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Dumping influence on a non iterative dynamics
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Abstract. We consider n agents displayed on S choosing one by one a standard
A or B according to a local assignment rule. There is no asymptotics in space
or in time, since the scan of the network is unique. We study the final behaviour
by simulations. The main goal of this work is to evaluate the effect of an initial
dumping on the final configuration.
Keywords: Adoption dynamics, Cooperative systems, Dumping.

1 Introduction

This paper explores the diffusion of technological innovations, under a sim-
ple and real framework: agents choosing between competitive technologies.
Many empirical or theoretical works study the agents’ behaviour in the pro-
cess of standard’s adoption. Several modellings are proposed: Markov chain,
cellular automata, Gibbs fields... We consider here a unique and non re-
versible choice for each agent, but we examine various choice procedures,
in which the previous decisions are of more or less significance. More pre-
cisely, let S be a spatial finite set, S = {1, 2, .., N}2, with n = N2 sites; we
can choose for S the bidimensional torus, and we assume that the neigh-
bourhood system is the four nearest neighbours system. Other sets S and
other neighbourhood systems can be conceived, but radically, this will not
change the qualitative nature of our results. If A is a subset of S, we denote
∂A = {i ∈ S, i /∈ A and ∃j ∈ A s.t. i and j are neighbours} the neighbour-
hood of A, and ∂i = ∂{i}. For all the dynamics we study in this work, the
agents make a choice between two standards A and B. The choice is made
individually, one by one, according to as sequential assignment rule. When
this choice depends of the local context, we say that there is spatial coordi-
nation, the spatial dependency being positive if there is cooperation between
the agents, and negative in case of competition. A scan of S is a tour of all
the sites. When the scans are indefinitely repeated, we get the well known
Gibbs sampler and it is possible to characterize the probability distribution
of limits configurations. When the dynamics is synchronous (all the agents
make their decision simultaneously), there is still ergodicity but it is difficult
to explicit the limit distribution (See [10], and [9] for a full description).
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Our context here is different: we consider a non iterative dynamics with
a unique scan of S. In this case, we don’t know the final configuration, since
there is no asymptotics in space nor in time; besides, obviously, the final
configuration is linked to the initial one. We propose to study empirically
this situation, in the case of an initial occurence of standards A at a given
rate τ .

2 Non-iterative dynamics and dumping

Let us note yi ∈ E = {−1, +1, 0} the state of site i, where +1 states for A
is chosen, −1 for B, and 0 denotes that the choice has not yet been made.
We want to study the effect of an initial contamination or dumping on the
final configuration. An initial rate of contamination τ (τ ∈ [0, 1]) means that
[nτ ] agents have A ([r] denotes the integer part of r): the initial layout is
therefore composed of [nτ ] sites +1 randomly distributed on S, the other
sites being “non occupied”, with assignment 0. Then, these sites are visited
one by one, in a random arrangement, and the new visited site is credited
with +1 or -1 according to a local assignment rule. This rule is the same rule
for all the agents and it is associated with the possibly previous choices of
the neighbour sites. Obviously, the final configuration depends on the initial
dumping rate τ .

We consider the three following assignment rules:

1. The strong majority choice: the agent choices the majority standard
adopted by his neighbours. In case of equality, or if there are no occupied
neighbour sites, he chooses A (resp. B) with probability π (resp. 1-π).

2. The weak majority choice: if the number of occupied sites is less or equal
2, then the agent chooses A (resp. B) with probability π (resp. 1-π).
If the number of occupied neighbour sites is more or equal 3, the agent
follows the strong majority rule.

3. The probabilistic Ising type choice: if the 4 neighbour sites are non oc-
cupied, the agent chooses A (resp. B) with probability π (resp. 1-π).On
the contrary, noting y∂i the configuration of the 4 nearest neighbours of
site i, he chooses A with probability

πi(A|y∂i) =

exp

{
β

∑
j∈∂i

yj

}

exp

{
β

∑
j∈∂i

yj

}
+ exp

{
−β

∑
j∈∂i

yj

} = 1 − πi(B|y∂i)

β is a parameter of spatial coordination; there is cooperation if β >0,
while β < 0 leads to competition. When β → +∞, the Ising rule is
similar to the strong majority rule. For simplicity, we fix π = 0.5.
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Our experimental study is the following: we start with an initial rate
τ=2% and we increase τ until 99%. For each value, and for each assign-
ment rule we simulate 400 realizations on the square torus of size N = 64
(n = 4096). For the Ising rule, we have chosen β = 0.5 (weak spatial co-
ordination), β = 1 which corresponds to a beginning of aggregation, and
β = 3 which leads to clusters. On the basis of the simulations, we present
some estimations of important characteristics of the resulting configurations:
the final proportion of standards A, spatial correlations, clustering indexes,
connectedness measurements. These features show the influences of both the
assignment rule and the initial rate on the final layouts.

Finally we give analytic results for the distribution of the number of oc-
cupied neighbour sites under the null hypothesis H0 that there is neither
cooperation nor competition. These results allow testing H0.

3 Empirical study of the final layout

3.1 The final frequency of standard A

For each value of τ and each assignment rule, we get a sample of 400 final
frequencies of standard A. The final frequency is estimated by the mean
π̂A(τ).
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Fig. 1. Final frequency of standards A function of the assignment rule : x : weak
; � : Ising β = 0.5 ; o : Ising β = 1 ; � : Ising β = 3 ; * : strong.

Figure 1 shows the evolution τ 7→ π̂A(τ) for five assignment rules. As
expected, the increase is stronger when the rule strengthens local cooperation.
Thus, for the strong majority rule with an initial dumping rate of 20%, the
standard A will occupy 90% of the sites; moreover, if 80% of the sites initially
non occupied would have been set equally to A and B, the final rate of A
would have been 80

2 %+20%=60%; the difference between the two cases is
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30%. We can see that the dumping amplifies the initial bias, intensifying the
A choice along the adoption process.

In the case of a 10% rate of dumping, the difference is equal to 23% (the
final rate of A being 78%). we can see that the dumping influence is more
important for little values of τ.

We also can compare the different rules; the curves for β = 3 and the
strong majority rule coincide, while the increase for the weak rule is slower
than for the Ising β = 0.5 case.

Finally, we plotted the histograms of π̂A(τ) against τ and the assignment
rule. When τ is small, we observe a Gaussian shape which is confirmed by
a test. On the contrary, when the rate is greater than a critical rate τc, the
gaussian hypothesis is rejected. In fact, the final proportion of A is very close
to 1, with a quasi null dispersion. The threshold τc depends on the rule; it
is about 40% for the strong majority rule and Ising β = 3, and 50% for Ising
β = 1.

The main interest of a Gaussian feature is to build a confidence interval
for the final proportion of standards A.

3.2 Spatial correlations

The analytic expression of the spatial correlation is not explicit but we can
easily obtain its characteristics via a Monte Carlo method. Thus, we calculate
in this way the correlations at distance one, distance 2 and

√
2, and finally

the one based on the 8 nearest neighbours, which we will denote respectively
ρ1, ρ√2, ρ2, and ρ8v, and this is done for each rule.

Comparing the different correlations for a same rule, we observe ρ1 ≥
ρ8v ≥ ρ√2 ≥ ρ2 ; besides the correlations all decay towards zero but more
quickly when the neighbourhood is close; then they are all equal from τ =
85%.

Comparing the rules, all the different correlations have similar behaviours,
so we present only ρ1.

The main aspect is that the dumping’s influence is more important for
weak levels of initial rates, producing high correlation.

We present on Figure 2 the evolution of ρ1 =
(2n)−1

P
i=1,n yiy∂i−ȳ2

1−ȳ2 in
function of τ for the different assignment rules. We take the agreement
ρ1 = 0 when the field is constant with zero variance.

Whatever the rule is, the correlation is positive and decreases to zero.
We can observe a kind of hierarchy between the rules: for a dumping rate
less than 50%, the spatial correlation is more important for the rules which
inforces the choice of A. Then the decrease is faster for “strong” rules: the
correlation equals 0 for τ = 75% in the case of the strong majority rule while
0 is reached for τ = 0.95 in the case of the weak rule.
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We also see that when the dumping rate is 50%, all the correlations are
equal.

We now compare the obtained features issued from configurations (C)
with the case of layouts resulting from a random uniform distribution (C0)
of the same final rates of sites A and B .

The spatial characteristics of this new field (C0) are of course different
and we compare them with those obtained from (C). For instance, Figure 2
show the different behaviours of ρ1 for fields (C) and (C0). In the uniform
case, the correlation is always close to zero (about 10−3), can be negative. So
it is clear that spatial correlation is a good criterion to distinguish the fields,
a positive correlation more than 0.002 corresponding to type (C).
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Fig. 2. left: correlation ρ1 for fields (C); right: correlation ρ1 for fields (C0) asso-
ciated to fields (C); rules: x : weak ; � : Ising β = 0.5 ; o : Ising β = 1 ; � : Ising
β = 3 ; * : strong.

3.3 Spatial clustering measurements

Figure 3 below present an example of a realization of fields (C) and (C0).
As expected we observe specific cooperative textures in the images (C). We
propose here several indexes evaluating this spatial feature.

Two clustering indexes Let us definite the absolute cluster index IA as
the number of edges joining neighbour sites which are together A, normalized
by the total number of sites A.

IA =

∑
i∈S xix∂i

2
∑

i∈S xi
,

where xi = yi+1
2 is equal to 1 if the site i has been assigned by A, and 0 else.
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Fig. 3. Ising assignment rule β = 1, with initial rate τ = 0.05; final A proportion:
63.04; IR = 1.2856
Left: ρ1 = 0.4829, IA = 1.6177, ncc = 9, mcc = 286.89, maxcc = 2553.
Right: ρ1 = −0.0033, IA = 1.2583, ncc = 61, mcc = 42.33, maxcc = 2465.

The relative cluster index IR is defined as the ratio of the absolute cluster
indexes of fields (C) and associated (C0).

IR =
IA(C)

IA(C0)
.

Figure 4 show these indexes’ evolution according to the initial rate τ of
standards A, for the different assignment rules and for the two types of fields.

Concerning the absolute cluster index, its evolution is similar for fields
(C) and associated (C0). It is the initial rate which allows to distinguish the
fields. When it is more than 50%, the curves are identical, while the values
IA(C) are much more important than those of IA(C0) in case of small rates τ.
The smaller τ is, the more important is the difference between the two fields,
and this whatever the assignment rule. The threshold rate categorizing the
fields is varying with the rule. For instance, it is τ = 20% for the strong
majority rule and 30% for the Ising β = 0.5 rule.

The graph of the relative cluster index (Figure 4, Right) confirms the
previous remark. The decrease of IR is faster for a rule enforcing standard
A.

Finally, we conclude that the absolute cluster index is a good criterion to
determine fields issued from a choice procedure if we know that the initial
dumping rate is low valued.

Connectedness indexes A topological parameter which well characterizes
clustering is a connectedness measure of standards A in the final configura-
tion. The images obtained from simulations show that, for fields (C) issued
form a choice procedure, a clustering organization of sites A appears. More-
over, the clusters become less numerous but wider when τ increases. For
the corresponding fields (C) with same final number of sites A but randomly
uniformly dispatched, we get many and small clusters.
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Fig. 4. Left: absolute cluster index for field (C);
Right: absolute cluster index for field (C0) associated;
Below: relative cluster index;
Rules: x : weak ; � : Ising β = 0.5 ; o : Ising β = 1 ; � : Ising β = 3 ; * : strong.

We propose to calculate three connectedness indexes, for fields (C) and
associated (C0); ncc is the number of connected components (of sites A); mcc
is the mean size of these components, and max cc is the size of the largest
one.
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Fig. 5. mean number of connected components for fields (C)(left) and (C0) (right):
x : weak ; � : Ising β = 0.5 ; o : Ising β = 1 ; � : Ising β = 3 ; * : strong

We show in Figure 5 the evolution of ncc according to the different assign-
ment rules for fields (C) and corresponding (C0). Once again we observe a
hierarchy between the rules. More interesting is the comparison of fields (C)
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and (C0); their behaviour seems to be similar but the scale is different and
when the initial contamination rate is low, we can clearly distinguish fields
of type (C) and (C0). For each rule, the number of connected components is
much more important for fields (C0) with random spreading. From an initial
threshold rate which depends on the rules but not exceeding 30%, then the
number ncc is similar for both fields.

We turn to the average size of connected components, defining the size of
a component by the number of sites which lay inside. The evolution of mcc is
given in Figure 6 for each rule and for fields (C) and (C0). On the contrary of
the previous index ncc, it is difficult to visually distinguish between the two
behaviours, since the ordinates scale is very large. Therefore we plot for a
single rule the evolution of ncc for the two fields; we give for example the case
of the Ising rule with β = 1 in Figure 6, Right. We get the same behaviour for
the other rules. The curves join and overlay for τ ≥ 30%. For small values of
τ, the two curves appear to be not so different and we could think that mcc is
a bad criterion to distinguish the fields; in fact, the ordinate scale is still large
and for instance, τ=2% corresponds to 144 for the field (C) and 13.8 for the
associated (C0), that is mcc(C0) is more than 8 times mcc(C). We conclude
that mcc is useful to determine the types of final configurations in the case of
small rates of initial contamination. Besides, the effect of dumping is more
important for small values of τ.

Finally, we have calculated the size of the largest connected component
max cc. The previous comments apply again, even more significantly, since
the increase of max cc is faster than the one of mcc. However, the evolution
curves are quickly identical, and we can clearly see the dumping effect only
for the smallest values of the initial rate of standards A; for instance τ < 10%
in the case of the Ising rule with β = 1, see Figure 7.

4 Distribution of the number of occupied neighbour

sites

We can achieve some probabilities calculus on this non asymptotical frame-
work. We consider a fix site visited on the scan tour. Whatever the assign-
ment rule is, the choice of the agent depends on the number of his neighbours
who have already make their decision. We give here the distribution of this
number of “occupied” neighbours at the moment.

We consider the lattice S with n sites such that each site has the same
number of neighbours ν. We assume that at k = 0, nτ sites are occupied
by standard A (nτ = nτ); then at each time, a free site is randomly visited
and becomes occupied. There are n−nτ successive settings. For an arbitrary
but fix site, we define the random variable Yk by the number of occupied
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Fig. 6. Average size of the connected components for the fields (C)(left) and (C0)
(right); rules: x : weak ; � : Ising β = 0.5 ; o : Ising β = 1 ; � : Ising β = 3 ; * :
strong
Below: Average size of the connected components for the Ising rule with β = 1 :
(C) : * ; (C0) : o
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Fig. 7. Ising rule with β = 1; maxcc(C): * ;maxcc(C0) : o

neighbours at time k. We suppose nτ < n, n >> 2ν + 1; Yk takes its values
in the set {max(0, nτ + k − n + ν), 1, .., min(ν, k − 1 + nτ )} . We get

P (Yk = l) =
Cl

νCk−1+nτ−l
n−1−ν

Ck−1+nτ

n−1

Then we recognize that Yk follows the hypergeometric distribution.

We can add two results. Let us define the events:
Ak : “the site j is occupied at exactly time k”
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Bk : “The site j is already occupied at time k”
The index j does not appear in these probabilities since the scan is ran-

dom. We get

P (Ak) =

{
(1 − nτ

n )(1 − 1
n−nτ

)(1 − 1
n−nτ−1 )....(1 − 1

n−nτ−k+2 ) 1
n−nτ−k+1 = 1

n if k ≥ 1
nτ

n if k = 0
.

We deduce P (Bk) = nτ+k−1
n .

Let us then explicit the mean probability Pl of the occupied neighbours
during the course.

Pl = 1
n−nτ

n−nτ∑
k=1

P (Yk = l)= 1
n−nτ

n−nτ∑
k=1

Cl
νCk−1+nτ −l

n−1−ν

Ck−1+nτ
n−1

=
Cl

ν (n−1−ν)!
(n−nτ ).(n−1)!

n−nτ∑
k=1

l∏
s=1

(k + nτ − s)
ν−l−1∏
u=0

(n − k − nτ − u)

Let us denote Nτ=n − nτ = n(1 − τ) the number of non initialized sites.

Pl =
Cl

ν Nν
τ

(n−1)(n−2)...(n−ν) .
1

Nτ

Nτ∑
k=1

l∏
s=1

( k
Nτ

+ τ
1−τ − s

Nτ
)

ν−l−1∏
u=0

(1 − k
Nτ

− u
Nτ

)

l and ν − l being fix, we get:

P −→
n→∞

Cl
ν(1 − τ)ν

1∫

0

(x +
τ

1 − τ
)l(1 − x)ν−ldx.

If the initial rate τ = 0, then P0’s limit is 1
ν+1 . Else, we obtain by suc-

cessive integrating Pl −→
n→∞

Cl
ν(1 − τ)ν

l∑
k=0

l!
(l−k)! (

τ
1−τ )l−k (ν−l)!

(ν−l+1+k)! which is

again

Pl −→
n→∞

1

ν + 1
Zl,ν,τ where Zl,ν,τ =

l∑

j=0

Cj
ν+1τ

j(1 − τ)ν−j

This formula is still valid for τ = 0. It is interesting to know if Zl,ν,τ > 1
to see the dumping’s effect against non initial contamination. Without loss
of generality, we can assume that ν is even. If τ ≥ 1

2 and l ≤ ν
2 , then

Zl,ν,τ ≤ 1. In fact (1 − τ)ν( τ
1−τ )j ≤ [τ(1 − τ)]

ν/2 ≤ (1/4)ν/2 which implies

Zl,ν,τ ≤
(

1
2

)ν l∑
j=0

Cj
ν+1 ≤

(
1
2

)ν
ν/2∑
j=0

Cj
ν+1 ≤ 1 since

ν/2∑
j=0

Cj
ν+1 = 2ν . Else, Zl,ν,τ

can take values less or more 1 (but ≤ ν + 1).
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