
HAL Id: hal-00177071
https://hal.science/hal-00177071

Submitted on 5 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Model-Driven Validation of Autonomic
Software Systems in Open Distributed Environments

Jérémy Dubus, Philippe Merle

To cite this version:
Jérémy Dubus, Philippe Merle. Towards Model-Driven Validation of Autonomic Software Systems in
Open Distributed Environments. Workshop M-ADAPT, in conjunction with ECOOP 2007, Jul 2007,
Berlin, Germany. �hal-00177071�

https://hal.science/hal-00177071
https://hal.archives-ouvertes.fr


Towards Model-Driven Validation of Autonomic Software

Systems in Open Distributed Environments

Jérémy Dubus1 and Philippe Merle2

1 Laboratoire d’Informatique Fondamentale de Lille - UMR CNRS 8022

GOAL / INRIA ADAM Team
Université des Sciences et Technologies de Lille - Cité Scientifique

59655 Villeneuve d’Ascq CEDEX— FRANCE
Email: Jeremy.Dubus@lifl.fr
2 INRIA - ADAM Team

INRIA FUTURS Parc Scientifique de la Haute Borne
Avenue Halley B.P. 70478

59658 Villeneuve d’Ascq CEDEX — FRANCE
Email : Philippe.Merle@inria.fr

Abstract. New distributed systems are running onto fluctuating environments (e.g. ambient or grid
computing). These fluctuations must be taken into account when deploying these systems. Autonomic

computing aims at realizing programs that implement self-adaptation behaviour. Unfortunately in
practice, these programs are not often statically validated, and their execution can lead to emergent
undesirable behaviour. In this paper, we argue that static validation is mandatory for large autonomic
distributed systems. We identify two kinds of validation that are relevant and crucial when deploying
such systems. These validations affect the deployment procedures of software composing a system, as
well as the autonomic policies of this system. Using our Dacar model-based framework for deploying
autonomic software distributed architectures, we show how we tackle the problem of static validation
of autonomic distributed systems.

1 Introduction

The nature of the networks used to deploy distributed systems is changing. Well-defined networks, with
well-known hosts, are no longer employed. The new emerging environments are Open Dynamic Distributed

Environments (ODDE). Ambient, grid or sensor networks are the most known of these ODDE. In such
environments, hosts can appear or disappear at any time. These changes in the environment have an impact
on the applications deployed, hence these fluctuations must be taken into account to adapt properly their
software architectures.

Autonomic computing [1] proposes to solve the problem of software self-adaptation, by introducing
the concept of autonomic policies, which are the entities in charge of ensuring the adequate runtime
reconfiguration of the system. The whole set of autonomic policies defined for a system represents what
we call the autonomic behaviour of this system. Unfortunately, all environments that have emerged from
this paradigm propose to write autonomic policies in a programmatic way, or using reconfiguration scripts.
Programs or scripts that implement autonomic behaviour of a system only enable syntactical or semantical
verifications. But we argue that these verifications are not sufficient. Indeed our opinion is that behaviour
verifications are also needed to ensure that the system will not reach unconsistent behaviour state in some
cases. We have identified two kinds of validations that support our position.

First, long-life systems that are modified very often during execution: software are installed then unin-
stalled, and this is repeated several times. In such a context, we have to ensure that every action performed
in some installation process is undone in the opposite uninstallation process. Otherwise, undesirable side
effects (e.g. a process started in the installation procedure that is not killed in the uninstallation procedure)



can occur and grow during the lifecycle of the system. These side effects can somehow lead to a crash of
the system.

Second, autonomic policies can also interfere with each other and produce unexpected emergent be-
haviour (e.g. infinite loops). The problem has already been partially identified in the domain of active
databases and is known as the Feature Interaction problem [2].

In this paper, we also introduce our proposition to solve the issue of validation of large and complete
software autonomic systems in ODDE. This proposition relies on our Dacar model-based framework for
building autonomous architectures [3, 4]. In this paper, we propose to extend the Dacar metamodel in
order to validate autonomic policies. Two validations must be performed : First every action performed
when a software is installed/started must be cancelled when this software is uninstalled/stopped. Second,
the autonomic policies must be introspected to detect feature interactions such as cycles possible in the
policy stack execution.

The remainder of this paper is the following. Section 2 presents the key research challenges of this work.
Section 3 explains how we extend our Dacar metamodel in order to handle the issue of ODDE autonomic
systems validation. In Section 4, we expose the research work related to our proposition. Finally, we discuss
our future work and conclude in Section 5.

2 Key Research Challenges

Deployment of complex software systems has become a nightmare for administrators. This deployment
procedure essentially consists in accomplishing tasks to set up all middleware servers, as well as to deploy
every business component upon these servers. In a fluctuating environment such as ODDE, it is impossible
to manually perform these tasks, since the target machines hosting the applications are unknown. Moreover
after the initial deployment, new machines can appear or disappear and manual administration intervention
is needed. From this statement emerged the Autonomic Computing paradigm, which consists in extending
programs with self-adaptation mechanisms. The core principles of the autonomic computing rely on the
control loop, represented on Figure 1.

Fig. 1. The control loop of autonomic computing

This loop consists in four phases: Monitoring the system, analyzing the situation and taking a decision
about some monitored changes, planning the adequate reconfiguration actions, and executing them. The
analyzing and planning phases are relying on the Knowledge part as support for computation. It is an
abstract representation of the autonomous system. At runtime the Knowledge part must always be conform
to the execution environment, which means that every change in the execution environment must lead
to an update of the Knowledge part, and vice-versa. Then a causal link must be maintained between
the Knowledge part and the execution environment. Nevertheless, with the hypothesis of designing and
deploying such autonomic systems are raised some issues, that are exposed in the following subsections.



2.1 Expression of Autonomic Behaviour

The first challenge to face considers the expression of autonomic behaviour of software systems. Adequate
concepts must be identified for the administrators to express precisely and naturally their autonomic

policies, i.e. the behaviour that they want to inject into their software architectures. Secondly, it is im-
portant that the paradigm for expressing software system behaviour at runtime is independent from any
technologies. The mechanism that executes this behaviour must also be generic in order to apply this
approach to software designed using any of these technologies. Finally, these concepts must be indepen-
dent from the granularity of the software entity. Indeed, considering the deployment of whole software
systems, administrators have to handle both with fine granularity business components, as well as with
coarse granularity middleware servers. The autonomic behaviour paradigm must allow the administrator
to write its autonomic policies for both of them.

2.2 Unit Deployment Validation

The first step to build an autonomic deployment process in an ODDE consists in writing procedures
to install, configure and start pieces of software, and also procedures to stop, unconfigure and uninstall
them. Autonomic mechanisms will then call these procedures at runtime according to the changes of
the environment with respect to the global policy. Therefore, the first required validation concerns these
procedures. Validating these procedures means ensuring that every instruction in a procedure (e.g. install,
configure, start) must be cancelled in the opposite procedure (e.g uninstall, unconfigure, stop). This first
step in validation then allows the administrators to write their autonomic policies using validated and safe
deployment procedures for the different software involved in the system.

Here is a concrete simple example of such a problem. Considering a CORBA component-based applica-
tion that has to be extended to every mobile phone entering the domain. On each mobile phone, a CORBA
component server must be deployed, and then started (let’s assume that this start procedure consists in
launching a daemon). When this mobile phone leaves, a local autonomic policy must undeploy the com-
ponent server and then launch the uninstallation procedure, which consists in removing the directory in
which this component server was downloaded from the local filesystem. This action, of course, does not
kill the component server daemon. Let’s now consider that this mobile phone joins the domain again, and
repeats this sequence (leave the domain, join the domain) several times: The CORBA component server
will be started again several times on the mobile phone, and this can leads to a memory overflow, in that
mobile phone.

2.3 Validation of Autonomic Policies

The last challenge concerns the autonomic policies themselves. These policies, according to the control
loop, rely on the following principle: Then a stimulus occurs, under some contextual conditions, apply the
adequate reconfiguration actions. However policies written using this paradigm can interfere with each
other, as shown in [2], and there are many kinds of feature interactions. For instance, two different policies
can be triggered by one unique stimulus, this is called the Shared Trigger Interaction. Another important
feature interaction is the Looping Interaction: The reconfiguration action of a policy P1 can lead to the
trigger of another policy P2 whose reconfiguration action leads to another succession of policy triggers
that finally triggers the P1 policy. We fall into a cycle in policy execution. The list of feature interactions
given here is not exhaustive. Using a strictly programmatic way to implement autonomic policies, it is
impossible to detect such interaction between rules. So the challenge is to provide concepts that enable
validation of policies.

Here is a concrete example of such a problem (represented on Figure 2). Three component types are
involved in this example : ClientComp which has two required ports (logC and servC), ServerComp which
has one provided port (servS) and LogComp which has one provided port (logS). We suppose that we have
four autonomic policies expressed in an unformal paradigm:



Fig. 2. An example involving cycling autonomic policies

RULE1 When a PDA enters the network, the deployment of a CORBA component server is launched
and the deployment of a ClientComp component is performed on top of it.

RULE2 When a ClientComp (CC) is deployed onto a PDA, a remote binding is established between
CC.servC and SERVER.servS (SERVER is a statically known instance deployed on the Host host1.)

RULE3 When a remote binding is made from a ClientComp instance (CC) required port, then a LogComp

instance (LC) is deployed onto the PDA’s component server (in order to log communications made
through this binding), and a binding between CC.logC and LC.logS is established.

RULE4 When a remote binding is made from a ClientComp instance (CC) required port BUT there is
no memory available to deploy the LogComp instance, then the LogComp instance (LC) is deployed on
the Host host1 and a binding between CC.logC and LC.logS is established.

One by one, these rules seem to be coherent and relevant to the application. Nevertheless a cycle can
occur in the application of these rules: If the RULE4 is triggered, the binding between LC and CC becomes
a remote binding, then the RULE4 is called again : the global autonomic behaviour falls into a cycle (for
the sake of simplicity, the cycle here is very simple: a policy infinitely calls itself).

3 Our DACAR proposition

In this section we introduce some general details about our Dacar approach to execute autonomic system
deployment in ODDE. Dacar allows to deploy complete software systems, from low-level installation of
middleware servers to deployment of fine-grained business components.

3.1 Principles of the DACAR Approach

Dacar is based on a control loop, where the Knowledge model is implemented using models that abstract
any relevant information about the underlying system. As can be seen on Figure 3, each part of the
causal link between Knowledge and execution environment is implemented with two kinds of rules: The
Monitoring and the Deployment Rules. The first one consists in monitoring the execution environment,
and in case of change emerging from there, to reconfigure the Knowledge model. The second one consists
in observing changes emerging from the Knowledge model and to apply these changes on the execution
environment. The autonomic behaviour of the system is implemented through Architectural Rules. These
rules represent the autonomic policies in our approach. As we have investigated in [4], models represent
an adequate support to express all relevant information about the system, so fits well in the role of the
knowledge model. We also identified that Event-Condition-Action (ECA) is a well tailored paradigm to
express the causality between knowledge and execution environment as well as to express the autonomic
behaviour.



Fig. 3. Overview of the Dacar approach

3.2 Structure of the DACAR Metamodel

The first Dacar prototype presented a proof of feasibility of the approach, showing how to add autonomic
behaviour in component-based software architectures (as it was CCM components). To achieve that, we
have proposed the OMG D&C specification [5] as the Knowledge metamodel, but we found out that this
specification only considers business components and does not allow multi-granularity deployment model-
ing. Moreover this specification encompasses several complex concepts that are not all useful for describing
autonomic system deployment. In Dacar, it is possible to seamlessly express deployment and configura-
tion of middleware servers as well as fine-grained business components, thereby a generic metamodel which
exactly fits our needs has been established. Therefore our motivation is then to have a metamodel that
focuses precisely on the deployment and autonomic concerns of a system, independently from the granu-
larity chosen. This metamodel, represented on Figure 4 contains three subpart : the first one to define the
deployment procedures of software systems, the second one to define the autonomic policies woven onto
these systems, and the third only defines validation-specific concepts.

This metamodel expresses the main concepts about the deployment of several Software that are con-
nected together to form a System, on low-left part of Figure 4. The deployment of a Software can depend
on the deployment of other Software (e.g. a Java EE server depends on the Java runtime). Consequently,
the sequence of deployment procedure will be scheduled according to these dependencies among Software.
A Software is defined by several Properties such as the archive to download, where to install it, and other
specific properties of the software. Procedures are also contained in a Software in order to install, maybe
configure and start the Software as well as stop, uninstall the software or any other procedure specific
to the Software deployed. These Procedures are composed of primitive Instructions to set environment
variables, execute processes, etc. The Host is also represented in this metamodel in order to specify impor-
tant access information about a specific target machine, such as file transfer (e.g. FTP) or remote access
protocol (e.g. SSH). This Software metaclass is based on our another work which is called DeployWare.
This work focuses on the execution of the deployment of a whole Software system according to a high-level
description, and with respect to the dependencies of the system. This remains an ongoing work which is
introduced in [6].

The first extension to this initial metamodel represents the answer to the first challenge announced in
Section 2 and is about the expressivity of autonomic policies. Here we expose the autonomic part of our
metamodel that allows the administrators to seamlessly express the autonomic policies of their systems



using ECA-like policies. This subpart of our metamodel is represented on the low-right part of Figure 4.
A global autonomic behaviour of a Software element consists in a set of Autonomic Policies. A Policy
is defined by an Event which is the concept that reifies a change occuring during the execution of the
system. Under some Conditions, that depend on any element of the model, a set of Actions is triggered.
This concept of action reifies any modification of the current model, which encompasses creation of a new
software entity, reconfiguration of a property of a Software, or calling some Procedure of a Software. This
metamodel is independent from any technology but also from any software granularity.

Fig. 4. The DACAR metamodel

3.3 Introducing Concepts in the Metamodel for Validation

In this section we expose the other concepts of the Dacar metamodel to answer the remaining challenges
raised in Section 2. These validation-specific concepts are represented in the upper part of Figure 4.

Unit Deployment Validation — To face this challenge, we introduce the concept of Process Validation

Rule (PVR). This particular type of rules is divided in two categories: The Procedure Name Rules (PNR)
and the Instruction Label Rules (ILR). The first category allows the administrator to associate Procedures
that have opposite goals. An example of PNR is the association between a start procedure and a stop
procedure. Introducing such a rule ensures that, in a Software encompassing this Rule if the start procedure



is present, its invert stop procedure must also exist in the software. The ILR allows a more fine-grained
verification into the procedures to inspect the instructions. This is an association between two opposite
instructions. For example the instruction startProcess(P) (where P is the label of the process like java

myPackage.MyClass arg1 for instance) must be associated with the killProcess(P). Hence, using ILR it is
possible to express that, for example, in a start procedure containing a startProcess(P) instruction, there
must be a killProcess(P) instruction in the stop procedure. Consequently the combination of PNR and ILR
ensures that every deployment actions can be cancelled completely without undesirable side effects.

Fig. 5. Instance of a software description : A CORBA Component Server

In Figure 5 is represented an instance of Software representing the CCM component server (discussed
in Section 2). Using introspection of this software, it is possible to check, for each action of the install
process, and regarding the validation rules, to see if the invert instruction (or procedure) is present. In
this case we can see that the ProcedureNameRule defined for the CCM server is respected since the
software has a procedure start and also a procedure stop. Nevertheless, the InstructionLabelRule is not
respected. There is, in the start procedure, an instruction labeled LaunchProcess(%X%,%Y%) (where %X%

is the node start command and %Y% is CS.pid). There should be, in the stop procedure, an instruction
labeled KillProcess(CS.pid). Then this software definition is not valid.

Validation of Autonomic Policies — Autonomic behaviour is expressed using rules in Dacar. Then,
the problem of interactions between these rules is primordial and must be handled. For that, we introduce
a last concept which is called the Intention Rule (InR) to achieve static validation of autonomic behaviour.
This concept allows to associate a specific Event to an Action. This way the administrator expresses its
intention: What change is expected to be performed when executing an action. Using this association of
intention, it is possible to compute the sequence of rule triggers according to changes occuring at runtime.
Figure 6 describes how we can analyse this sequence, in order to detect cycles, which is one of the most
important harmful interaction between policies. From the list of changes likely to occur in the system, it
is possible to get the different actions that compose the execution part of the policy. Then, thanks to the
Intention Rule, it is possible to compute which events will then be produced due to the execution of these



Fig. 6. An exemple of cycle detection thanks to the Intention concept

actions. Using this technique it is also possible to detect Shared Trigger Interactions which are detected
using a graph as can be seen on Figure 6 when two vertices with different labels emerge from the same
event.

Fig. 7. Analysis of the rule intentions in an example

Figure 7 represents the autonomic policies of the component-based application enounced in Section 2:
Using Intention Rules, it is possible to detect that the R4 rule is cycling.

4 Related Work

Jade proposes a component-based framework to build control loops to administrate J2EE applications on
clusters [7]. The target platform and the application are modeled using Fractal components [8], in order to
provide management interfaces. This allows the administrator to dynamically reconfigure the application
architecture. Jade allows the architectures to be reconfigured according to infrastructure context changes.
The Jasmine project 3, which strongly relies on Jade, offers an additional design layer to implement
autonomic policies expressed using JBoss Rules 4. This offers a convenient way to express rules, although
no verification of the interaction between these rules are possible in contrast with Dacar.

The Rainbow framework [9] also implements a control loop to manage elements across the systems. It
defines adaptation strategies using invariants, which are reconfiguration scripts executed in response to
events. The use of invariants makes the policies in Rainbow monolithic, on the contrary of our approach.
Consequently, this disadvantage leads to impossibility to detect interactions, and no verifications about the

3 http://jasmine.objectweb.org
4 http://www.jboss.com/products/rules



global behaviour of the system can be brought. The invariants are programs where only the syntax and the
types employed can be statically verified. In addition of these two verifications, Dacar offers a behaviour
validation which is crucial for long-life systems. Finally J2EEML is a modeling environment to implement
autonomic EJB applications with QoS requirements [10]. These requirements are expressed using the
graphical modeling environment and are then woven onto the components of the applications. Then, specific
adaptation code is generated to make the EJB components able to be reconfigured according to the defined
QoS requirements. This approach generates autonomic behaviour code from the defined model of QoS
requirements, which leads to difficulties in introspection of the code, to validate the autonomic behaviour
of the system as it is implemented in Dacar. Moreover, this approach seems to be specific to the EJB
business components, and also specific to reconfigurations driven by QoS requirements: Reconfigurations
due to fluctuations in an ODDE are impossible.

5 Conclusion and Future Work

In this paper, we have presented Dacar supporting model-based framework for autonomic heterogenous
distributed software systems in ODDE. Dacar realizes the concepts of autonomic computing. By extending
the Dacar metamodel with the adequate concepts we achieve a behaviour validation of autonomic policies.
In this paper, two properties are ensured: The deployment and undeployment of Software are symetric,
which means that no-side effects occurs when performing these two tasks. The second property is that
autonomic policies are running safely, which means that no fatal interactions such as cycles are possible
in the global autonomic behaviour. Indeed autonomic policies are classically expressed using programs
or scripts, and no behavioural verification is possible, despite existing and well-identified problems in
autonomic systems such as the feature interactions. Dacar allows the administrators to validate their
whole software deployment thanks to two kinds of validation, the first one validates the correctness of
the deployment procedures of the system, and the second one introspects autonomic policies to detect
interactions between them. In this paper, two properties are ensured: The deployment and undeployment
of Software are symetric, which means that no-side effects occurs when performing these two tasks. The
second property is that autonomic policies are running safely, which means that no fatal interactions such
as cycles are possible in the global autonomic behaviour.

A prototype of the Dacar metamodel has been developped using the Kermeta [11] metamodeling
environment. Validation of several software as they are defined in our DeployWare framework has been
successfully experimented. We are also driving experiments using Kermeta and DeployWare to provide
an efficient, scalable and validated deployment framework for autonomic software systems. Our future
work will mainly consist in consolidating autonomic deployment procedures validation in order to make
autonomic deployment really effective and trusted. Another interesting work could be to find mechanisms
to automatically infer Intention Rule from the specification of autonomic policies.

References

1. Kephart, J., Chess, D.: The Vision of Autonomic Computing. Technical report, IBM Thomas J. Watson (2003)
Published by the IEEE Computer Society.

2. Reiff-Marganiec, S., Turner, K.J.: Feature Interaction in Policies. Computer Networks 45 (2004) 569—584
Department of Computing Science and Mathematics, University of Stirling, United Kingdom.

3. Dubus, J., Merle, P.: Autonomous Deployment and Reconfiguration of Component-based Applications in
Open Distributed Environments . In: Proceedings of the 8th International OTM Symposium on Distributed
Objects and Applications (DOA’06). Volume 4277 of Lecture Notes in Computer Science, Montpellier, France,
Springer-Verlag (2006) 26–27

4. Dubus, J., Merle, P.: Applying OMG D&C Specification and ECA Rules for Autonomous Distributed
Component-based Systems. In: Proceedings of the Models Workshop on Models@Runtime. Volume 4364 of
Lecture Notes in Computer Science, Genova, Italia, Springer-Verlag (2006) 242—252



5. Object Management Group: Deployment and Configuration of Distributed Component-based Applications
Specification. Available Specification, Version 4.0 formal/06-04-02 (2006)

6. Flissi, A., Merle, P.: A Generic Deployment Framework for Grid Computing and Distributed Applications . In:
Proceedings of the 2nd International OTM Symposium on Grid computing, high-performAnce and Distributed
Applications (GADA’06). Volume 4279 of Lecture Notes in Computer Science, Montpellier, France, Springer-
Verlag (2006) 1402–1411

7. Bouchenak, S., Palma, N.D., Hagimont, D., Taton, C.: Autonomic Management of Clustered Applications. In:
IEEE International Conference on Cluster Computing, Barcelona, Spain, IEEE (2006)

8. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal Component Model and Its
Support in Java. Software Practice and Experience – Special issue on Experiences with Auto-adaptive and
Reconfigurable Systems 36(11-12) (2006) 1257–1284

9. Garlan, D., Cheng, S.W., Huang, A.C.: Rainbow: Architecture-Based Self-Adaptation with Reusable Infras-
tructure. Computer 37 (2004) 46–54 2004.

10. White, J., Schmidt, D.C., Gokhale, A.: Simplifying Autonomic Enterprise Java Bean Applications Via Model-
Driven Development: A Case Study. Volume 3713/2005. (2005) 601—615

11. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Executability into Object-Oriented Meta-Languages. In:
Proceedings of MODELS/UML’2005. (2005) 264–278 Montego Bay, Jamaica.


