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Summary. Techniques for data-mining, latent semantic analysigestnal search of databases,
etc. have long ago been developed by computer scientistaéngoon information retrieval
(IR). Experimental scientists, from all disciplines, hayito analyse large collections of raw
experimental data (astronomical, physical, biologictd,)dhave developed powerful methods
for their statistical analysis and for clustering, catégjog, and classifying objects. Finally,
physicists have developed a theory of quantum measurenmfiting the logical, algebraic,
and probabilistic aspects of queries into a single formalis

The purpose of this paper is twofold: first to show that whemidated at an abstract
level, problems from IR, from statistical data analysisi &étom physical measurement the-
ories are very similar and hence can profitably be cros#i$ed, and, secondly, to propose
a novel method of fuzzy hierarchical clustering, ternsethantic distillation— strongly in-
spired from the theory of quantum measurement —, we develtipanalyse raw data coming
from various types of experiments on DNA arrays. We illustthe method by analysing DNA
arrays experiments and clustering the genes of the arrayding to their specificity.

Keywords: Quantum information retrieval, semantic distillation, Bknicroarray, quan-
tum and fuzzy logic

1 Introduction

Sequencing the genome constituted a culminating pointdratialytic approach of
Biology. Now starts the era of the synthetic approach in &ystBiology where
interactions among genes induce their differential exgioesthat leads to the func-
tional specificity of cells, the coherent organisation dfsciamto tissues, organs, and
finally organisms.

However, we are yet far from a complete explanatory theotiyioig matter. It is
therefore important to establish precise and quantitghvenomenology before be-
ing able to formulate a theory. The contribution of this papéao provide the reader
with a novel algorithmic method, termegmantic distillationto analyse DNA ar-
rays experiments (where genes are hybridised with variell$imes corresponding
to various tissues or specific individuals) by determinimg degree of specificity of
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every gene to the particular context. The method providegrmxental biologists
with lists of candidate genes (ordered by their degree ofifipity) for every bio-
logical context, clinicians with improved tools for diagis, pharmacologists with
patient-tailored therapies, etc.

In the sequel we present the method split into several ahgoit tasks thought as
subroutines of the general algorithm. It is worth noting the method, although can
profitably exploit, does not rely on any previous informat&tored in the existing
databases; its rationale is to help analysing raw expetihdata even in the absence
of any previous knowledge.

The main idea of the method is summarised as follows. Expariat information
hold on the objects of the system undergoes a sequence afgsing steps; each
step is performed on a different representation of the m&dion. Those different
representation spaces and the corresponding informati@egsing act as successive
filters revealing at the end the most pertinent and signifipart of the information,
hence the name “semantic distillation”.

At the first stage, raw experimental data, containing alllakée information, are
represented in an abstract Hilbert spabe,space of concepts reminiscent of the
space of pure states in Quantum Mechanics —, endowing thef sdljects with a
metric space structure that is exploited to quantify thergttions among objects
and encode them into a weighed graph on the vertex set oftstged with object
interactions as edge weights.

Now objects (genes) are parts of an organised system (ssliet organism).
Therefore their mutual interactions are not just indepehdendom variables; they
are interconnected through precise, although certainty eemplicated and mostly
unknown relationships. We seek to reveal (hidden and unkhoeractions among
genes. This is achieved by trading the weighed graph repiesen for a low-
dimensional representation and using spectral propesfitse weighed Laplacian
on the graph to grasp the essential interactions.

The following step consists in a fuzzy divisive clusterirfgobjects among two
subsets by exploiting the previous low-dimensional regmé&tion. This procedure
assigns a fuzzy membership to each object relative to ctemsaaf the two subsets.
Fuzziness is as a matter of fact a distinctive property oéexpental biological data
reflecting our incomplete knowledge of fundamental biotagjprocesses.

Up to this step, our method is a sequence of known algoritiaishtave been
previously used separately in the literature in varioustexts. The novelty of our
method relies on the following steps. The previous fuzzgtering reduced the in-
determinacy of the system. This information is fed back ®ghstem to perform a
projection to a proper Hilbert subspace. In that way, therimfation content of the
dataset is modified by the information gained by the previohservations. After
this feeding back, the three previous steps are repeatewiuteferring to a Hilbert
spaces of lower dimension. Therefore our method is not a fuerg clustering algo-
rithm but a genuine non-classical interaction informatietmieval procedure where
previous observations alter the informational contenthefdystem, reminiscent of
the measurement procedure in Quantum Mechanics.
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2 A Hilbert space formulation

2.1 Mathematical form of the dataset

LetB be a finite set oflocumentgor objects, or books) andl a finite set ofattributes

(or contexts, or keywords). The dataset {B&x |A| matrix X = (Xpa)bep aca Of real

or complex elements, whefe| represents cardinality. Equivalent ways of represent-
ing the dataset are

o acollection of/B| row vectors<, = (Xp1, .- -, Xpja|),b € B of RI4I (or CI#]),
o acollection of|A| column vectors? = (Xa, ..., Xgja),a € A of REl (or CIB).

Example 1In the experiments we analys&lis a set of 12000 human genes and
A a set of 12 tissular contexts. The matrix eleme@tsare real numbers encoding
luminescence intensities (or their logarithms) of DNA sirudtimately representing
the level of expression of gettdn contexta.

Example 2LetB be a set of books in a library arda set of bibliographic keywords.
The matrix elementsy,, can be{0,1}-valued: if the terma is present in the book
thenxya = 1 elsexpa = 0. A variant of this example is wheny, are integer valued:
if the terma appeark times in documeni thenxy, = k.

Example 3Let B be a set of students ardla set of papers they gave. The matrix
elements, are real valuedxy, is the mark the studemtgot in papei.

The previous examples demonstrate the versatility of ththaaeby keeping the
formalism at an abstract level to apply indistinctivelyamarious very different sit-
uations without any change. Note also that the assignmesgtad documents or at-
tributes is a matter of point of view; for instance, exanfpes3t stands is convenient
in evaluating students. Interchanging the role of gendB renders it adapted to
the evaluation of teaching. As a rule of thumb, in biolog@@aplications|A| <« |B|.

2.2 The space of concepts

For A andB as in the previous subsection, we definegpace of concepts#;, as
the real or complex free vector space o¥gr.e. elements o serve as indices of
an orthonormal basis af#, . Therefore, the complete datagetan be represented
as the collection ofB| vectors| =p) = Saca Xbal@) € 4, With b € B and where
|a) represents the element of the orthonormal basis of the fe®rspace corre-
sponding to the attributa. We use here Dirac’s notation to represent vectors, linear
forms and projectors on this space (see any book on quanturhamies or @6]
for a freely accessible document a@ [29] for the use of thtation in information
retrieval). The vectof=p) contains all available experimental information on docu-
mentb in various cellular contexts indexed by the attribude# can be thought as

a convenient bookkeeping device of the dgég)ac 4, in the same way a generating
function contains all the information on a sequence as fopmaer series.
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The vector space is equipped with a scalar product definesl/fny two vectors
|W) = SacaWala) and [Y') = Facp Yala) by (Y[Y') = Facp Walla, Where,
denotes the complex conjugateyaf (it coincides withy, if it is real). Equipped with
this scalar product, the vector spa# becomes a real or complgk|-dimensional
Hilbert space. The scalar product induces a Hilbert normhenspace, denoted by
||-1]- In the sequel we introduce alsmyson the Hilbert space i.e. normalised vectors.
Since the dataset does not in principle verify any particular numerical coastts,
rays are constructed by dividing vectors by their norms. e the symbolé&,) =
|=b)/|l| Zp )| to denote the ray associated with vedtap ).

The Hilbert space structure o#f}, allows a natural geometrisation of the space
of documents by equipping it with a pseudo-distaéhde B x B — R defined by
d(b,b') =|||&y) — | &y )||- What is important here is not the precise form of the
pseudo-metric structure 0B, d); several other pseudo-distances can be introduced,
not necessarily compatible with the scalar product. Inpliser we stick however to
the previous pseudo-distance, postponing into a lateiigatiin explanations about
the significance of other pseudo-distances.

As is the case in Quantum Mechanics, the Hilbert space qiigerincorporates
into a unified algebraic framework all logical and probatiti information hold by
the dataset. An enquiry of the type “does the system possataéF"” is encoded
into a projectoP: acting on the Hilbert space. The subspace associated \eifhrth
jectorP: is interpreted as the set of documents retrieved by askagukstion about
the featurd=. Now all experimental information hold by the dataset isceted into
thestateof the system represented bgansity matrixp (i.e. a self-adjoint, positive,
trace class operator acting o#, having unit trace). Retrieved documents possess
the feature= with probabilitytr(pPe). Thus the algebraic description incorporates
logical information on the documents retrieved as relevard given feature and
assign them a probability determined by the state definetidgxperiment. For ex-
ample, the probability that a gebes relevant to an attributeis given by the above
formula withP = |a)(a| andp = | &,)(&|, yieldingtr(pP) = |(&|a)/?.

3 A weighed graph with augmented vertex set

The careful reader has certainly already noted that in tikeedescription vectors

| &b ), encoding the information about documéngand basis vectols), associated
with attributea, all belong to the same Hilbert spag€, . Therefore, although ini-
tially the setsA andB are disjoint since they have distinct elements, when pgssin
to the Hilbert space representation, vectdjs) and|a) have very similar roles in
representing indistinguishably objects or attributesetars of 77, . In the sequel,
we introduce the seét (or more preciselyy, to remove any ambiguity) as the set
V4 = AUB. Thus, for any € Vy,

3 Itis termed pseudo-distance since it verifies symmetry dadgdle inequality but(b,b)
can vanish even for differefitandb’. As a matter of factd is a distance on the projective
Hilbert space.
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|:>_{|a> if v:aeA,
" | SacaXoal@) if v=beB.

The new vector$=,) = |a) are included aspecificity withessea the dataset. Note
that since these new vectors are also elements of the sabwrtipace, the pseudo-
distanced naturally extends t& 4.

Suppose now that aimilarity functiono : V4 x V5 — [0,1] is defined. For
the sake of definiteness, the reader can thinkrads being given, for example
by o(v,V) = 4/1— %d(v,v’)z; results we quote in sectidj 5 are obtained with a
slight modification of this similarity function. Howevergain, the precise form of
the similarity function is irrelevant in the abstract sadtiserving as foundation of
the method. Several other similarity functions have beeduie, for example,
o(v,V) = exp(—||Zy — =y||?/1) with T a positive constant or some others, in par-
ticular, functions taking value 0 even for some verticesegponding to non or-
thogonal rays but the explanation of their significance istponed to a subsequent
publication.

A weighed graph is now constructed with vertex Sgt Weights are assigned
to the edges of the complete graph oVey; the weights being expressible in terms
of the similarity functiono. Again, the precise expression is irrelevant for the ex-
position of the method. For the sake of concreteness, ttderezan suppose that
the weights\,, are given by, = g(v,V'). The pair(V,,W) with W being the
symmetric matrixV = (W )yvev, , denotes the weighed graph.

At this level of the description we follow now standard teicjues of reduction
of the data dimensionality by optimal representation ofgtaph in low dimensional
Euclidean spaces spanned by eigenvectors of the Lapl&uah.methods have been
used by several authorE [E|24]. Here we give only the badiaittens and main
results of this method. The interested reader may consardsrd textbooks like
(B, [£0,[1%] for general exposition of the method.

Definition 1. A mapr : V4 — RV is called av-dimensional representation of the
graph. The representation is always supposed non-trivial { £ 0) and balanced

(i.e.3vev, r(v)=0).

From the weights matri¥V we construct theveighed Laplacian matrixd =D —W
where the matrix elemeni,y are 0 ifv# Vv and equaltg vy, Wy if v=V'. More
precisely, we denote b (V) this weighed Laplacian to indicate that it is defined
on the vertex se¥ . This precision will be necessary in the next section spéuif
the semantic distillation algorithm where the vertex sét né recursively modified
at each step. Thweighed energy of the representatisrgiven by

Ew(r) = Wov [Ir (v) =1 (V)%

vV eVy

where in this formuld| - || denotes the Euclidean normRf .

4 This function is well adapted to dataseXs= (Xpa), With xpq € RT; for more general
datasets, the facto/2 must be changed tg/a.
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Theorem 1.Let N= |V,4| and{As,...,An} be the spectrum of, ordered asA; <
Az2...An. Suppose thak, > 0. Theninf, & (r) = V73 A, where the infimum is over
all v-dimensional non-trivial balanced representations of ginaph.

Remark 11f ul,...uN are the eigenvectors @f corresponding to the eigenvalues
A1,...,An ordered as above, thert is the best one-dimensiondli?, u®] the best
two-dimensional, etcju?,...,u’*1] the bestv-dimensional representation of the
graph(V4,W).

4 Fuzzy semantic clustering and distillation

The algorithm of semantic distillation is a recursive divésfuzzy clustering fol-
lowed by a projection on a Hilbert subspace and a thinnindhefgraph. It starts
with the Hilbert spacei, and the graph with vertex s&, and constructs a se-
quence of Hilbert subspaces and subgraphs indexed by thiswaf finite length
on a two-letter alphabet. This set is isomorphic to a subfsthieorooted binary tree.
If k is the root, then definkl, = A. OtherwiseMy will be a proper subset &, i.e.

0 C My C A,indexed byk. When|M | = 1 then the correspondingis a leaf of the
binary tree. The algorithm stops when all indices corredgdoneaves.

More precisely, lefk = {1,2}, K° = {k : k = ()}, and for integers > 1 let
K"={K:K =Kj---Kn;Ki € K}. Finally letK* = Un>oK" denote the set of words on
two letters of indefinite length, including the empty sequeerdenoted by), of zero
length that coincides with the root of the treeklf= k1 - - - K, is a word ofn letters
andk € K, we denote the concatenatigk as the word oh+ 1 lettersky - - - Knk.

We start from the empty séteaves = {}, the empty sequenae = () and the
current attributes sétl, = My = A and current tredree = {k }. We denoteV, =
BUM. We need further fuzzy membershipnctionm: Vi x K — [0,1]. The fuzzy
clustering algorithm is succinctly described as AIgoriI@rlneIow.

Data: k, M, r, objective functior

Result Two setsMlx1 andM» and the fuzzy membership(v, k) for v € Vi in the
clustersM,; andM o

if [Mg| > 1then

assign(vy, Vo) «— argmax||r (v) —r (V)||,v,V € V¢ };

assign 1(v1) andr (v2) as centroids for the two candidate finer clustég and

Mo2;

usestandard 2-means fuzzy clustering algorithm to minimigeative functionF

under the constrairzﬁzl m(v,k) =1, for allv e M ;

assignM « {ve My : m(v,1) > m(v,2)};

assignM o «— M \ Mik1;

end
Algorithm 1: FuzzyClustering
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Note that in the previous constructidfi,, C My for everyk and evenk € K.
Therefore, the algorithm explores the branches of a trema the root to the leaves.
Denote byri the orthogonal projection from#, to 7%y, . The distillation step is
described by the following Algorithrﬂ 2.

Data: FuzzyClustering

Result Leaves and sequence of singleton s&fig for k € Leaves
Initialisation {

K—();

Mg «— A;

Leaf(k) — MK;

Leaves «— {};

Tree — {K};

Bookkeeping «— {k};

while Bookkeeping # 0 do
for k € Bookkeeping do
if |Mg|=1then
Leaves « LeavesU{k};
Bookkeeping < Bookkeeping\ {k};
else
UseTt to project froms7, to 74y, ;
Thin the graph¥V, — BUDM;
Compute weighed Laplacian\ (V);
Diagonalise/A (V);
Compute v-dimensional representation
Call FuzzyClustering;
for ke K do
k' — Kk;
Leaf(k’) < M, I* My as determined bfuzzyClustering */;
Tree — TreeU{k'};
Bookkeeping « Bookkeeping U{k'};
end

end

end

end
Algorithm 2: Distillation

5 lllustration of the method, robustness and complexity isses

We tested the method on a dataset for an experiment on DNA prrdlished in
[@], with the setA of attributes corresponding to 12 cell lines (bone marroxey)
heart, spleen, lung, kidney, skeletal muscle, spinal ¢bgainus, brain, prostate, pan-
creas) and the s& of documents corresponding to 12000 human genes. To illus-
trate the method we present here only an example of the typesafts we obtain
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by our method for the simplest case of one-dimensional sgmtation of the graph.
The complete lists of specificity degrees for the variouseggincluding their Uni-
Gene identifiers) for various dimensions are provided aplsapental material (at
the home page of the first author).

Note that for one-dimensional representation, orderinghleymagnitude of the
eigenvector components is equivalent to a relabelling akgeThe figur¢]1 repre-
sents, within the previous mentioned relabelling, the lkewé expressions for clus-
tered genes. The same procedure has been applied for highersional represen-

skeletal muscle

Fig. 1. For every singleton cluster, i.e. tissular context Leaves (we present solely the cases
My = {liver} andM = { skeletal musclgin this example), the horizontal axis contains the
setB of genegelabelledaccording to their decreasing (resp. increasing) fuzzy bezahip to

M. Vertical axis represents the experimentally measureal t#expression for those genes.

tation of the graph (i.ev > 1). These results are not presented here; they marginally
improved some specifications and helped us removing appaegeneracy in some
cases. Finally, in the tab[¢ 1, we give an example of the atioot provided by the
database UniGene for the genes classified as specific otalkelescle cell line by

our method.

We observe that the majority of genes classified as mostfgpbgiour method
are in fact annotated as specific in the database. To unddHm power of our
method, note that the UniGene annotation for the ATPase gefeardiac mus-
cle”. Our method determines it as most specific of “skeletatae”. We checked
the experimental data we worked on and realised that this geas a matter of fact,
5 times more expressed in the skeletal muscle context th#reiardiac muscle.
Therefore, our method correctly determines this gene dstskenuscle-specific.

In summarising, our method is an automatic and algorithméthod of analy-
sis of raw experimental data; it can be used to any experiwiesimilar typein-
dependently of any previous knowledge included in genoatabdsego provide
biologists with a powerful tool of analysis. In particulaince most of the genes
are not yet annotated in the existing databases, the metbgitips biologists with
candidate genes for every particular context for furtheeatigation. Moreover, the
genetic character of documents and attributes is puradieirant; the same method



Semantic distillation 9

Table 1. Annotation of the genes closest (within the relabellinguicet! byu?) to the speci-
ficity witness “skeletal muscle”. Genes are separated by-thanbol.

ATPase, Ca++ transporting, cardiac muscle, fast twitch &lcaum signaling pathway — Troponin | type 2; skeletal,
fast — Myosin, light chain 1, alkali; skeletal, fast — Ryaid receptor 1; skeletal; calcium signaling pathway
— Fructose-1,6-bisphosphatase 2, glycolysis / gluconeegje — Actinin, alpha 3; focal adhesion — Adenosine
monophosphate deaminase 1 (isoform M) purine metabolisropefiin C type 2; fast; calcium signaling pathway —
Carbonic anhydrase Ill, muscle specific; nitrogen metaroli- Nebulin — Troponin | type 1; skeletal, slow — Myosin,
heavy chain 3, skeletal muscle — Myogenic factor 6, hereulyosin binding protein C, fast type — Calcium channel,
voltage-dependent, beta 1 subunit — Metallothionein 1X idd#ng integrator 1 — Bridging integrator 1 — Calpain
3, (p94) — Tropomyosin 3 — Phosphorylase, glycogen; muddtA(dle syndrome, glycogen storage disease type V);
starch and sucrose metabolism — Myozenin 3 — Myosin bindiogip C, slow type — Troponin T type 3; skeletal, fast
— Superoxide dismutase 2; mitochondrial — Nicotinamide @hyitransferase — Sarcolipin — Interleukin 32 — Sodium
channel, voltage-gated, type 1V, alpha subunit — Guanidagtate N-methyltransferase; urea cycle and metabolism of
amino groups.

can be used to any other dataset of similar structure, leb tb@encern linguistic,
genetic, or image data.

Concerning the algorithmic complexity of the method, thendwant contribution
comes from the diagonalisation of 8 x |B| dense real symmetric matrix, requiring
at worst'(|B|®) time steps and’(|B|?) space. The time complexity can be slightly
reduced, if only low-dimensional (dimensiohrepresentations are soughtAgv x
IB|2) time steps. Moreover, we tested the method against additiveultiplicative
random perturbations of the experimental data; it provéahéshingly robust.

6 Connections to previous work

The algorithm of semantic distillation maps the dataset@ngraph and uses spectral
methods and fuzzy clustering to analyse the graph progeAgesuch, this algorithm
is inspired by various pre-existing algorithms and borr@eseral elements from
them.

The oldest implicit use of a vector space structure to repriegataset and appli-
cation of spectral methods to analyse them is certainlyngpial components anal-
ysis” introduced in [25]. The method seeks finding direcsiohmaximal variability
in the space corresponding to linear combinations of theetiyihg vectors. The
major drawbacks of principal components analysis are theraptions that dataset
matrix is composed of row vectors that are independent agtichlly distributed
realisations of the same random vector (hence the covariesadtrix whose princi-
pal components are sought can be approximated by the ealpigeariance of the
process) and that there exists a linear transformationmriaixig the variability.

Vector space representations and singular value decotigmgss reviewed in
[E], have been used to retrieve information from digitatdibies. Implementations
of these ideas range from the famous PageRank algoritm ys€wbbgle (see|E8]
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and [1}] for expository reviews) to whole genome analysiehleon latent semantic
indexing [2B[1p].

From the information contained in the dataXet weighed graph of interactions
among documents is constructed. To palliate the weaknespeisicipal component
analysis, reproducing kernel methods can be used. Thet@ldesunt of these meth-
ods seems to b¢ [21] and their formulation in the context dibétt spaces can be
found in [3]. In [81], analysis of features of a microarraypeximent is proposed
based on kernel estimates on a graph. Note however thattipaper, the graph in-
corporates extrinsic information coming from participatof genes in specific path-
ways as documented in the KEGG database. On the contrahg iméthod we are
proposing here, the graph can be constructed in an intnvesjceven in the absence
of any additional information from existing databases4{{,[24], kernel methods
and Laplace eigenspace decomposition are used to gepegralisipal components
analysis to include non-linear interactions among genadidalar types of kernels,
defined in terms of commuting times for a random walk on thelgrare used in
(L3, 20,[3D]. All these methods, although not always exjicitated in these arti-
cles, are as a matter of fact very closely related since theeke the weighed graph
Laplacian and the simple random walk on the graph can beibdescin a unified
formalism [} [B[1p[ 19, 22]. Itis worth noting that analysfd_aplacian of the graph
is used in many different contexts, ranging from biologiapplications (proteins
conformation[[3R], gene arrayf |23]) to web seaigh [3] orgmanalysis[[28].

Fuzzy clustering has been introducedﬁh [6]; lately it wagve [@] equivalent
to probabilistic clustering if the objective function ismessed in terms of the Rényi
entropy.

The idea of describing the data in terms of abstract Hilgqeaites has been used
(in the context of database search)[in[[3, [L2.[Z#[20, 34].

The semantic distillation algorithm is based on a quantnspired subspace pro-
jection, strongly reminiscent of the quantum procedure efsurement. Although
fully implemented on classical computers, it shares withegal quantum algorithms
features of non-distributive quantum Iog[@ 27]. Thesatic approach of Quan-
tum Mechanics can be found E[ZE 11]. It is worth underlyihgt the full fledged
fuzzy logic induced by quantum semantics is not equivalernthe standard fuzzy
logic introduced in BG]; it represents a genuine extens’rﬁn[@].

7 Perspectives

Various data sets (not only biological) are presently sdivalty distilled and the
method compared with more traditional approaches. Preéingiresults obtained so
far seem to confirm the power of the method.

Several directions are in progress:

e Although the method is quantum-inspired, the fuzzy loguiced is still stan-
dard fuzzy logic. We are currently working on the extensmgéneralised fuzzy
logic induced by full-fledged quantum semantics.
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The graph analysis we performed provided us with degregsaufificities of ev-
ery gene in a particular context. These data can be reincatgabto the graph as
internal degrees of freedom of a multi-layered graph thatesfurther analysed.
The connections of the algorithm of semantic distillatioithvthe algorithm of
purification of quantum stateﬂ19] introduced in the conhtdéxjuantum comput-
ing are currently explored.
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