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Statistics

Multi-parameter auto-models with applications to cooperative

systems

C. Hardouin a,1, J. Yao b

aCES/SAMOS-MATISSE/Université de Paris 1
bIRMAR/Université de Rennes 1

Abstract

We propose in this paper an extension of Besag’s auto-models to exponential families with multi-dimensional

parameters. This extension is necessary for the treatment of spatial models like the ones with Beta conditional

distributions. A family of cooperative auto-models is proposed.

Résumé

Auto-modèles à paramètres multiples et applications aux systèmes coopératifs. Nous proposons dans

ce travail une extension des auto-modèles de Besag aux familles exponentielles de paramètres multiples. Cette

extension est nécessaire dans plusieurs applications comme la construction des modèles coopératifs dont les lois

conditionnelles sont des lois Beta.

1. Introduction

Let us consider a random field X = {Xi, i ∈ S} on a finite set of sites S = {1, . . . , n}. For a site i, let us
denote pi(xi|·) = pi(xi|xj , j 6= i), the conditional density function of Xi given the event {Xj = xj , j 6= i}.
An important approach in stochastic modelling consists in specifying the family of all these conditional
distributions {pi(xi|·)}, and then to determine a joint distribution P of the system, which is compatible
with this family, i.e. the pi’s are exactly the conditional distributions associated to P .

In this paper, we focus on auto-models introduced by J. Besag ([2]). These auto-models are constructed
under two assumptions: first, the dependence between sites is pairwise and secondly, the collection of
conditional distributions from the sites belongs to a one-parameter exponential family. We propose in
this work an extension to exponential families involving a multi-dimensional parameter. As an application
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of this general approach, we address the particular problem of building cooperative spatial models. We
consider for instance a class of Beta conditionals, which has the advantage to be able to exhibit spatial
cooperation as well as spatial competition according to a suitable choice of its parameter values.

Moreover, to assess the quality of the pseudo likelihood estimator, we also present an exploratory
simulation study in case of auto-models with Beta conditional distributions. Although theoretical results
are still missing, the simulation results indicate that the pseudo-likelihood estimates are consistent.

2. Multi-parameter auto-models

Let us consider a set of sites S = {1, . . . , n}, a measurable state space (E, E ,m) (usually a subset of
R

d). We let the configuration space Ω = ES be equipped with the σ-algebra and the product measure
(E⊗S , ν := m⊗S). For simplicity, we shall consider Ω = ES , but all the following results hold equally with
a more general configuration space Ω =

∏

i∈S Ei, where each individual space (Ei, Ei) is equipped with
some measure mi.

A random field is specified by a probability distribution µ on Ω, and we will assume throughout
the paper the positivity condition: namely, µ has an everywhere positive density P with respect to ν
i.e. µ(dx) = P (x)ν(dx), P (x) = Z−1 exp Q(x), where Z is a normalization constant. The Hammersley-
Clifford’s Theorem gives a characterization of Q(x) as a sum of potentials G deduced from a set of cliques
([2]). The basic assumptions of the present setting are the following.
[B1] The dependence between the sites is pairwise-only,

Q(x) =
∑

i∈S

Gi(xi) +
∑

{i,j}

Gij(xi, xj) .

[B2] For all i ∈ S, log pi(xi|·) = 〈Ai(·), Bi(xi)〉 + Ci(xi) + Di(·) , Ai(·) ∈ R
d, Bi(xi) ∈ R

d.
We fix a reference configuration τ = (τi) ∈ Ω. The potential functions are fully identified if we assume

that, for all i, j and x it happens that Gij(τi, xj) = Gij(xi, τj) = Gi(τi) = 0. The main result of the paper
is the following theorem.

Theorem 2.1 Let us assume that the two conditions [B1]-[B2] are satisfied with the normalization
Bi(τi) = Ci(τi) = 0 in [B2], as well as the following condition

[C]: for all i ∈ S, Span{Bi(xi), xi ∈ E} = R
d.

Then there exists for i, j ∈ S, i 6= j, a family of d-dimensional vectors {αi} and a family of d×d matrices
{βij} satisfying βT

ij = βji, such that

Ai(·) = αi +
∑

j 6=i

βijBj(xj) . (1)

And the potentials are given by

Gi(xi) = 〈αi, Bi(xi)〉 + Ci(xi) , (2)

Gij(xi, xj) = BT
i (xi)βijBj(xj) . (3)

A model satisfying the assumptions of the theorem is called a multi-parameter auto-model. There-
fore, Theorem 2.1 determines the necessary form of local canonical parameters {Ai(.)} which allow the
conditional specifications to “reconstruct” together a joint distribution.
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The following proposition is useful, giving a converse to the previous theorem. It also provides a
practical way to choose the parameters for a well-defined multi-parameter auto-model. Indeed, the only
additional condition one must check in practice is that the energy function Q is admissible in the sense
that

∫

Ω
eQ(x)ν(dx) < ∞ .

Proposition 2.2 Assume that the energy function Q is defined by [B1] with potentials Gi, Gij given
in (2)-(3), and that it is moreover admissible. Then the family of conditional distributions pi(xi|·) belong
to an exponential family of type [B2] whose sufficient statistics Ai(·) satisfy (1).

3. A special class of auto-models with Beta conditionals

Several common one-parameter auto-models necessarily imply spatial competition between neighbour-
ing sites. For instance, this is the case for the auto-exponential and auto-Poisson schemes. This competition
behaviour is clearly inadequate for many spatial systems ([2]). By using Beta conditional distributions, we
get interesting solution to this problem. Note that the advantages of such auto-models have been already
certified in a previous work [4].

Let us write the density of a Beta distribution on [0,1] with parameters p, q > 0 as

fθ(x) = κ(p, q)xp−1(1 − x)q−1 = exp {〈θ, B(x)〉 − ψ(θ)} , 0 < x < 1

with θ = (p − 1, q − 1)T , B(x) = [log(2x), log(2(1 − x))]T and ψ(θ) = (p + q − 2) log 2 + log κ(p, q). We
recall that κ(p, q) = Γ(p + q)/[Γ(p)Γ(q)]. Here the reference state is τ = 1

2 ensuring B(τ) = 0.
We now consider a random field X with such Beta conditional distributions. Clearly, Condition [C]

is satisfied. From Theorem 2.1, there exists for i, j ∈ S and i 6= j some vectors αi = (ai, bi)
T ∈ R

2 and

(2 × 2)-matrices βij =





cij dij

d∗
ij eij



 verifying βij = βT
ji, such that

Ai(·) = αi +
∑

j 6=i

βijB(xj) = αi +
∑

j 6=i

βij





log(2xj)

log(2(1 − xj))



 .

The energy function Q can be written as

Q(x1, . . . , xn) =
∑

i∈S

〈αi, B(xi)〉 +
∑

{i,j}

B(xi)
T βijB(xj) .

Finally the reference configuration is τ = ( 1
2 , . . . , 1

2 ) satisfying Q(τ) = 0. Let the conditions
[T1] (i) for all {i, j}, cij , dij , d∗ij and eij are all nonpositive ;

(ii) for all i, 1 + ai + (log 2)
∑

j 6=i{cij + d∗
ij} > 0 and 1 + bi + (log 2)

∑

j 6=i{d
∗
ij + eij} > 0.

Proposition 3.1 Under Conditions [T1], the family of conditional distributions {pi(xi|·) , i ∈ S} is
everywhere well-defined, and the energy function Q is admissible.

3.1. Spatial cooperation versus spatial competition

We now examine the spatial competition or cooperation behaviour of this model. At each site i, the

mean of the conditional distribution pi(xi|·) is E(Xi|·) =
1+Ai,1(·)

2+Ai,1(·)+Ai,2(·)
. This conditional mean increases

with Ai,1(·) and decreases with Ai,2(·). Besides the model is spatially cooperative if at each i the above
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conditional mean increases with each neighbouring value xj , j 6= i. This is possible by requiring for all
i, j, cij = eij = 0.

Alternatively, if we adopt the constraints dij = d∗ij = 0 for all pairs i 6= j, the above conditional mean
becomes a decreasing function on any of its neighbouring value xj . There is then a spatial competition
between neighbouring sites.

3.2. Estimation for a Beta cooperative model

Let us consider the four-nearest-neighbours system on a two-dimensional lattice S = [1,M ]×[1, N ]: each
site i ∈ S has the four neighbours denoted as {ie = i+(1, 0), iw = i− (1, 0), in = i+(0, 1), is = i− (0, 1)}
(with obvious correction on the boundary). We assume spatial symmetry which implies dij = d∗

ij but
allow possible anisotropy between the horizontal and vertical directions. The system is also required to be
spatially cooperative and stationary. Then the model involves 4 parameters (a, b, d1, d2). The conditions
[T1] become

d1 ≤ 0, d2 ≤ 0 ; 1 + a + 2(d1 + d2) log 2 > 0 ; 1 + b + 2(d1 + d2) log 2 > 0 . (4)

The associated local conditional distributions are Beta-distributed with canonical parameters

Ai(·) =





a + d1[log(2(1 − xie
)) + log(2(1 − xiw

))] + d2[log(2(1 − xin
)) + log(2(1 − xis

))]

b + d1[log(2xie
) + log(2xiw

)] + d2[log(2xin
) + log(2xis

)]



 . (5)

If we denote by φ the vector of all model parameters, the pseudo-likelihood is defined as L(x;φ) =
∏

i∈S

pi(xi|xj , j 6= i) .

We refer to e.g. [3] for theoretical results on the pseudo-likelihood estimator in the general framework of
a Markov random field. The study of the theoretical properties of this estimator for the multi-parameter
case is still an open problem, but we think it should have a good behaviour, and we propose here to assess
its performance on the basis of simulation experiments.

We consider the auto-model (5) and run 600 scans of the Gibbs sampler for each simulation on a square
lattice of size 64×64. The mean and the standard deviation of the pseudo-likelihood estimates are com-
puted from 100 independent simulations. The following table presents these results where the standard de-
viations are given in brackets. These results support favorably the consistency of the pseudo-likelihood esti-

mation in the present situation.

Parameter a b d1 d2

True values 16.6 18.9 −4.5 −4.5

Mean 16.6004 19.0062 -4.4725 -4.5093

(st. deviation) (0.5847) (0.5872) (0.2742) (0.3153)
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