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First-order perturbations of the seismic response of fluid-filled stratified poro-elastic media
Louis de Barros1 and Michel Dietrich2, Laboratoire de Ǵeophysique Interne et Tectonophysique, Université Joseph
Fourier, Grenoble, France.

SUMMARY
We derive analytical formulas for the first-order effects produced by
plane inhomogeneities on the seismic response of a stratified porous
medium. The approach used for the derivation is similar to the one em-
ployed in the elastic case; it is based on a perturbation analysis of the
poro-elastic wave propagation equations. The final forms of the sensi-
tivity operators, which are often referred to as the Fréchet derivatives,
are expressed in terms of the Green’s functions of the solid and fluid
displacements in the frequency–ray parameter domain. We compute
here the Fŕechet derivatives with respect to eight parameters, namely,
the fluid and mineral density and bulk moduli, porosity, permeability,
consolidation parameter and shear modulus.
The accuracy and stability of the derived expressions are checked by
comparing differential seismograms computed from the analytical ex-
pressions of the Fréchet derivatives with solutions obtained by intro-
ducing discrete perturbations into the model properties. Wefind that
the Fŕechet derivative approach is generally accurate for perturbations
of the medium properties of up to 10%, and for layer thicknesses less
than one fifth of the dominant wavelength.

INTRODUCTION

The evaluation of the sensitivity of a seismic wavefield to small per-
turbations of the medium properties is a classical problem inseismol-
ogy (Aki and Richards, 1980; Tarantola, 1984). The so-called Fŕechet
derivatives play an important role in least-square inversion schemes,
however, their implementation requires a fast and efficient numerical
evaluation method. Tarantola (1984) in the general case and Dietrich
and Kormendi (1990) in the one-dimensional case applied a perturba-
tion analysis to the wave equations to analytically expressthe sensitiv-
ity operators for elastic media. The latter are classically calculated for
P- andS-waves, and for density.
Since the pioneering work of Biot (1956), many authors (de la Cruz
and Spanos, 1985; Johnson et al., 1994; Geerits and Kedler, 1997)
have contributed to improve the poro-elastodynamic equations, either
by averaging or by integrating techniques. The forward problem, i.e.,
the computation of synthetic seismograms in poro-elastic mediahas
been developed and solved with several techniques (Dai et al., 1995;
Carcione, 1996; Haartsen and Pride, 1997; Garambois and Dietrich,
2002). The model involves more parameters than the elastic case, but
on the other hand, the wave velocities, attenuation and dispersion char-
acteristics are computed from the medium’s intrinsic properties with-
out resorting to empirical relationships. However, the inverse problem
has only been rarely addressed (Chotiros, 2002; Berryman et al., 2002)
despite the fact that it can provide useful information on thematerial
properties, especially the permeability and porosity, fromthe seismic
waveforms and attenuation.
The aim of this study is to extend the methodology used in the elastic
case (Dietrich and Kormendi, 1990) to derive the Fréchet derivatives
for stratified poro-elastic media. We consider here a depth-dependent,
fluid-saturated porous medium representing reservoir rocks. The 1-D
forward modeling is carried out with the Generalized Reflection and
Transmission Matrix Method (Kennett, 1983), already used byGaram-
bois and Dietrich (2002) and Pride et al. (2002) for the computation of
theoretical seismograms in porous media.
We first present the governing equations for porous media before ex-
pressing the wave propagation equations for depth-dependent media.
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Next, we develop the calculation of the Fréchet derivatives in the fre-
quency–ray parameter domain, for theP−SV and SH wave cases.
Finally, we check the accuracy of the operators obtained in an infinite
medium and in a complex seismic model and conclude with the sen-
sitivity of the seismic waveforms with respect to the different model
parameters.

WAVE PROPAGATION IN STRATIFIED POROUS MEDIA

Governing equations
Assuming ae−iωt dependence, Pride (1994, 2003) rewrote Biot’s (Biot,
1956) equations of poro-elasticity in the form



















∇.τ̄ = −ω2(ρ~u+ρ f ~w)

τ̄ = [ KU ∇.~u+C ∇.~w ]Ī +G [ ∇~u+(∇~u)T −2/3(∇.(~uĪ)) ]

−P = C ∇.~u+M ∇.~w

−∇P = −ω2ρ f~u− ρ̃~w ,

(1)

where~u and~w respectively denote the average solid displacement and
the relative fluid-to-solid displacement.P represents the interstitial
pressure andτ is a 3×3 stress tensor.ρ is the density of the porous
medium. It is related to the fluid densityρ f , solid densityρs and poros-
ity φ via

ρ = (1−φ)ρs+φρ f . (2)

KU is the undrained bulk modulus andG is the shear modulus.M (fluid
storage coefficient) andC (C-modulus) are mechanical parameters. In
the quasi-static limit, at low frequencies, these parametersas well as
the Laḿe parameterλU defined below are real, frequency-independent
and can be expressed in terms of the drained bulk modulusKD, poros-
ity φ , mineral modulus of the grainsKs and fluid modulusK f ,
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.

It is also possible to link the bulk propertiesKD andG to the porosity
and constitutive mineral properties (Pride, 2003):

KD = Ks
1−φ

1+csφ
and G = Gs

1−φ
1+3csφ/2

. (4)

The consolidation parametercs varies between 2 to 20 in a consoli-
dated medium, but is much greater than 20 in an unconsolidated soil.
Finally, the wave attenuation is explained by Darcy’s law which uses a
complex, frequency-dependent dynamic permeability (Johnsonet al.,
1994):

ρ̃ = iω
η

k(ω)
with k(ω) = k0/

[
√

1− i
4
nJ

ω
ωc

− i
ω
ωc

]

. (5)

The dynamic permeabilityk(ω) tends toward the dc permeabilityk0
at low frequencies (where viscous effects are dominant) and includes
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a correction to introduce the inertial effects at higher frequencies. The
two domains are separated by the relaxation frequencyωc = η/ρ f Fk0.
The formation factorF = φ−m is expressed in terms of the porosityφ
and cementation factorm. ParameternJ is considered constant and
equal to 8 to simplify the equations. For more information on the
parameters used in this study, we refer the reader to the work of Pride
(2003).

Coupled second-order equations for plane P-SV waves
In a depth-dependent poro-elastic medium andP−SV case, equations
(1) reduce to the following system of second-order differential equa-
tions:
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(6)

These expressions were obtained by performing a series of changes of
variables which are described in detail in Kennett (1983) for the elastic
case. In the above equations,U =U(zR,ω;zS), V =V(zR,ω;zS), W =
W(zR,ω;zS) andX = X(zR,ω;zS) respectively denote the vertical and
horizontal displacements for the solid and for the fluid. VariableszR

andzS are the receiver and seismic source depths. Equations (6) are
valid in the presence of vertical and horizontal body forces: forceF1
is applied on an average volume of porous medium and forceF2 is
related to the pressure gradient in the fluid. We can rewrite equations
(6) in the form of a matrix differential equation as

L̄Ȳ = F̄ where Ȳ =









U
V
W
X









and F̄ =









F1z
F1r
F2z
F2r









. (7)

Equations (7) admit a solution for the displacement fields in terms of
the Green’s functions, i.e.,

U(zR,ω) =
∫

M

[G11zz(zR,ω;z′)F1z(z
′,ω)+G12zz(zR,ω;z′)F2z(z

′,ω)

+G11zr(zR,ω;z′)F1r (z
′,ω)+G12zr(zR,ω;z′)F2r (z

′,ω)]dz′ (8)

whereGi jkl (zR,ω;zS) is the Green’s function corresponding to the dis-
placement at depthzR of phasei (solid or fluid) in directionk generated
by a harmonic point forceFjl (zS,ω) ( j = 1,2) at depthzS in direction
l . A total of 32 different Green’s functions are needed to express the
4 displacementsU , V, W andX. In order to simplify this problem,
we use the reciprocity theorem (eq. 9) (Pride and Haartsen, 1996; Sa-
hay, 2001), and assume that the average forceF1 acting on the porous
medium and fluid forceF2 are similar (Garambois and Dietrich, 2002).
This simplification allows us to drop thej index of the Green’s func-
tions (eq. 10):

Gi jkl (zR,ω;zS) = G jilk (zS,ω;zR) (9)

Gi jkl (zR,ω;zS) = Gikl (zR,ω;zS) . (10)

The problem then requires only 8 Green’s functions. The integral of
equation (8) is taken over the depthsz′ of a regionM including forces

F1 andF2. In case of a vertical point force at depthzS, the expressions
of the forces become:

{

F1z(zS,ω) = δ (z−zS) S1(ω)
F1r (zS,ω) = 0

(11)

{

F2z(zS,ω) = δ (z−zS) S2(ω)
F2r (zS,ω) = 0

whereS1(ω) andS2(ω) are the Fourier transforms of the source time
functions associated with forcesF1 andF2. With the hypothesis that
F1 ' F2, we takeS(ω) = S1(ω) = S2(ω). The displacements fields
can then be written in simple forms with the Green’s functions,

U(zR,ω;zS) = G1zz(zR,ω;zS) S(ω)
V(zR,ω;zS) = G1zr(zR,ω;zS) S(ω)
W(zR,ω;zS) = G2zz(zR,ω;zS) S(ω)
X(zR,ω;zS) = G2zr(zR,ω;zS) S(ω) .

(12)

The displacement fields corresponding to a horizontal point force are
defined in the same way.

FRÉCHET DERIVATIVES OF THE PLANE WAVE REFLEC-
TIVITY

Statement of the problem
The Fŕechet derivatives are usually introduced by considering the for-
ward problem of the wave propagation, in which a set of synthetic
seismogramsd is computed for an earth modelm using the nonlinear
relationshipd = f (m). Tarantola (1984) used a Taylor expansion to
express the relation between the variations ofm andd,

f (m+δm) = f (m)+Dδm+o(||δm||2) (13)

whereD = ∂ f /∂m is the matrix of the Fŕechet derivatives.
Our aim is to calculate the various Fréchet derivatives corresponding
to slight modifications of the model parameters at a given depthz. In
theP−SVcase, this problem reduces to finding analytical expressions
for the quantities











































A1(zR,ω;zS|z) =
∂U(zR,ω;zS)

∂ρ(z)

A2(zR,ω;zS|z) =
∂V(zR,ω;zS)

∂ρ(z)

A3(zR,ω;zS|z) =
∂W(zR,ω;zS)

∂ρ(z)

A4(zR,ω;zS|z) =
∂X(zR,ω;zS)

∂ρ(z)
.

(14)

We can similarly define the Fréchet derivativesBi , Ci , Di , Ei , Fi and
Gi for model parametersρ f , ρ̃, C, M, λU andG; i = 1...4 describ-
ing the four displacements considered. This is the natural choice of
parameters to carry out a perturbation analysis because of the linear
dependence of these parameters with the wave equations. We also in-
troduce the set of Fréchet derivativesA′

i , B′
i , C′

i , D′
i , E′

i , F ′
i , G′

i andH ′
i

corresponding to model parametersρs, ρ f , k0, φ , Ks, K f , Gs andcs

that we will use in a second stage. The sensitivity operatorsare de-
rived by following the procedure presented in Dietrich and Kormendi
(1990).

Perturbation analysis
We consider small changes in the model parameters at depthz that
result in perturbationsδU , δV, δW andδX of the seismic waves. We
write the perturbed displacements fieldsU ′, V ′, W′ andX′ in matrix
form asȲ′ = Ȳ +∆Ȳ where, for instance,

U ′(zR,ω;zS) = U(zR,ω;zS)+δU(zR,ω;zS) (15)
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with

δU(zR,ω;zS) =

∫

M

[A1(zR,ω;zS|z)δρ(z)+B1(zR,ω;zS|z)δρ f (z)

+C1(zR,ω;zS|z)δ ρ̃(z)+D1(zR,ω;zS|z)δC(z)

+E1(zR,ω;zS|z)δM(z)+F1(zR,ω;zS|z)δλU (z)

+G1(zR,ω;zS|z)δG(z)]dz. (16)

With the model parameterization used, the wave operatorL̄′ in the
perturbed medium can be written as̄L′ = L̄+∆L̄, so that equations (7)
become (Hudson and Heritage, 1981):

(L̄+∆L̄)(Ȳ +∆Ȳ) = F̄ . (17)

We use the single scattering (Born) approximation to solve the above
equation under the assumption that the scattered wavefields∆Ȳ are
weak compared to the incident wave fieldsȲ. We then obtain

L̄ ∆Ȳ '−∆L̄ Ȳ ≡ ∆F̄ . (18)

This matrix equation has a solution similar to equations (8) bysub-
stitutingδFi j for Fi j andδU for U . The secondary Born sources∆F̄
are obtained from equations (6). As the expressions of∆F̄ depend on
the perturbations of the model parameters, we rearrange the modified
equations (8) in order to separate their contributions. This is done via
integrations by parts of the integrals. Finally, we identify the Fŕechet
derivatives by comparing term by term these new expressions with
equations (16). For the vertical displacementU of the solid, we find

A1 = −ω2 (U G1zz+V G1zr)

B1 = −ω2 (U G1zz+W G1zz+V G1zr)

C1 = −ω2 (W G1zz +X G1zr)

D1 =

[

∂W
∂z

−ω pX+
∂U
∂z

−ω pV

] [

∂G1zz

∂z
−ω pG1zr

]

E1 =

[

∂W
∂z

−ω pX

] [

∂G1zz

∂z
−ω pG1zr

]

F1 =

[

∂U
∂z

−ω pV

] [

∂G1zz

∂z
−ω pG1zr

]

G1 =

[

∂V
∂z

+ω pU

] [

∂G1zr

∂z
+ω pG1zz

]

+2
∂U
∂z

∂G1zz

∂z
+2ω2 p2V G1zr

(19)

whereU = U(zR,ω;z), V = V(zR,ω;z), W = W(zR,ω;z) and X =
X(zR,ω;z) are the wavefields incident on the model perturbations, and
Gi jk = Gi jk(zR,ω;z) are the Green’s functions propagating the scat-
tered wavefields back from the inhomogeneities to the receivers.
The Fŕechet derivatives for the horizontal displacementV are easily
deduced from the expressions (19) by changingG1zz to G1zr, G2zz to
G2zr, G1rz to G1rr and G2zr to G2rr . In the same way, the Fréchet
derivatives of the vertical and horizontal fluid displacements are ob-
tained by changingG1i j into G2i j . It can be verified that the expres-
sions corresponding to perturbations of parametersλU , ρ andG are
in agreement with the Fréchet derivatives calculated in the elastic case
(Dietrich and Kormendi, 1990).

Fréchet derivatives for relevant model parameters
To develop an inversion procedure for porous media, we shouldide-
ally concentrate on model parameters that are easily measurable and
independent from each other. We consider here the second setof 8
parametersρs, ρ f , k0, φ , K f , Ks, Gs andcs which is more naturally re-
lated to the solid and fluid phases. To obtain the corresponding Fŕechet
derivatives, we use a 8×7 Jacobian matrixJ calculated from equations
(2) to (5) and defined by

Ji j =
∂ pi

∂ p′j
(20)

wherepi is one of the parametersρ, ρ f , ρ̃, C, M, λU andG, andp′j
is one of the parametersρs, ρ f , k0, φ , Ks, K f , Gs andcs. The Fŕechet
derivatives can be further simplified by considering that thesource and
the receivers are located at the same depthz0 = zR = zS. It should be
noted that the Fŕechet derivatives with respect to the permeability and
fluid density are complex due to their role in the wave attenuation.

SH case
We follow the same procedure to calculate the Fréchet derivatives for
the SH-wave displacements and the transverse fluid displacements.
Derivatives with respect toKs andK f are equal to zero and the other
expressions are simpler than in theP−SV case.

NUMERICAL SIMULATIONS AND SENSITIVITY OF THE PA-
RAMETERS

Computation of Green’s functions
As mentioned in the introduction, the Green’s function for layered
porous media are computed with the Generalized Reflection and Trans-
mission Matrix Method of Kennett (1983) which yields the plane-wave
response in the frequency–ray parameter (or horizontal wavenumber)
domain. The seismograms in the time–distance domain are finally
computed with the discrete wavenumber integration method (Bouchon,
1981). In order to test our analytical formulation and assessits limi-
tations, we compare the differential seismograms computed withthe
Fréchet derivative approach with those obtained with a discrete pertur-
bation of the medium properties. The similarity between the seismo-
grams is evaluated by computing correlation coefficients.

Uniform medium
We first consider the simple case of a uniform infinite medium and
small perturbationsδρs, δρ f , δk0, δφ , δKs, δK f , δGs and δcs at
depthz = 50 m. Source and receivers are located at the same depth
z0 = 0 m, and therefore, we observe only reflected waves.
Our simulations includePf ast-, Pslow- andS-waves whose velocities

Figure 1: Fŕechet derivatives with respect to porosityφ , fluid modulus
K f , shear modulusGs and permeabilityk0.

are respectively equal to 2250, 130 and 750 m/s at a frequency of 43
Hz. Three reflected waves (compressionalPP, convertedPSandSP,
and shearSS) are easily identified. Small contrasts inKs andK f have
no influence on shear waves, whereas changes in the other parameters
mainly generateSSreflections, as seen in figure 1.
With this simple model, all correlation coefficients are greater than

99%, except for the permeability in theP−SV case. However, this
derivative is more stable in theSH case. The analytical expressions of
the Fŕechet derivatives are thus validated.
We further check the accuracy and stability of the first-order sensitiv-
ity operators by modifying the amplitude of the perturbations, with the
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Figure 2: Comparison of the seismic sections obtained with the
Fréchet derivatives and with the discrete perturbation approaches for a
perturbation in solid densityρs atz= 50 m in a 16-layer model.

following results: 1) perturbations of consolidation parametercs and
porosity φ show very similar wave patterns; 2) the same is true for
bulk moduli Ks andK f ; 3) Fŕechet derivatives of the parameters that
only influenceP-waves are more stable than those that influence both
P- andS-waves; 4) seismic waveforms are not exactly similar for pos-
itive and negative perturbations; 5) the first-order approximations are
usually stable for parameter perturbations of up to 15%.
In this model, the wavelengths ofP- and S-waves are respectively
equal to 26 m and 9 m at the dominant frequency. The Fréchet deriva-
tives are stable until the thickness of the perturbed layer reaches 20%
of the dominant wavelength, which corresponds here to thicknesses of
5 m and 2 m forP- andS-waves. Derivatives with respect toKs andK f
remain accurate for a larger range of layer thicknesses than the deriva-
tives with respect to other parameters which depend more strongly on
S-waves.
We observe in all cases that the accuracy of the Fréchet derivatives de-
creases when the source-receiver offset increases (i.e., when the angle
of incidence increases).

Complex model
Finally, we numerically check the stability and accuracy of the Fŕechet
derivative formulas in a complex model. Figure 2 is calculated for
a 16-layer model and a perturbation in solid density. It is seen that
the waveforms obtained with the two computation methods are very
similar.

CONCLUSION

We derived analytical expressions of the Fréchet derivatives in a depth-
dependent porous medium in the frequencyω and ray parameterp
domain. In theP−SVcase, we obtained 64 expressions for 2 different
forces, 4 displacements and 8 parameters, while in theSH case, we
obtained 12 sensitivity operators. We checked the accuracyof these
expressions with a purely numerical computation method and found
good results as long as the Born approximation criteria are satisfied,
that is, for weak and localized perturbations of the model parameters.
These operators will be especially useful in full waveform inversion
algorithms implemented with gradients techniques.
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