2).

3. The projection π(r) of Sr,τ(r),r2ϕ(r),p on the sphere S(q(r), r) is a
diffeomorphism C∞-close to the identity, when r goes to 0.

If z is a point of Sr,τ(r),r2ϕ(r),p, the angle between the geodesic segments
from z to points expp(τ(r)) and q(r) goes to 0 uniformly in r (we use a
comparison theorem of Riemannian geometry as in the proof of lemma 4.4
of [Nar06]).

4. We can write Sr,τ(r),r2ϕ(r),p as the graph of a function of the form
r(1 + x̃(r)) on the unit sphere on the tangent space in q(r), and the C2,α

norm of x̃(r) is small.
In fact, r(1 + x̃(r)) is expressed as a function of φ(r) and of the inverse

diffeomorphism of π(r).
5. By construction, the function x̃(r) belongs to the kernel of the lin-

ear differential operator L, and it satisfies the pseudo-ball equation, hence,
applying lemma 1.6, Sr,τ(r),r2ϕ(r),p is the pseudo-ball β1(q(r), r) of center of
mass q(r) and radius r.

6. Sr,τ(r),r2ϕ(r),p is a constant mean curvature surface, q(r) is a critical
point of the map p 7→ voln−1(β(p, v)), where v is the enclosed volume by
Sr,τ(r),r2ϕ(r),p. Then, q(r) = p(r).
From definitions it is immediate to verify that

Sr,τ(r),r2ϕ(r),p = β1(p(r), v(r)).

2

Corollary 3.3. If M is a compact manifold and the scalar curvature func-
tion of M, ScM has no degenerate maxima as critical points, then the so-
lutions of the isoperimetric problem belong to the family constructed by Ye
[Ye91] in a neighborhood of the non degenerate maxima of the scalar curva-
ture function.

Proof: Let p1, . . . , pk be non degenerate maxima of the scalar curvature
function, then, as the preceding lemma and theorem show, the solutions of
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the isoperimetric problem for small volume v belong to the finite set

{β1(p1(r), r), . . . , β1(pk(r), r)}

that coincides with

{

Sr,τ(r),r2ϕ(r),p1
, . . . , Sr,τ(r),r2ϕ(r),pk

}

2

Remark: In the case of a compact manifold with non degenerate max-
ima of the scalar curvature we can continue the calculation of the asymptotic
expansion to obtain the next non trivial coefficient.
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[RR92] Manuel Ritoré and Antonio Ros. Stable constant mean curvature
tori and the isoperimetric problem in three space forms. Com-
ment. Math. Helv., 67:293–305, 1992.

[Tay75] Jean Taylor. Unique structure of solutions to a class of nonelliptic
variational problems. In Proc. Sympos. Pure. Math., volume 27,
pages 419–427, 1975.

[Tom93] Per Tomter. Constant mean curvature surfaces in the Heisenberg
group. Proc. Sympos. Pure Math., pages 485–495, 1993.

[Ye91] Rugang Ye. Foliation by constant mean curvature spheres. Pacific
J. Math., 147(2):381–396, 1991.

Stefano Nardulli
Dipartimento di Metodi e Modelli Matematici
Viale delle Scienze Edificio 8 - 90128 Palermo
email: nardulli@unipa.it


