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The Isoperimetric Profile of a Compact Riemannian Manifold for Small Volumes *

     ]0, V ol(M)[ → [0, +∞[ v → Inf    Ω ∈ τ M V ol(Ω) = v    {V ol n-1 (∂Ω)}
is called the isoperimetric profile function (or shortly the isoperimetric profile) of the manifold M.

Here is a list of examples of Riemannian manifolds whose profiles are knowns.

1. In constant sectional curvature spaces the solutions of the isoperimetric problem are geodesic balls, this fact allow us, in the Euclidean case, to have an explicit formula for the isoperimetric profile and in the case of strictly positive or strictly negative curvature an implicit but satisfactory one.

2. In dimension 2, Frank Morgan, Michael Hutchings et Hugh Howards show in [START_REF] Frank Morgan | The isoperimetric problem on surfaces of revolution of decreasing gauss curvature[END_REF] page 4899 (Main isoperimetric theorem) that on R 2 endowed with a complete rotationally invariant metric whose sectional curvature is a strictly increasing fonction of the distance to the origin, the solutions of the isoperimetric problem are the following:

• a disk centered at the origin,

• the complement of a disk centered at the origin,

• a ring centered at the origin.

This result generalises a previous result of Itai Benjamini and Jianguo Cao [START_REF] Benjamini | A new isoperimetric comparison theorem for surfaces of variable curvature[END_REF] page 361 (Main Theorem) that contains the case of the isoperimetric profile of a metric of paraboloids of revolution. Finally Manuel Ritoré in [START_REF] Ritoré | Constant mean curvature curves and isoperimetric domains in rotationnally symmetric surfaces[END_REF] with different methods extends the list of surfaces for which the isoperimetric profile is known including planes of revolution with increasing sectional curvature etc. (see page 1094).

3. Antonio Ros and Manuel Ritoré determine the isoperimetric profile of RP 3 in [RR92], Laurent Hauswirth, Joaqu ín Pérez, Pascal Romon and Antonio Ros in [START_REF] Hauswirth | The periodic isoperimetric problem[END_REF] do the same for certains flat tori of dimension 3.

4. Per Tomter [START_REF] Tomter | Constant mean curvature surfaces in the Heisenberg group[END_REF] determines the profile only in a neighborhood of 0, for the Heisenberg group of dimension 3.

5. On certain surfaces of non trivial topology, one can construct metrics with somewhat prescribed isoperimetric profile, see [START_REF] Grimaldi | Calibrations and isoperimetric profiles[END_REF].

For a more detailed exposition of the state of the art we refer to the P.H.D. thesis of Vincent Bayle [START_REF] Bayle | Propriétés de concavité du profil isopérimétrique[END_REF] and to the survey by Ros and Ritoré (on line on the web page of department of mathematics of the University of Granada).

Results

The problem that we study in this article is the behaviour of the fonction I M in a neighborhood of the origin. We compute the first nontrivial coefficient of its asymptotic expansion and open the way to the computation of other ones.

We show that the isoperimetric problem reduces, in a natural manner (in particular, compatible with the symmetry of the ambient manifold) to a variational problem in finite dimension. The geometric content of the following statement will become clear in subsequent paragraphs.

Theorem 1. There exists a smooth function f : M × R → R and a map β that to an arbitrary point p of M and a real r associates a domain β(p, r), such that, for sufficiently small r > 0, the solutions of the isoperimetric problem at volume v = ω n r n are exactly the images via β of the minima of the function p → f (p, r). f and β are invariant (resp. equivariant) under the group of isometries of M.

As a consequence of theorem 1, in [START_REF] Tomter | Constant mean curvature surfaces in the Heisenberg group[END_REF], Per Tomter determines the isoperimetric profile of the Heisenberg group of dimension 3 endowed with a left invariant Riemannian metric of maximal symmetry, for small volumes. Tomter uses an unpublished work of Bruce Kleiner, dating back to 1985, that we can state as follows.

Theorem 0.1 (Kleiner). Let M be a Riemannian manifold, G a group of isometries that acts transitively on M, K ≤ G the stabilizer of a point.

Then for small v, there exists a solution of the isoperimetric profile in volume v that is K-invariant.

We first learned of this result in may 2005, because there is no written trace and no other reference than [START_REF] Tomter | Constant mean curvature surfaces in the Heisenberg group[END_REF].

One of the goals of this paper is in particular to recover the proof of theorem 0.1. With some generic hypotheses on the Riemannian metric, we can make more precise the statement of theorem 1 and we can show the differentiability properties of the isoperimetric profile in a neighborhood of 0, for details see section 3.

The basic idea of the proof is to apply the implicit function theorem to the map that to a small hypersurface, seen like a small perturbation of a small geodesic sphere, associates its mean curvature. The linearization of this map is not invertible. Hence we modify this map, introducing a new class of hypersurfaces satisfying a weaker condition than the constancy of mean curvature. We call this new kind of hypersurfaces pseudo-balls. On the other hand it will be nedeed to show that a solution of the isoperimetric problem is a perturbation of a small geodesic sphere.

The proof of theorem 1 has two essentials steps, 1. the construction of pseudo balls, 2. the proof that the solutions of the isoperimetric profile are pseudo balls.

The second step is the subject of a separate article [START_REF] Nardulli | Régularité des solutions du problème isopérimétrique proches de variétés lisses[END_REF].

Pseudo-balls

Definition 0.2. We call pseudo-ball a hypersurface N embedded in M such that there exists a point p ∈ M and a function u

∈ C 2,α (T 1 p M ⋍ S n-1 , R), such that N is the graph of u in normal polar coordinates centered at p, i.e. N = exp p (u(θ)θ), θ ∈ T 1 p M and Q(H(u)) = const. ∈ R,
where H is the mean curvature operator, Q = id -P , P is the orthogonal projector of L 2 (T 1 p M) on the first eigenspace of the Laplacian on the unit sphere S n-1 of R n , and T 1 p M is the fiber over p of the unit tangent bundle over the Riemannian manifold M.

To state a uniqueness theorem for pseudo-balls we need the notion of center of mass. Definition 0.3. Let (Ω, µ) be a probability space and f : Ω → M a measurable function. we consider the following function E : M → [0, +∞[:

E(x) := 1 2 Ω d 2 (x, f (y))dµ(y).
We call center of mass of f with respect to the measure µ the unique minimum of E on M, provided that it exists.

Proposition 0.1. We assume that the sectional curvature of M satisfies K M ≤ δ. We assume also that f (Ω) has a diameter less than one half of the injectivity radius and than π 2 √ δ

. Then E has a unique minimum c, i.e. the unique nearest point to f (Ω) such that Ω exp -1 c f (y)dµ(y) = 0.

In particular, we can speak about the center of mass of a hypersurface of small diameter (we apply proposition 0.1 to the (n -1)-dimensional measure of the boundary). Definition 0.4. Let F 2,α be the fiber bundle on M with fiber at p equal to

C 2,α (T 1 p M, R) Theorem 2. There exists a C ∞ map, β : M × R → F 2,α
such that for all p ∈ M, and all sufficiently small r > 0, the hypersurface exp p (β(p, r)(θ)θ) is the unique pseudo-ball whose center of mass is p enclosing a volume ω n r n where ω n := V ol (R n ,can) (B n ) is the Euclidean volume of the unit ball B n of R n .

Remark: If g is an isometry of M, g sends pseudo-balls to pseudo-balls and g • β = β • g (g acts only on the first factor M).

Examples:

1. In constant curvature, pseudo-balls are geodesics spheres.

2. In the 3 dimensional Heisenberg group, pseudo-balls have been calculated by Per Tomter [START_REF] Tomter | Constant mean curvature surfaces in the Heisenberg group[END_REF].

Geometric measure theory

We use the following result, from [START_REF] Nardulli | Régularité des solutions du problème isopérimétrique proches de variétés lisses[END_REF].

Theorem 3. Let M n be a compact Riemannian manifold, g j a sequence of Riemannian metrics of class C ∞ that converges C 4 to a fixed metric g ∞ .

Let B be a domain in M with smooth boundary ∂B, T j a solution of the isoperimetric problem in (M n , g j ) such that

( * ) : M g∞ (B -T j ) → 0.
Then ∂T j is the graph of a function u j in normal exponential coordinates to ∂B. Furthermore for all α ∈]0, 1[, u j ∈ C 2,α (∂B), and if we assume that ∂B has constant mean curvature for g ∞ , then ||u j || C 2,α (∂B) → 0.

In section 3, we deduce the following theorem, that completes the proof of theorem 1.

Theorem 4. Let T be a current solution of the isoperimetric problem, of sufficiently small volume. Then T is a pseudo-ball.

Expansion of the isoperimetric profile near 0

The asymptotic expansion of the volume of pseudo-balls and the volume of their boundary can be computed with theorem 1, this yields an expansion for the profile. The paper [START_REF] Druet | Sharp local isoperimetric inequalities involving the scalar curvature[END_REF] of O. Druet provides an alternative approach to theorem 7. But our method gives more information. For instance, when scalar curvature is constant, the next term in the expansion of the profile can be obtained. We place ourselves in T p M, the tangent space of M at p, endowed with the Riemannian metric exp * p (g). This is a smooth Riemannian metric in a neighborhood of the origin, ||x|| < ε. Let u be a function on T 1 p M ∼ = S n-1 the unit sphere of T p M, such that ||u|| L ∞ < ε, we are interested in the hypersurface

Plan of the article

N u = {exp p (u(θ)θ)|θ ∈ T 1 p M}.
Such hypersurfaces will be called normal graphs. Denote by θ the radial unit vector field on T p (M) -{0}.

The mean curvature

Let N be an arbitrary hypersurface. It's mean curvature is

H N ν (x) = n-1 1 i II N x (e i , e i ) = - n-1 1 i < ∇ e i ν, e i > g (x) (1) 
where (e 1 , . . . , e n-1 ) is an orthonormal basis of T x N , ν a normal unit vector field to N and II N x the second fundamental form of N in x. We will use in the sequel an extension of ν to the whole T p (M) -{0} into a vector field that is independent from the distance to the origin, i.e. such that [θ, ν] = 0 where [, ] is the Lie bracket of two vector fields. We set ν = a + bθ,

where the vector field a is tangent to geodesic spheres S(p, r) centered at p and satisfies obviously [a, θ] = 0. In this case, after calculations analogous to what can be found in paragraph 3.3 of [START_REF] Nardulli | Régularité des solutions du problème isopérimétrique proches de variétés lisses[END_REF] one gets:

H ν (r, θ) = -div S(p,r) (a)+ < ∇ a a, a > -bII r θ (a, a) + bH r θ + b∇ a b (2)
where div S(p,r) (a) is the divergence of the vector field a restricted to the geodesic sphere of radius r centered at p, II r θ is the second fundamental form of the sphere of radius r centered at p in the outward radial direction and H r θ is the trace of II r θ . The next task is to reformulate (2) in terms of objects that live on the sphere

T 1 p M. We denote ã(r) := (di r ) -1 (a) if a ∈ T expp(rθ) M, i r : T 1 p M → M θ → exp p (rθ),
we consider the pull-back g r of the metric g with respect to i r (i.e. g r = i * r (g)).

H ν = -div (S n-1 ,gr) (ã)+ < ∇ ãrã, ã > gr -br 2 II r θ (ã, ã) + bH r θ + b∇ rã b (3)
We introduce the family of metrics gr := 1 r 2 g r that have the advantage to have no singularities in r = 0, to highlight the nature of the singularity in 0 of (2), thus (3) becomes

H ν = -div (S n-1 ,gr) (ã) + r 2 < ∇ ãrã, ã > gr -br 2 II r θ (ã, ã) + bH r θ + b∇ rã b (4)

The mean curvature of a normal graph

In this paragraph we interpret formulae ( 3) and ( 4) in the particular case of hypersurfaces N u . Let

W u := 1 + -→ ∇ i * u (g) u 2 i * u (g) . Then b = 1 Wu < ν, θ >≥ 0 ν outward -1 Wu < ν, θ >≤ 0 ν inward a = -buI θ,u(θ)θ -→ ∇ gu u (5) 
where

I θ,u(θ)θ is the identification of R n ∼ = T p M of T θ T p M with T u(θ)θ T p M
that is induced by the chosen system of normal coordinates centered in p (notation inspired by [START_REF] Chavel | Riemannian geometry: A Modern Introduction[END_REF]). In the sequel we always make the choice of

b = -1 Wu , hence a = u W u I θ,u(θ)θ -→ ∇ gu u . (6) 
For r sufficiently small, formula (3) becomes

H N ν inw (u, θ) = -div (S n-1 ,gu) ( -→ ∇ gu u W u ) - 1 W 2 u < ∇-→ ∇g u u ( u -→ ∇ gu u W u ), -→ ∇ gu u > gu (7) + u 2 W 3 u II u θ ( -→ ∇ gu u, -→ ∇ gu u) - 1 W u H u θ (u, θ) + 1 W u < -→ ∇ gu ( 1 W u ), u -→ ∇ gu u W u ) > gu .
Formula (4) becomes

H N ν inw (u, θ) = -div (S n-1 ,gu) ( -→ ∇ gu u u 2 W u ) - 1 u 2 W 2 u < ∇-→ ∇ gu u ( -→ ∇ gu u uW u ), -→ ∇ gu u > gu (8) + 1 u 2 W 3 u II u θ ( -→ ∇ gu u, -→ ∇ gu u) - 1 W u H u θ (u, θ) + 1 W u < -→ ∇ gu ( 1 W u ), -→ ∇ gu u uW u ) > gu .
1

.4 Linearization of the modified mean curvature

In this paragraph we denote by T 1 p M = S n-1 T p M the unit sphere of T p M.

Definition 1.1. Let F k,α be the fiber bundle on M where the fiber over p is the space of C k,α functions on the unit tangent sphere

T 1 p M and Γ(F k,α ) the topological space of C ∞ sections of F k,α . In other words, if y ∈ Γ(F k,α ), p ∈ M, then x = y(p) is a function on T 1 p M.
Let y 0 denote the zero section. In the rest of this section we are interested in the local behaviour of certain functions on this fiber bundle in view of the application of the implicit function theorem to the solution of equations in a neighborhood of the zero section y 0 . In order to do this, it is convenient to denote y = (p, x) and to identify a neighborhood in the fiber bundle F k,α with the trivialization U × C 2,α (S n-1 , R) (U open set of M ) with the aid of an atlas of the differentiable structure of M. We define, now, the domains and codomains of the functionals of modified curvature.

Definition 1.2. We let

Ψ : R × Γ(F 2,α ) → Γ(F 0,α ) (r, y) → r H(p, r(1 + x)) -n-1 r . In other words, if p ∈ M, r ∈ R and x is a C 2,α function on T 1 p M, then Ψ(p, r, x) is the C 0,α function on T 1 p M defined by Ψ(p, r, x) := r H(p, r(1 + x)) - n -1 r . Proposition 1.1. Ψ is C ∞ on the open subset where ||x|| ∞ < 1. (here || • || ∞ is the L ∞ -norm)
Proof: We put u = r(1 + x) in the formula (8) and we get

1. W r(1+x) = 1 + 1 r 2 (1+x) 2 || -→ ∇ gr(1+x) r(1 + x)|| 2 gr(1+x) = h 0 (p, r, x), h 0 (p, 0, x) = 1 + 1 (1+x) 2 || -→ ∇ g0 x|| 2 g0 2. -div (S n-1 ,g r(1+x) ) ( - → ∇ gr(1+x) r(1+x) r 2 (1+x) 2 W r(1+x) ) = 1 r h 1 (p, r, x), h 1 (p, 0, x) = -div (S n-1 ,can=g 0 ) ( - → ∇ g0 x (1+x) 2 h 0 (p,0,x) )
3.

1 r 2 (1+x) 2 W 2 r(1+x) < ∇-→ ∇ gr(1+x) rx ( - → ∇ gr(1+x) rx r(1+x)W r(1+x) ), -→ ∇ gr(1+x) rx > gr(1+x) = h 2 (p, r, x), h 2 (p, 0, x) = 1 (1+x) 2 h 0 (0,x) 2 < ∇-→ ∇ g0 x ( - → ∇ g0 x (1+x)h 0 (p,0,x) ), -→ ∇ g0 x > g0 4. 1 r 2 (1+x) 2 W 3 r(1+x) II r(1+x) θ ( -→ ∇ gr(1+x) rx, -→ ∇ gr(1+x) rx) = 1 r h 3 (p, r, x), h 3 (p, 0, x) = 1 (1+x) 3 h 0 (p,0,x) 3 ( -→ ∇ g0 x, -→ ∇ g0 x) R n-1 5. -1 W r(1+x) H r(1+x) θ (r(1 + x), θ) = 1 r h 4 (p, r, x) h 4 (p, 0, x) = n-1 (1+x)h 0 (p,0,x) 6. 1 W r(1+x) < -→ ∇ gr(1+x) ( 1 W r(1+x)
),

- → ∇ gr(1+x) rx r(1+x)W r(1+x)
) > gr(1+x) = h 5 (p, r, x),

h 5 (p, 0, x) = 1 h 0 (p,0,x) 2 < -→ ∇ g0 ( 1 h 0 (p,0,x) ), - → ∇ g0 x (1+x) ) > g0 .
The functions

h 0 , h 1 , h 2 , h 3 , h 4 , h 5 are in C ∞ (R×Γ(F 2,α ), Γ(F 0,α )) provided ||x|| ∞ < 1. From the following formulae rH(p, r(1 + x)) = h 1 (r, x) + rh 2 (r, x) + h 3 (r, x) + h 4 (r, x) + rh 5 (r, x), (9) Ψ(p, r, x) = rH(p, r(1 + x)) -(n -1), (10) 
we get that Ψ is C ∞ . 2

We can compare proposition 1.1 with the calculation of the papers [Ye91, page 383] and [START_REF] Mahmoudi | Constant mean curvature hypersurfaces condensing along a submanifold[END_REF].

Lemma 1.1. Let P be the orthogonal projector of L 2 (T 1 p M) on the first eigenspace of the Laplacian on the unit sphere S n-1 and let Q be Id -P . Denote by

L : C k+2,α (S n-1 ) → C k,α (S n-1 ) v → -△ S n-1 v -(n -1)v Then ∂ ∂x Q(Ψ(p, r, x)) r=0,x=0 = L. Furthermore, let C l,α 1 (S n-1 ) := Ker(L) ⊥ ∩ C l,α (S n-1 ) where Ker(L) ⊥ is taken in the L 2 sense. Then L : C k+2,α 1 (S n-1 ) → C k,α 1 (S n-1
) is an isomorphism.

Proof: The following straightforward calculation shows that

L(v) = -△ S n-1 v -(n -1)v. With the notations of proposition 1.1, Ψ(p, 0, tv) = h 1 (0, tv) + h 3 (0, tv) + h 4 (0, tv) -(n -1). From h 0 (0, tv) = 1 + O(t 2 ) we argue that 1. h 3 (0, tv) = O(t 2 ), 2. h 1 (0, tv) = -△ S n-1 v t + O(t 2 ), 3. h 4 (0, tv) = (n -1) -(n -1)tv + O(t 2 ),
and hence

Ψ(p, 0, tv) = -△ S n-1 v -(n -1)v t + O(t 2 ). ( 11 
)
It follows that

∂ ∂x Ψ(p, r, x)) r=0,x=0 (v) = -△ S n-1 v -(n -1)v. ( 12 
)
Concerning the bijectivity, the proof is an immediate application of the following lemma with T = L, and this completes the proof. 2

Lemma 1.2. [Bes87, Cor. 32 Appendix, page 464] Let E,F be two complex or real vector bundles on M. Let T : C ∞ (E) → C ∞ (F ) be a linear differential operator of order k.

We consider an extension of T :

L 2 (E) → L 2 (F ).
If T is elliptic or underdetermined elliptic then

• Ker(T * ) ⊂ C ∞ (F ) • dim C (Ker(T * )) < ∞ • W k,p (F ) = T (W k+l,p (E)) Ker(T * ) (1 < p < +∞) • C l,α (F ) = T (C k+l,α (E)) Ker(T * ) • C ∞ (F ) = T (C ∞ (E)) Ker(T * )
1.5 Differentiability of center of mass Remark: c(r, p, x) is the center of mass of N r,p,x and c(0, p, x) = p.

Proof: We rewrite formula (13) in the following more suitable form for our purposes:

S n-1 TpM exp -1 c (exp p (r(1 + y(p)(θ))θ))f * (dV ol N r,p,y(p) )(θ) = 0 (14) in T c M where f * (dV ol N r,p,y(p) ) = σdV ol (S n-1 ,can) (15) 
f :

S n-1 → N p,r,x θ → exp p (r(1 + x(θ))θ).
Let o ∈ M be such that p and c are in a normal neighborhood of o, we choose a local field of orthonormal frame, this choice gives an isometry θ → θ(p, θ) of S n-1 T o M on S n-1 T p M. Then (14) becomes

S n-1 ToM exp -1 c (exp p (r(1 + y(p)(θ))θ))f * (dV ol Nr,y )JdV ol (S n-1 ,can) ( θ) = 0, ( 16 
) because |det(dθ( θ, p))| = J = 1. We set f (c, r, p, x) := S n-1 TpM exp -1 c (exp p (r(1 + y(p)(θ))θ))σdV ol S n-1 (θ) (17) F : M × R × Γ(F 2,α ) → T M (c, r, p, x) → f (c, r, p, x)
We verify that F is C ∞ with respect to all variables,

• by exchanging the operation of derivation and integration, and the differentiability of the exponential map on T M one gets the differentiability with respect to c of F ,

• x → dx is smooth from C 2,α to C 1,α by continuity and linearity,

• θ → r(1 + x(θ))θ is C ∞ (S n-1 , T p M), • (r, p, x) → f * (dV ol Np,r,x ) is C ∞ (R × F 2,α , C 1,α (S n-1 , R)) because it
is the norm of a multivector of ∧ n-1 T p M whose components are the determinants in smooth functions of r, p, x, dx,

• exp p (r(1 + x(θ))) is C ∞ ,
• we take composition with exp -1 c ,

• we multiply by σ,

• at last we integrate on S n-1 , that is a linear continuous operation. Now, we can see that F is divisible by r n-1 without changing the smoothness of the resulting function G and finally, that we can apply the implicit function theorem to G = F r n-1 . From the preceding arguments we see that G is C ∞ with respect to all variables.

∂G ∂c (c(0, p, 0), 0, p, 0) = ∂ ∂c S n-1 TpM exp -1 c (p)dV ol (S n-1 ,can) (θ) c=p = α n-1 △
where α n-1 := V ol (S n-1 ,can) (S n-1 ) is the (n -1)-dimensional volume of the unit sphere with respect to the canonical metric induced by the Euclidean one of R n and △:

T p M → T p M × T p M y → (y, -y).
Let us chose a trivialisation of T p M and compose G with the projection π 1 on vertical fibers. So

∂π 1 • G ∂c (c(0, p, 0), 0, p, 0) = π 1 (α n-1 △) = -α n-1 Id.
Hence the implicit function theorem applies, there exists a unique c(r, y) of class C ∞ such that π 1 (G(c(r, y), r, y)) = 0, i.e. G(c(r, y), r, y) is the zero section. 2

Lemma 1.4. There exists a smooth map A such that

exp -1 p (c(r, y)) = rA(r, y) (18) 
and

A(0, y) = S n-1 (1 + x(θ)) n-1 θ ||dx|| 2 + (1 + x) 2 S n-1 (1 + x(θ)) n-2 ||dx|| 2 + (1 + x) 2 . ( 19 
)
Proof: In order to show (18) it suffices to remark that c(0, y) = p.

We now show (19). We choose a trivialisation of the tangent bundle.

Lemma 1.5.

exp -1 c (exp p (v)) = exp -1 c (p) + v + o(||p -c|| + ||v||). (20) 
This reflects the fact that Riemannian manifolds are Euclidean at small scale.

Proof: In an arbitrary system of coordinates of a neighborhood of p, (20) becomes

exp -1 c (exp p (v)) = p -c + v + o(||p -c|| + ||v||). (21) 
In order to show this, we set q := pc and H(p, q, v) = exp -1 p-q (exp p (v)). Expanding the C ∞ function H at first order in a neighborhood of (0, 0), for all p, in function of q and v. H(p, 0, v) = v implies that ∂ ∂v H(p, 0, 0) = id. H(p, q, 0) = exp -1 p-q (p) = q+o(|q|) because if w := exp -1 p-q (p) then exp p-q (w) = pq + w + o(|w|) = p due to the fact that d 0 exp z = id for all z and hence q = w + o(|w|) which implies that w = q + o(q). 2 We choose a trivialisation of the tangent bundle and we identify y = (p, x(p)), then from the equation G(c(r, y), r, y) = 0 we deduce

A(r, y) = S n-1 (1 + x(θ)) n-1 θ ||dx|| 2 + (1 + x) 2 + o(r) S n-1 (1 + x(θ)) n-2 ||dx|| 2 + (1 + x) 2 + o(r) + o(1).
If, we put in the preceding equation r = 0 we obtain (19). This follows from the fact that

σ = (1 + x(θ)) n-2 r n-1 ||dx|| 2 + (1 + x) 2 + o(r) (22) 
and

exp -1 c (exp p (r(1 + y(p)(θ))θ)) ∼ exp -1 c (p) + r(1 + x)θ + o(r) (23) 
from which it follows 1

r n S n-1 TpM (exp -1 c (p) + r(1 + x)θ + o(r))σdV ol (S n-1 ,can) = 0 (24) 
and finally

S n-1 TpM -A(r, y) σ r n-1 + S n-1 TpM (1 + x) σ r n-1 = o(1) (25) 
which proves the lemma. 2

Existence and uniqueness of pseudo-balls

Lemma 1.6. Let

Φ : R × Γ(F 2,α ) → T M × C 0,α (S n-1 ) ∩ (ker(L)) ⊥ (r, p, x) → (A(r, y), Q • Ψ(r, p, x))
Then, for r sufficiently small, there exists a unique x(p, r) in C 2,α (S n-1 ) of small C 2,α norm, solution of the implicit equation Φ(r, p, x(p, r)) = Φ(r, y r ) = (y 0 , 0).

Here y 0 is the zero section of T M. Furthermore, x depends smoothly on p and r.

Proof: Like in the preceding lemma, we remark that Φ is C ∞ in all its arguments. Trivialising T M in the usual manner we have:

∂Φ ∂x (p, 0, 0) = ( d dt A(0, tv) |t=0 , L) ∂Φ ∂x (p, 0, 0) : C 2,α (S n-1 ) → T p M × C 0,α (S n-1 ) ∩ (ker(L)) ⊥ v → ( n α n-1 S n-1 v(θ)θdV ol (S n-1 ,can) , L(v)). Remember that here L = -△ S n-1 -(n -1).
In order to obtain this result we combine the lemma with the following calculations:

A(0, tv) = nt S n-1 v(θ)θ + O(t 2 ) α n-1 + S n-1 (n -1)tvdV ol can + O(t 2 ) (26) that follows by putting x = tv in (19). Hence d dt A(0, tv) |t=0 = n α n-1 S n-1 v(θ)θdV ol (S n-1 ,can) . (27) 
If we identify T p M and ker(L) via the isomorphism of vector spaces that maps vectors of T p M to the restriction of linear functions to the sphere S n-1 T p M, it can be easily seen that ∂Φ ∂x (p, 0, 0) is an isomorphism. From the previous discussion we conclude the existence of a smooth function x(p, r) in the two variables such that c(r, p, x(p, r)) = p and H(p, r(1+x(p, r)))-n-1 r ∈ Ker(L). Furthermore the implicit function theorem also asserts that x(p, r) is the unique small solution of these equations. 2 Lemma 1.7. There exists ρ : M×]r 0 , r 0 [→ (-ρ 0 , ρ 0 ) of class C ∞ defined implicitly by

V ol n (x(p, r))V ol n (N + p,r,x(p,r) ) = ω n ρ(p, r) n ,
and there exists r : M×]ρ 0 , ρ 0 [ defined by

V ol n (x(p, r(p, ρ)) = ω n ρ n .
Here N + p,r,x(p,r) = {exp p (tθ)|0 ≤ t ≤ r(1 + x(p, r))}.

Proof: Because V ol n (x(p, r)) = ω n r n h(p, r) where h is a C ∞ function with h(p, 0) = 1, then we can write ρ(p, r) := rh(p, r) 2 Approximate solutions of the isoperimetric problem for small volumes are nearly round spheres

Introduction

In this section it is assumed that 1. M has bounded geometry (|K| ≤ Λ and inj M ≥ ε > 0) where inj M is the injectivity radius of M , 2. the domains D j ∈ τ M are approximate solutions i.e.

V ol n-1 (∂D j )

I(V oln(D j )) → 1 for j → +∞.
We prove in this section the following theorem.

Theorem 2.1. Let (M, g) be a Riemannian manifold with bounded geometry, D j a sequence of approximate solutions of the isoperimetric problem such that V ol g (D j ) → 0. Then there exist p j ∈ M, and radii R j such that

lim j→+∞ V ol(D j ∆B(p j , R j )) V ol(D j ) → 0. ( 28 
)
The proof of theorem 2.1 occupies the rest of the section.

Taylor's theorem revisited

Jean Taylor has shown that polyhedral chains in R n which are approximate solutions of the isoperimetric problem are close to balls in the mass norm, as stated in the following theorem.

Definition 2.1. We denote by c n :=

V ol n-1 (S n-1 ) [V oln(B n )] n-1 n
the constant in the Euclidean isoperimetric profile.

Theorem 2.2. Let W be the n-ball of R n centered to the origin, of volume 1.

Let {S j } ⊂ P n (R n ) be a sequence of polyhedral chains (i.e. of density 1) contained in a big ball of R n , of barycenter at the origin, M(S j ) = 1 and satisfying lim j→+∞ M(∂S j ) = M(∂W ).

Then M(S j -W ) → 0.

Proof: Apply Taylor's theorem as stated in pages 420-421 of [START_REF] Taylor | Unique structure of solutions to a class of nonelliptic variational problems[END_REF] to the constant function F equal to 1. 2 It turns out that the same theorem it's true if the minimizing sequence is composed of more general currents than polyhedral chains, for example of integral currents (by the strong approximation theorem of Federer 4.2.20) and also if the minimizing sequence is not of bounded diameter. This follows from arguments which are somehow hidden in [START_REF] Frederick | Existence and regularity almost everywhere of solutions to elliptic variational problems eith constraints[END_REF]. A good reference for the following theorem is [START_REF] Paolo | Isoperimetric sets on carnot groups[END_REF].

Theorem 2.3. Let {T j } ⊂ I n (R n ) be a sequence of integral currents, satis- fying lim j→+∞ M(∂T j ) M(T j ) n-1 n = c n .
Then there exist balls W j such that

M(T j -W j ) M(W j ) → 0.

Lebesgue numbers

Let (M, g) be a Riemannian manifold with bounded geometry. We can construct a good covering of M by balls having the same radius.

Lemma 2.1. Let (M, g) be a Riemannian manifold with bounded geometry.

There exist an integer N , some constants C, ǫ > 0 and a covering U of M by balls having the same radius 3ǫ and having also the following properties.

1. ǫ is a Lebesgue number for U, i.e. every ball of radius ǫ is entirely contained in at least one element of U and meets at most N elements of U.

2. For every ball B of this covering, there exist a C bi-Lipschitz diffeomorphism on an Euclidean ball of the same radius.

Proof: Let ǫ = inj M 2 . Let B = {B(p, ǫ
)} be a maximal family of balls of M of radius ǫ that have the property that any pair of distinct members of B have empty intersection. Then the family 2B := {B(p, 2ǫ)} is a covering of M. Furthermore, for all y ∈ M, there exist B(p, ε) ⊂ B such that y ∈ B(y, 2ǫ) and thus B(y, ε) ⊆ B(p, 3ǫ). Hence ǫ is a Lebesgue number for the covering 3B. Let B(p, 3ǫ) and B(p ′ , 3ǫ) be two balls of 3B having non empty intersection. Then d(p, p ′ ) < 6ǫ, hence B(p ′ , ǫ) ⊆ B(p, 7ǫ). The ratios V ol(B(p, 7ǫ))/V ol(B(p, ǫ)) are uniformly bounded because the Ricci curvature of M is bounded from below, and hence the Bishop-Gromov inequality applies. The number of disjoints balls of radius ǫ, contained in B(p, 7ǫ), is bounded and does not depend on p. Thus the number of balls of 3B that intersect one of these balls is uniformly bounded by an integer N . We conclude the proof by taking U := 3B. In fact by Rauch's comparison theorem, for every ball B(p, ǫ), the exponential map is C bi-Lipschitz with a constant C that depends only on ǫ and on upper bounds for the sectional curvature K. 2 V ol(B(p, r(a)))

Cutting domains in small diameter subdomains

n-1 n = lim sup r→0 V ol(∂B(p, r)) V ol(B(p, r)) n-1 n lim sup r→0 r n-1 V ol(S n-1 ) + • • • [r n V ol(B n ) + • • • ] n-1 n = c n . 2 
Definition 2.2. Let r > 0. We define the unit grid of R n and we denote by G 1 the set of points which have at least one integer coordinate (∈ Z). We call grid of mesh r in R n a set G of the form v + rG 1 where v ∈ R n . We denote by G r := ([0, r] n , L n ) the set of all grids of mesh r, endowed with its natural Lebesgue mesure.

Thus if r is very large with respect to V ol(D)

1 n then k V ol(∂D G,k ) -V ol(∂D) V ol(D) n-1 n is close to 0. 2 Proposition 2.4.
Let M be a Riemannian manifold with bounded geometry. Let D j be a sequence of domains of M so that

1. V ol n (D j ) → 0. 2. lim sup j→+∞ V ol n-1 (∂D j ) V ol(D j ) n-1 n ≤ c n .
For any sequence (r j ) of positive real numbers that tends to zero (r j → 0 ) and

V ol(D j ) 1 n r j → 0, there exists a cutting D j = k D j,k of D j in domains D j,k with Diam(D j,k ) ≤ const M • r j such that lim sup j→+∞ k V ol n-1 (∂D j,k ) ( k V ol(D j,k )) n-1 n ≤ c n .
Proof: We apply lemma 2.1 and we take a covering {U } of M by balls of radius 3ǫ, of multiplicity N and Lebesgue number ǫ > 0. For every ball B(p, 3ǫ) of this family, we fix a diffeomorphism φ p : B(p, 3ǫ) → B R n (0, 3ǫ) of Lipschitz constant C. For every j we fix also a radius r j >> V ol n (D j )

1 n and we map the grids of mesh r j of R n in B(p, 3ǫ) via φ p , i.e. for G ∈ G r j , we have

G p = φ -1 p (G).
Let us denote by D j,k the connected components of D j \(∪ p G p ). We are looking for an estimate of the supplementary volume introduced by the cutting in this

D j,k , k V ol n-1 (∂D j,k ) -V ol n-1 (∂D j ) = 2V ol n-1 (D j ∩ (∪ l G l )).
First estimate the average m = 1

r n j Gr j V ol n-1 (D j ∩ (∪ l G l ))L n (dG) of this
volume over all possible choices of the grids G ∈ G r j .

m ≤ 1 r n j p Gr j V ol n-1 (D j ∩ G p )L n (dG) ≤ 1 r n j p Gr j V ol n-1 (R n ,φ -1 p * (g)) (φ p (D j ) ∩ G)L n (dG) ≤ C r n j p Gr j V ol n-1 (R n ,can) (φ p (D j ∩ U p ) ∩ G)L n (dG) ≤ C n r j p V ol n (φ p (D j ∩ B(p, 3ǫ))) ≤ C 2 n r j p V ol n (D j ∩ B(p, 3ǫ)) ≤ C 2 n r j N V ol n (D j ).
This is true because every point of M is contained in at most N balls B(p, 3ǫ). Then there exists G in G r j such that

V ol n-1 (D j ∩ (∪ p G p )) ≤ C 2 n r j N V ol n (D j ),
and so

0 ≤ k V ol n-1 (∂D j,k ) -V ol n-1 (∂D j ) V ol n (D j ) n-1 n ≤ 2C 2 n r j N V ol n (D j ) 1 n .
From the last inequality we obtain lim sup

j→+∞ k V ol M n-1 (∂D j,k ) ( k V ol M n (D j,k )) n-1 n = lim sup j→0 V ol M n-1 (∂D j ) V ol M n (D j ) n-1 n ≤ c n .
Now, fix x ∈ D j . By construction, ǫ is a Lebesgue number of the covering {U }, and there exists a ball B(p, 3ǫ) that contains B M (x, ǫ). Let D j,k denote the connected components of D \ (∪ p G p ) that contains x, and D ′ j,k the connected components of φ p (B(p, ǫ)) \ G that contains φ p (x). We observe that D ′ j,k is a cube of edge r j , if j is large enough so that r j ≤ ǫ/C √ n, then

D ′ j,k is contained in φ p (B(p, ǫ)), hence D j,k is contained in φ -1 p D ′ j,k
, which have diameter at most C r j . 2

Selecting a large subdomain

We first show that an almost Euclidean isoperimetric inequality can be applied to small domains. Lemma 2.2. Let M be a Riemannian manifold with bounded geometry. Then

V ol(∂D) V ol(D) n-1 n ≥ c n (1 -η(diam(D))) (30) 
with η → 0 as diam(D) → 0.

Proof: In a ball of radius r < inj(M), we reduce to the Euclidian isoperimetric inequality via the exponential map, that is a C bi-Lipschitz diffeomorphism with C = 1+O(r 2 ). This implies for all domains of diameter < r, V ol(∂D)

V ol(D)

n-1 n ≥ c n C -2n+2 = c n (1 -O(r 2 )). 2 
Second, we have a combinatorial lemma that tells us how in a cutting the largest domain contains almost all the volume. Lemma 2.3. Let f j,k ∈ [0, 1] be numbers such that for all j, k f j,k = 1. Then lim sup

j→+∞ k f n-1 n j,k ≤ 1 implies that lim j→+∞ max k f j,k = 1.
Proof: We argue by contradiction. Suppose there exists ε > 0 for which there exists j ε ∈ N so that for all j ≥ j ε , we have max k {f j,k } ≤ 1ε. Then for all j ≥ j ε , we have f j,k ≤ 1ε. From this inequality,

k f n-1 n j,k = k f j,k f -1 n j,k ≥ k f j,k (1 -ε) 1 n ≥ 1 (1 -ε) 1 n , hence lim sup j→+∞ k f n-1 n j,k ≥ 1 (1 -ε) 1 n > 1,
which is a contradiction. 2 Proposition 2.5. Let M be a Riemannian manifold with bounded geometry. Let D j be a sequence of approximate solutions in M with volumes that tend to zero. Let r j be a sequence of positive real numbers such that r j → 0 and V ol(D j )

1 n r j → 0. There exist p j ∈ M and ε j ≤ const M r j and subdomains

D ′ j ⊂ D j such that 1. D ′ j ⊆ B(p j , ε j ) 2. V ol(∂D ′ j ) V ol(D ′ j ) n-1 n → 0 3. lim j→+∞ V oln M (D j )
V oln M (D j ) = 1. Proof: Apply proposition 2.4. By definition of isoperimetric profile and lemma 2.2 we have

V ol(∂D j,k ) ≥ I(V ol(D j,k )) ≥ c n V ol(D j,k ) n-1 n (1 -η j ) where η j → 0. Since lim sup j→+∞ k c n V ol(D j,k ) n-1 n (1 -η j ) V ol(D j ) n-1 n ≤ lim sup j→+∞ k V ol(∂D j,k ) V ol(D j ) n-1 n ≤ c n , lim sup j→+∞ k V ol(D j,k ) n-1 n V ol(D j ) n-1 n ≤ lim sup j→+∞ 1 1 -η j = 1. Now, we set f j,k = V ol(D j,k )
V ol(D j ) . We can suppose that f j,1 = max k {f j,k }. We apply lemma 2.3 and we deduce that

V ol(D j,1 ) V ol(D j ) → 1.
But by construction D j,1 ⊂ B M (p j , const M r j ) with (p j ) sequence of points p j in M. Finally, proposition 2.4 gives lim sup V ol(∂D j , 1)

V ol(D j ) n-1 n ≤ lim sup ≤ c n .
Thus one can take D ′ j = D j,1 2

Application of Taylor's Theorem

Let D j be a sequence of approximate solutions with V ol(D j ) → 0. According to proposition 2.5 there exist subdomains D ′ j ⊆ D j , points p j ∈ M and radii ε j → 0 such that 1. D ′ j ⊆ B(p j , ε j ).

2.

V ol(D ′ j )

V ol(D j ) → 0.

3.

V ol(∂D ′ j ) V ol(D j ) n-1 n
.

We identify all tangent spaces T p j M with a fixed Euclidean space R n and consider the domains D ′′ j = exp -1 (D ′ j ) in R n . Since the pulled back metrics gj = exp * p j (g M ) converge to the Euclidean metric,

V ol(∂D ′′ j ) V ol(D ′′ j ) n-1 n → c n .
According to theorem 2.3, there exist Euclidean balls

W j = B eucl. (q j , R j ) in R n such that V ol eucl. (D ′′ j ∆W j ) V ol eucl. (D ′′ j ) → 0.
Note that gj -balls are close to Euclidean balls,

V ol eucl. (D ′′ j ∆W j ) V ol eucl. (W j ) → 0. Thus V ol eucl. (D ′′ j ∆B gj (q j , R j )) V ol eucl. (D ′′ j ) → 0,
and then, for q j = exp p j (q j ),

V ol eucl. (D ′ j ∆B g (q j , R j )) V ol eucl. (D ′ j ) = V ol eucl. (D ′′ j ∆B gj (q j , R j )) V ol g(W j ) → 0.
Finally, since

V olD j ∆D ′ j V ol(D j ) → 0, V olg(D j ∆B(q j ,R j )) V olg (D j )
→ 0. This completes the proof of theorem 2.1

Proof: Let v 1 be as in the preceding lemma and ρ 0 be given by lemma 1.7. We set v 0 := min {ω n ρ n 0 , v 1 }. Assume v < v 0 . Let T be a current solution of the isoperimetric problem with volume v. Then ∂T is the normal graph centered at a point p of a function u ∈ C 2,α (S n-1 ), u = r(1 + v) with ||v|| C 2,α small and r small. Let q be the center of mass of ∂T . According to lemma 1.4, exp -1 p (q) = rA(r, p, v) where A is smooth and A(0, p, 0) = 0. Thus d(p, q) ≤ const(r 2 + r||v|| C 1 ) ≤ εr for ε arbitrarily small. It follows that the radial projection of ∂T onto the sphere ∂B(q, r) is C ∞ close to identity. As a consequence, ∂T is the normal graph centered at q of a function ũ = r(1 + ṽ) on T 1 q M, with ||ṽ|| C 2,α small. Since q is the center of mass of ∂T , S n-1 ṽ(θ)θdθ = 0, i.e. ṽ belongs to the space C 2,α 1 (S n-1 ). Since ∂T has constant mean curvature, it satisfies Q(Ψ(r, q, ṽ)) = 0. Therefore ∂T coincides with the pseudo-ball β(q, r) where V ol(T ) = ω n rn . 2 

Asymptotic expansion of the isoperimetric profile

In the preceding section, we reduced the variational problem with volume constraint v smaller than v 0 to an optimization problem on the set of pseudoballs of enclosed volume v.

It is natural at this moment to consider the function 2

We now come back to the proof of the theorem. Integration of (37) over S n-1 yields (n -1)

S n-1
x 2 dV ol (S n-1 ,can) = -1 3 S n-1 Ric(p)dV ol (S n-1 ,can) .

To complete the proof of (32) observe that V ol n-1 (N p,r ) =

S n-1

σdV ol (S n-1 ,can)

and by using the fact that 

Proof: By definition of the isoperimetric profile,

I M (v k ) = f (p k , v k ) = Inf p∈M {f (p, v k )}.
We consider the function g(p, v) = f (p,v) Remark: In the case of a compact manifold with non degenerate maxima of the scalar curvature we can continue the calculation of the asymptotic expansion to obtain the next non trivial coefficient.

0. 1

 1 Isoperimetric profile, examples Definition 0.1. Let M be a Riemannian manifold of dimension n (possibly with infinite volume). Denote by τ M the set of relatively compact open subsets of M where the boundary is a submanifold of class C ∞ . The function I : [0, V ol(M)[→ [0, +∞[ such that I(0) = 0 I :

Lemma 1 . 3 .

 13 There exists a smooth map c : R × Γ(F 2,α ) → M (r, p, x) → c(r, p, x) defined implicitly by the equation Np,r,x exp -1 c zdV ol(z) = 0 (13) in T c M where N p,r,x = {exp p (r(1 + x(θ))θ)|θ ∈ S n-1 }.

1 n. 2 Theorem 5 .

 125 Furthermore it is easy to see that ∂ρ ∂r (p, 0) = 1, hence we can solve rh(p, r) 1 n = ρ in r and obtain a function r(p, ρ(p, r)) = r. There exist ρ 0 and a smooth map β : M × R → F 2,α such that for all p ∈ M, and for all ρ 0 > ρ > 0, the hypersurface exp p (β(p, ρ)(θ)θ) is the unique pseudo-ball which has its center of mass at p and enclosing a volume ω n |ρ| n . Proof: β(p, ρ) := r(p, ρ)(1 + x(p, r(p, ρ))) where x(p, r) is produced by the preceding lemma. 2

  This section is inspired by the article of Bérard and Meyer [BM82] lemme II.15 and the theorem of appendix C page 531. Proposition 2.1. Let I be the isoperimetric profile of M. with r(a) such that V ol(B(p, r(a))) = a. Changing variables in the limits, we find lim sup a→0 V ol(∂B(p, r(a)))

Corollary 3 . 1 .

 31 Let T be a solution of the isoperimetric problem with small enclosed volume v, let p ∈ M be its center of mass. Let St p ≤ Isom(M) be the stabilizer of p for the canonical action of the group of isometries Isom(M) of M. Then for all k ∈ St p , k(T ) = T . Proof: Following theorem 5, ∂T is the pseudo-ball β(p, r) where ω n ρ n = V ol n (T ). If k ∈ St p , then, k(β(p, r)) = β(k(p), r) = β(p, r) hence k(T ) = T . 2

) 2 - 1 3 <) 2 - 1 3 <

 213213 f : M×]0, v 0 [ → [0, +∞[ (p, v) → V ol n-1 (N p,r(p,ρ) )whereN p,r = {exp p (r(1 + x(p, r)(θ))) | θ ∈ T 1p M} is the pseudo-ball of center of mass p, of enclosed volume v = ω n ρ n . The following result is a reformulation of theorem 6.then we compute σ = det(g ij ). Set t = r(1 + x) g ij = < d(exp p ) |t (rdx(e i )θ + te i ), d(exp p ) |t (rdx(e j )θ + te j ) > = t 2 δ ij + dx(e i )dx(e j ) (1+xR θ,e i θ, e j > t 2 + t 4 (• • • ) ,(39)σ = t n-1 det δ ij + dx(e i )dx(e j ) (1+xR θ,e i θ, e j > t 2 + t 4 (• • • ) . (40)Now we put in the last equation the expansionx = r 2 x 2 + • • • σ = r n-1 1 + (n -1)x 2 r 2 + • • • 1 -1 6 Ric p (θ) + r 4 (• • • ) = r n-1 1 + (n -1)x 2 -1 6 Ric p (θ) r 2 + • • • (41)

S n- 1 1 r(1+x) 0 s n-1 1 - 1 6

 1101 Ric(p)dV ol (Sn-1 ,can) = 1 n V ol (n-1,can) (S n-1 )Sc(p),we get (32). The proof of (33) is easier and requires only the expansion of the volume density in normal polar coordinates as a function of the distance to the origin.V ol n (N + p,r ) = S n-Ric(p)s 2 ds dV ol (S n-1 ,can) + • • • = S n-1 r n n + r n+2 x 2 -1 6(n+2) Ric(p) dV ol (S n-1 ,can) + • • • = α n-1 r n n 1 -r 2

2 Lemma 3 . 7 .

 237 -1)(n+2) Sc(p)r 2 + • • • here it is no difficult to check that ω n = α n-1n . Finally it follows that f (p, v) = c n v Let v k be a sequence of volumes tending to 0. Let T k be a solution of the isoperimetric problem with enclosed volume v k . Let p k ∈ M be the center of mass of ∂T k . Suppose that the sequence p k converges to a point p ∈ M. Then p is a point of global maximum of the scalar curvature function of M i.e. Sup p∈M {Sc(p)} = Sc(p). Furthermore,

•

  to see that f (p k , v k ) = Inf p∈M {f (p, v k )} if and only if g(p k , v k ) = Inf p∈M {g(p, v k )}.By lemma 42, we know that g(p, v) tends to uniformly in p.has the following expansion in a neighborhood of 0. v tends to 0, uniformly in p. It follows that• g(p k , v k ) = Inf p∈M {g(p, v k )} → cn ω Inf p∈M {g(p, v k )} → Inf p∈M {g(p, 0)} = Inf p∈Mfor small volume v belong to the finite set {β 1 (p 1 (r), r), . . . , β 1 (p k (r), r)} that coincides with S r,τ (r),r 2 ϕ(r),p 1 , . . . , S r,τ (r),r 2 ϕ(r),p k 2

Proof: We observe that every grid G decomposes as a union of n sets G (i) of the type v + tG (i) [START_REF]The Riemannian center of mass q(r) of the hypersurface S r,τ (r),r 2 ϕ(r),p of Ye is close to p. We apply lemma 1.4 to p = p and x(θ) = r 2 φ(r). We find that d(p, q(r)) = r|A(r, p, r 2 φ(r))|. This is due[END_REF] where

1 is the set of points with integer i-th coordinate. Moreover G (i) ∩ G (j) has (n -1)-dimensional Hausdorff measure equal to zero. Proof: For every grid G,

By corollary 2.2, there exists a grid G such that V ol n-1 (D∩G) ≤ n r V ol n (D). We deduce that 0 ≤ k V ol(∂D G,k ) -V ol(∂D)

V ol(D)

r .

Case of exact solutions

Remark: When we consider the solutions of the isoperimetric problem (this is the case treated in [START_REF] Morgan | Some sharp isoperimetric theorems for riemannian manifolds[END_REF]), and not approximate solutions, the conclusion is stronger. In fact we can prove directly by the monotonicity formula that D j is of smal diameter and we can apply Taylor's theorem to the dilated of D j without passing throught any kind of cutting procedure.

Lemma 2.4. Assume D j is asolution of the isoperimetric problem. The

are of bounded diameter and hence we can find a positive constant R > 0 in the proof of the preceding theorem so that for all j ∈ N we have D ′′′ j ⊆ B(0, R).

Proof: For the domains D ′′′ j , the mean curvature of the boundary in (R n , eucl) h eucl j ≤ M = const. for all j (apply the Lévy-Gromov isoperimetric inequality [START_REF] Gromov | Isoperimetric inequalities in riemannian manifolds[END_REF], [START_REF] Gromov | Partial Differential Relations[END_REF]) and hence the monotonicity formula of [All72] [5.1 (3)] page 446 gives for a fixed r 0 and all j

a j ∈ spt||∂D ′′′ j ||, r 0 for a fixed r 0 and all j. We argue

and we can conclude that Diam gcan (D ′′′ j ) are uniformly bounded. 2

3 Application to compact Riemannian manifolds 3.1 From the pseudo-balls viewpoint

In this section, M is a compact Riemannian manifold.

Lemma 3.1. Let D j be a sequence of solutions of the isoperimetric problem such that V ol g (D j ) → 0. Then eventually extracting a subsequence, there exist a point p ∈ M such that the domains D j are graphs in polar normal coordinates of funcions u j of class C 2,α on the unit sphere of T p M of the form u j = r j (1 + v j ) with ||v j || C 2,α (∂B Tp M (0,R ′ )) → 0 and radii r j .

Proof: Theorem 2.1 provides points p j and radii r j such that D j is close to B(p j , r j ) volumewise. Since M is compact, one can assume that p j converges to p. Let T j be exp -1 p (D j ) rescaled by 1 r j . Then T j is a solution of the isoperimetric problem for the rescaled pulled back metric g j = 1 r 2 j exp * p (g) which converges volumewise to a unit ball. Since the sequence g j converges smoothly to a Euclidean metric, the regularity theorem of [START_REF] Nardulli | Régularité des solutions du problème isopérimétrique proches de variétés lisses[END_REF] applies hence ∂T j is the graph in normal coordinates of a smooth function v j on the unit sphere and ||v j || C 2,α (S n-1 ) tends to zero. In other words, ∂D j is the normal graph of u j = r j (1 + v j ). 2 We can rewrite this lemma in the following form. Lemma 3.2. Let M be a compact Riemannian manifold of class C 3 . There exists v 1 > 0 so that for all current D solution of the isoperimetric problem with M (D) ≤ v 1 , there exists a point p D ∈ M (depending on D) such that D is the normal graph of a function

Proof: By contradiction using the preceding lemma. If the thesis were not true then there exist p ∈ M, a sequence D j of solutions of the isoperimetric problem with volumes V ol(D j ) → 0, and for which ∂D j is not the graph on the sphere S n-1 of T p M of a function u j = r j (1 + v j ) where ||v j || C 2,α goes to 0. This is in contradiction with the preceding lemma. 2 Theorem 6. There exist v 0 such that if v < v 0 then all current solutions of the isoperimetric problem with volume v are pseudo-balls. Proposition 3.1. For all v < v 0 it is true that

We give an asymptotic expansion of the function v → f (p, v). We use unpublished results of Pacard and Xu. For completeness sake, the proof of the following theorem is included. Furthermore, we agree that any term denoted O(r k ) is a smooth function on S n-1 that might depend on p but which is bounded by a constant independent of p times r k in C 2 topology. Theorem 3.1. Asymptotic expansion of the area of pseudo-balls with respect to the radius r of perturbed geodesic spheres.

Proof: To prove (32) and (33) we need some preliminary lemmas that allows one to expand the required quantities highlightening the geometrical meaning of the coefficients of the respective asymptotic expansions. Lemma 3.3. Asymptotic expansion of the outward mean curvature of geodesic spheres of radius r.

Proof: Denote by U (r, θ) the shape operator of geodesic spheres of radius r in the direction θ considered, as usual, as a linear operator on a fixed finite dimensional real vector space, T p M for example. By standard results in Riemannian geometry (see [START_REF] Chavel | Riemannian geometry: A Modern Introduction[END_REF]) U satisfy the following Riccati equation

where R is a suitable curvature operator and primes means derivatives taken with respect to the r variable. We are looking for an asymptotic expansion of H = tr(-U ). To this aim, we start by observing that U = J ′ J -1 for J being the matrix whose entries are the components of the Jacobi fields vanishing at the origin, with respect to a parallel transported orthonormal basis of T p M and with the initial condition J ′ (0) = I. This means that

r → I when r → 0 what implies rJ -1 → I when r → 0. For this reason rU (r) → I when r → 0. The last argument allows us to have the following asymptotic expansions 

with x 2 (p, θ) ∈ C 2,α 1 (S n-1 ), and

Proof: We already know that x has an asymptotic expansion without terms of zero degree in r. Let x(r, p, θ) = rx 1 (p, θ) + r 2 x 2 (p, θ) + O(r 3 ), we put it into (A(r, x(p, r)), Q • Ψ(r, p, x)) = (0, 0),

and combining with lemma 1.1 and equation ( 27) we must have

∩ Ker(L) = {0} (i.e. x 1 = 0). At this point, the more detailed expansion of x gives x(r, p, θ) = r 2 x 2 (p, θ) + O(r 3 ) and in the same manner, we substitute analogously to what is already done in this proof we put this latter equation into (38), this yields

because we have the following expansion

for a smooth function h(r, p, x) = h(r, p, 0)+ h(r, p, x) with h(r, p, x) containing in his Taylor expansion terms that vanish at least linearly in x at x = 0.

To show (37) we observe that h(r, p, r

by equating to zero the coefficient of r 2 of the resulting asymptotic expansion, but h(0, p,

|r=0 = -1 3 Ric(p) and this is easy to see by differentiating rH(r(1 + 0)) = h 4 (r, 0) twice with respect to r (see calculations of proposition 1.1). This implies (37) by observing Q 1 3 Ric(p) = 1 3 Ric(p), (Ric(p) is the restriction to S n-1 of a quadratic form on R n ) and Q(Lx 2 ) = Lx 2 by definition of L and Q. We finally observe that it must be n α n-1 S n-1

x 2 (θ)θdV ol (S n-1 ,can) = 0, by equating to zero the coefficient of r 2 in the expansion of A(r, r 2 x 2 (p)+• • • ) and this proves that x 2 (p, θ) ∈ C 2,α 1 (S n-1 ). This finishes the proof of the lemma. 2 Now we need an asymptotic expansion of the (n -1)-dimensional volume of perturbed normal graphs on geodesic spheres. Lemma 3.5. Let σ be defined by equation (15) then

Proof: We proceed by computing first an expansion of the pulled-back metric g ij on the unit sphere from N p,r,x the general perturbed normal graph, V ol(N ) and V ol(N + ) are even functions of r variables, hence there are no terms in r 3 in their respective asymptotic expansions. By compactness of M, the remainders are uniformly bounded in p. These remarks and the last equation complete the proof. 2 Lemma 3.6. Asymptotic expansion of the area of pseudo-balls as a function of the enclosed volume.

with a p := -1 2n(n+2) Sc(p).

Proof:

We reverse the latter asymptotic expansion to obtain an asymptotic expansion of r as a function of v. Then we substitute this expansion in (32) and we get equation (42). In fact,

a p and by the presence of minus signin the coefficient a p , we can conclude that Sc(p) = Sup p∈M {Sc(p)}. To show (48) it is sufficient to observe that

which completes the proof. 2

Corollary 3.2. The solutions of the isoperimetric problem enclosing a small volume v are pseudo-balls of constant mean curvature in a small neighborhood of the maxima of the scalar curvature function.

Theorem 7. Let M be a compact Riemannian manifold, let

Then the isoperimetric profile I M (v) has the following asymptotic expansion in a neighborhood of the origin:

Proof: By contradiction, applying lemma 3.7. 2

Under stronger conditions, we can improve the remainder of this asymptotic expansion.

Theorem 8. Let M be a compact Riemannian manifold, let S := Sup p∈M {Sc(p)}.

We assume that absolute maxima of Sc are non degenerate critical points. Then the isoperimetric profile I M (v) has the following asymptotic expansion in a neighborhood of the origin:

Proof: Let us set N + r,p := {exp p (tθ)|0 ≤ t ≤ r(1 + x(p, r)(θ))}. The critical points of f (p, v) : p → V ol n-1 (β(p, v)) that are close to the maxima of the scalar curvature function, p 1 , • • • , p l are C ∞ functions of r denoted by p 1 (r), • • • , p l (r). This can be seen by an application of the implicit funcion theorem to the function ∇g. If v is sufficiently small, I M is achieved by a pseudo-ball β(p i (v), v) where ω n ρ(p, r) n = v and the link between r and ρ is described at the end of section 1. We set

From lemma 42 we deduce easily that

Let B be a ball in the model space of constant sectional curvature K 0 . It is no difficult to check that for balls of small volume, This permits to check that the expansion in theorem 7 coincides with theorem 1 of [START_REF] Druet | Sharp local isoperimetric inequalities involving the scalar curvature[END_REF]. To finish, we verify that, under the assumptions of the article [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF], solutions of the isoperimetric problem for small volumes belong to the family of constant mean curvature spheres built by Ye. In order to make this possible we first show that this family coincides with the cmc pseudo-balls. Here we use the notations of the paper [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] and we use a trivialisation of the tangent bundle by an orthonormal frame field. Lemma 3.8. Let p be a non degenerate critical point of the scalar curvature function of M. Then there exist r 1 so that for all r < r 1 S r,τ (r),r 2 ϕ(r),p = β 1 (p(r), r) = N r,p(r),x(r) where S r,τ (r),r 2 ϕ(r),p is constructed in the paper [START_REF] Ye | Foliation by constant mean curvature spheres[END_REF] and is a parametrization of a foliation by cmc spheres that is constructed in the same article and β 1 (p(r), r) := β(p(v(r)), v(r)) where β is constructed in the preceding theorem.