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Abstract. In this article, we present a model and a denotational seman-
tics for hybrid systems made of a continuous and a discrete subsystem.
Our model is designed so that it may be easily used for modeling large,
existing, critical embedded applications, which is a first step toward their
validation. The discrete subsystem is modeled by a program written in
an extension of an imperative language and the continuous subsystem is
modeled by differential equations. We give to both subsystems a deno-
tational semantics inspired by what is usually done for the semantics of
computer programs and then we show how the semantics of the whole
system is deduced from the semantics of its two components.
The semantics of the continuous system is computed as the fix-point of
a modified Picard operator which increases the information content at
each step. This fix-point is computed as the supremum of a sequence of
approximations and we show that this supremum exists and is the solu-
tion of a differential equation using Keye Martin’s measurement theory.
The semantics of the discrete system is given as a classical denotational
semantics, except that special denotations are given for the actions of
sensors and/or actuators.

1 Introduction

The importance and usefulness of static analysis techniques [8] for software val-
idation is no longer to be outlined. Their application to highly critical programs
has become a major challenge for many industries. Such programs are usually
automatically generated, imperative programs which are embedded into a het-
erogeneous system. They mostly behave as follows: they capture information
from the physical environment via sensors, treat this information using numeri-
cal computations and consequently modify the environment via actuators. The
analysis of such programs requires either to over-approximate the physical en-
vironment, which often leads to an imprecise analysis, or to analyze the whole
hybrid system made of the continuous environment and the discrete program [6,
15]. We use this approach.



The analysis of hybrid systems requires as a starting point a formal descrip-
tion of their behavior. Thus, we need to give a coherent interpretation of both
the discrete and the continuous subsystems. The formalization of a continuous
system using the same notions as for a computer program is already a challenge
of its own. The continuous variables move along a continuous function of the real
time while the discrete system is defined, in a denotational semantics approach,
as a function between discrete environments [28]. In this article, we propose a
formalism for modeling hybrid systems together with a description of their be-
havior as a hybrid denotational semantics : the evolution of the hybrid system is
a function between hybrid environments (i.e. containing a discrete and a contin-
uous part) and this function is computed as the least fix-point of a sequence of
approximations.

Generally, hybrid systems are modeled using hybrid automata [16]. They are
finite state automata to which we add at each location a flow equation describing
the continuous dynamics at this point. Hybrid automata are generally used as a
high level modeling tool which allows of the quick prototyping of heterogeneous
systems. However, when the verification of industrial size, critical systems is
in stake, they are not fully sufficient. First, for safety reasons, the analysis of
the embedded source code is always necessary and proving properties on high
level models such as hybrid automata does not guarantee the same properties
on the source code. Secondly, for industrial size problems, it is necessary to have
a model in which discrete and continuous states are fully separated in order to
avoid combinatorial explosion and to allow the modeling process of the discrete
and of the continuous parts to be executed by different engineers. The theory of
hybrid automata is not well-suited for these requirements as every discrete state
must explicitly describe the evolution of the continuous variables.

Our model for hybrid systems is designed for an implementation level and
ensures a clear separation of the discrete and the continuous subsystems. They
are actually modeled in two different formalisms (see Section 3.1 and 3.2) which
allows of the analysis of one program within various environments for example.
Despite this heterogeneity, we give a unique description of the behavior of the
hybrid system. To build the hybrid semantics of the whole system, we first give
a coherent description of both parts. As a first step, we suppose that the discrete
part is completely determined and we give a semantics JκK for the continuous
part (Section 4). It is computed as the fix-point of an operator Γ which acts on
partially defined functions and we show that this fix-point is actually the limit
of Tarski’s iterates [27]. Then, we suppose that the continuous part is perfectly
known and we define a denotational semantics J∆K for the discrete part only
(Section 5). For this, we add to the standard semantics of imperative languages
denotations for some hybrid actions that represent sensors and actuators. Finally,
we define the semantics JΩKH of the hybrid systems as a combination of both
discrete and continuous semantics (Section 6).



1.1 Running Example

We will illustrate this article with a simplified version of the well-known two
tanks problem [19]. The system consists of one water tank (see Figure 1.1)
which is filled by a constant flow i and which has two evacuation tubes: one
at the bottom and one at height h. The evacuation tube at the bottom has a
valve v which can be open or closed. The continuous system is the height x of
the water in the tank, whose evolution is governed by the ordinary differential
equation (1) and the discrete part is a controller whose goal is to maintain x
between safe bounds by closing/opening the valve.

ẋ =

8

>

>

<

>

>

:

i − k1
√

x − k2

√
x − h if x ≥ h and v open

i − k2

√
x − h if x ≥ h and v closed

i − k1
√

x if x ≤ h and v open
i otherwise

(1)

A model of this system using hybrid automata requires 4 states: one for each
possible equation for x. The switches between these 4 states have two natures:
either they are directed by the discrete system (the valve is turned off/on), or
by the continuous system (x becomes bigger/lower than h).

Fig. 1.1. One-tank system.

1.2 Related Work

The modeling of hybrid systems with hybrid automata was initiated by Hen-
zinger [16] as an extension of timed automata [2]. Their operational semantics
was introduced in the early papers and their analysis using model checking tech-
niques has been well studied, either for linear [1] or non-linear [17] cases. A
denotational semantics for these models was recently proposed by Edalat [12]
and proved to be equivalent with the operational semantics.

On the other hand, hybrid systems may be seen as switched, dynamical
systems, i.e. continuous systems whose dynamics changes in some regions [20]. In
this formalism, the discrete part is very limited and the question of the stability
of the system [5] is of great importance, while the verification is often done via
successive simulations [13]. The behavior of such systems is however not always



formally defined, although some advances in that direction have recently been
made [29].

The main difficulty in the formalization of hybrid systems is to give a coherent
interpretation of the continuous and the discrete parts. Edalat et al. proposed a
formalization of differential calculus and of the solution of differential equations
in the theory of Scott domains, both for the mono-variate [10] and multi-variate
[11] cases. Their theory was one of the main starting points for this work and
we use some of their results here.

1.3 Notations

In the rest of the article, we will write R for the set of real numbers, R+ for the
set of non-negative real numbers and N denotes the natural integers. For two
elements a ≤ b of a domain, we write [a, b] the interval containing all elements
a ≤ x ≤ b. The set of all intervals over R (resp. R+) will be denoted I(R) (resp.
I(R+)). For i ∈ I(R), we write i− is lower bound and i+ its upper bound. We

define its width w(i) = i+ − i− and its midpoint mid(i) = i++i−

2 .

2 Basics of Differential Equations Theory

In this Section, we present the basic notions of differential equations theory that
are necessary for the understanding of this paper. They are not much explained,
we invite the curious reader to refer to any differential equations book (for ex-
ample [18]) for more details.

Definition 1 (Ordinary Differential Equation). Let y be a vector-valued
function of the positive real variable t, y : R+ → R

d. Let y(i) be its ith derivative
in t. Then, an ordinary differential equation (ODE) of order n and dimension
d is a relation of the form F

(

y, y(1), . . . , y(n−1), t
)

= y(n). The properties of the
function F define the properties of the solution of the ODE. When the function
F does not depend on t, the ODE is said to be autonomous.
ODEs of dimension 1 are particularly important and we are used to writing them
ẏ = F (y, t), where ẏ = y(1).

Proposition 1. Every differential equation of dimension d and order n is equiv-
alent to an ODE of order 1 and dimension d + n.

Proof. We introduce an auxiliary variable yi for the ith derivative of y, such that
ẏi = yi+1. Then, the ODE is equivalent to the ODE of order one ż = g(z) where
z = (y, y1, . . . , yn, t)T and g(z) = (y1, . . . , yn−1, F (t, y, y1, . . . , yn−1), t)

T .

Thus, from now on, we will only consider ordinary differential equations of or-
der 1. For the simplicity of the presentation, we will limit this paper to ODEs
of dimension 1. All the results we present can be easily extended to ODEs of
arbitrary dimension (and thus differential equations of any order). An initial



value problem (IVP) is an ODE ẏ = F (y, t) together with an initial condition
y(t0) = y0. We write it:

ẏ = F (y, t), y(t0) = y0 (2)

Depending on the function F and the initial condition, the behavior of the
implicitly defined function y varies a lot: it may exist on a small open interval
around t0, on the whole real line or not exist at all. Let us recall some results
which give conditions for the existence and uniqueness of solutions to Equation
(2).

Definition 2 (Solution of an IVP). A solution to the IVP (2) on the (open,
semi-open or closed) interval (a, b) that contains t0 is a continuous, continuously
differentiable function f : (a, b) → R such that:

∀t ∈ (a, b), ḟ(t) = F (f(t), t) and f(t0) = y0

Definition 3 (Maximal solution of an ODE). If two solutions f1, f2 of the
IVP (2) defined over two intervals i1 ⊆ i2 are equal at some t ∈ i1, then they
are equal for all t ∈ i1. f2 is then said to be an extension of f1.
A solution of Equation (2) is said to be maximal if it cannot be extended.

An important class of IVPs are the ones where F is (at least locally) Lipschitz
in y. We recall that a function F : R×R+ → R is globally α-Lipschitz in its first
coordinate if for all y1, y2 ∈ R, it holds that |F (y1, t)−F (y2, t)| ≤ α|y1− y2|. So,
Lipschitz functions are functions with a bounded growth rate. For such functions,
the existence of solutions to Equation (2) is (at least locally) guaranteed.

Theorem 1 (Existence and uniqueness theorem). If the function F is
locally Lipschitz in y on a neighborhood of (y0, t0), then the IVP has a unique
maximal solution around t0. If F is globally Lipschitz on R, then the IVP has a
unique solution on R.

Theorem 1 is very important as Lipschitz functions are common. The most
interesting part of the theorem is without doubt its proof, as it proves the ex-
istence and uniqueness of the solution using a fix-point argument (in the sense
of Banach’s fix-point theory). The solution is constructed as the fix-point of the
Picard operator [18] defined for an interval I ∈ I(R), a continuous function F
and an initial condition y0 ∈ R by:

PI

(

F, y0

)

:

{

C0
(

I
)

→ C0
(

I
)

f 7→ λx.y0 +
∫ x

I−
F (f(s), s)ds

(3)

where C0
(

I
)

is the set of continuous, real-valued functions defined on the interval
I. It can be shown that if we chose carefully the interval I, then we can build
a Banach space for which the Picard operator is contracting. It thus has a least
fix-point. This fix-point is the solution of the IVP (2) on I, as shown by the
following proposition:



Proposition 2. A continuous, differentiable function f on (a, b) is a solution
to the IVP (2) if and only if it satisfies the integral equation:

∀t ∈ (a, b), f(t) = y0 +

∫ t

a

F (f(s), s)ds. (4)

Theorem 2 (Convergence of the Picard iterates). If F is globally Lipschitz
on R, the Picard iterates defined by:

f0 ∈ C0([a, b]), fn+1 = P[a,b]

(

F, y0

)

(fn)

converge uniformly on [a, b], for all intervals [a, b] of R. So, whatever the choice
of the first function f0, if we iteratively compute fn+1 = P[a,b]

(

F, y0

)

(fn), the
sequence converges toward the solution of (2) on [a, b].

Proposition 2 gives a characterization of solutions of the IVP as solutions of
a fix-point equation in the sense of Banach’s fix-point theory. Theorem 2 shows
that this fix-point can be computed as the limit of the iterates of a contracting
operator. Let us note that the convergence of the iterates is very quick: if we
start two iterations with two functions f0 and f̃0, then we have for all n ∈ N

and t ∈ [a, b]:

|fn(t) − f̃n(t)| ≤ K.
kn(t − t0)

n

n!

where K is a constant and k is the Lipschitz-constant of F .

3 Our Model for Hybrid Systems

In this Section, we present our model for hybrid systems. This model is designed
for large, embedded, safety critical applications and is designed for being used at
an implementation level, i.e. we want to analyze the programs that will actually
be embedded. These programs continuously interact with their environment via
sensors and actuators, the activity of which has thus to be carefully modeled.
Our objectives for this new model are the following:

1. The discrete part remains close to existing embedded software.
2. The action of sensors and actuators is clearly identified.
3. Continuous and discrete systems are modeled separately.

The last requirement is necessary for two reasons. First, if we want to analyze
the behavior of a controller in different physical environments without having to
rewrite the entire system, the distinction between the plant (i.e. the discrete part)
and the environment must be clear. Secondly, for existing industrial applications,
the discrete part (i.e. the program) is already written, so we want a description
of the hybrid systems that can use this program “as it is”. An obvious solution
would consist of building a cartesian product between the continuous states and
the states of the program. For combinatorial reasons, our approach consists of
first describing a model for continuous subsystems (Section 3.1) and then a model
for discrete subsystems (Section 3.2).



3.1 Model for the Continuous Subsystem

The continuous part contains variables evolving continuously with time such as
the water height in the tank or the temperature of the air. Their evolution is
usually described by an ordinary differential equation; for example, the temper-
ature x of a room with a heater is given by an ODE like ẋ = 5 − 0.1x. Let κ
be the continuous model, its expressiveness depends on the set of functions F
that we allow inside Equation (2). We need to capture two phenomena: a change
in the dynamics due to the environment itself and a change due to the discrete
program. The first arises for example when the water passes above the tube (see
Equation (5)) while the second appears when the valve is closed.

To capture the changes induced by the discrete system via actuators, we allow
the function F to have boolean parameters. Thus, we will have F = F (y, t, k),
where k is a vector of boolean values. We write Fk(y, t) = F (y, t, k) for every
possible value of k. To capture the changes induced by the environment itself,
we let each Fk be a continuous, piecewise Lipschitz function, as on Figure 3.1.
Thus, Fk behaves differently in different regions of the space, which is precisely
the kind of changes we wanted to model. We recall that a function g is piecewise
Lipschitz if there exist finitely many real numbers x0 < x1 < · · · < xn such that
the restriction of g to [xi, xi+1] is Lipschitz. The theory of differential equations
remain unchanged with such functions, except that the solutions are now contin-
uous but only piecewise differentiable functions. Especially, the Picard iterates
still converge uniformly on every interval.

Fig. 3.1. Admissible function for an ODE.

The continuous model κ is a triple κ = (F, {Fk}, y0) where {Fk} is the set of
possible modes. F is the function defining the IVP and is such that there exists
t0 < t1 < · · · < tn < . . . such that the restriction of F to [ti, ti+1] is equal to
one of the Fk. The model representing the evolution of the liquid height in the
one-tank system is (F, {F0, F1}, y0) where (F0, F1) are given by Equation (5).

Fk(x) =



i − k ∗ k1
√

x − k2

√
x − h if x ≥ h

i − k ∗ k1
√

x otherwise
(5)



Let us make a parallel between this model and a computer program as the
representation of a dynamical system. A source code is a model for a discrete
dynamical system: the compiled binary program. Every instruction explains how
the state of the system varies from instant t (the current instruction) to instant
t+1 (the next one). For a continuous function, the ODE plays that role: it links
the state of the system at time t+dt with the state of the system at time t via its
derivatives. So, it is natural to consider an ODE as a program for continuously
varying systems.

3.2 Model for the Discrete Subsystem

We want the discrete model ∆ to remain close to existing embedded software
in order to be used for large critical applications. We thus start with a set of
standard statements which are common to any imperative language (stmt in Ta-
ble 1). We have assignemnts, if statements, while loops, arithmetic and boolean
expressions. This core language can be extended to more complex statements
without perturbing the semantics of the hybrid system as they represent purely
discrete actions.

stmt := v = exp

| if(bool) then stmt else stmt

| while(bool) stmt

| stmt;stmt

| hyb stmt

exp := c | exp+exp | exp-exp | exp*exp ...
bool := v<exp | v>exp | bool∨bool | ...

hyb stmt := sens.y?x
| act.k!c
| wait c

Table 1. Statements for the discrete system.

In addition to standard statements, we add three hybrid actions:

– sens to model the sensors. The action of sens.y?x is to bind the variable x
to the value of the continuous variable y at the time the action is executed,

– act to model the actuators. The action of act.k!c is to change the continuous
dynamics by choosing the function Fc among all the possible dynamics {Fk},

– wait to model the passing of time. We suppose that all discrete and hybrid
actions are instantaneous and we model the fact that they were not by
explicitly adding these wait statements. The effect of wait c is to move
time forward by c seconds.

This formalism is very close to existing imperative languages and, in most cases,
the generated programs already contain, as comments, the hybrid statements.



For example, the loops of embedded industrial programs are usually precisely
cadenced and we often see in the codes comments indicating their frequency
such as “this loop runs at 8kHz”. Thus, adding a wait command at the end
of the loop to model its cadence is easy. Clearly, every program that uses data
sampling must know the sampling rate to ensure the meaning of the data given
by the sensor. It is thus reasonable to assume that we know the cadence of the
incoming data.

Using this syntax, we can write a controller for the one tank system that
measures the height x of the water with a sensor and open the valve if x is too
high (see Figure 3.2). We suppose that the closing operation takes two seconds,
so the controller must predict (using for example linear interpolation) the height
of the water two seconds later (this is the role of the function anticipate) and
starts the closing if this predicted value is too high.

int main() {

sensor x; // sensors declaration

actuator k; // actuators declaration

while (true) {

sens.x?h;

if (h>h_max)

act.k!0; throw( alarm );

h_in_2_secs = anticipate(h);

if (h_in_2_secs > h_max)

act.k!0;

wait (0.01); // delay action

}

}

Fig. 3.2. Controller for a one-tank system.

This model for hybrid systems conforms to our three requirements:

1. Modeling the discrete system only requires a few additions to existing pro-
grams.

2. Sensors and actuators are clearly modeled.
3. Continuous and discrete systems are modeled using two different formalisms.

Let us now give a formal, denotational semantics for this model of hybrid sys-
tems. The semantics is defined separately for the continuous (Section 4) and
the discrete (Section 5) systems and both are then joined to define the seman-
tics for the complete, hybrid system. We define the semantics of the continuous
system with the assumption that the discrete system is fully known and vice-
versa for the discrete part. This allows of several simplifications when specifying
both parts, those simplifications are then removed by the semantics of the whole
system.



4 Continuous Semantics

In this section, we give a formal, denotational semantics of the continuous model.
Let us recall that the continuous part of an hybrid system is represented as κ =
(

F, {Fk}, y0) where {Fk} is a family of piecewise Lipschitz continuous functions
and y0 ∈ R is the initial condition (we suppose t0 = 0). Each Fk is supposed
to be globally α-Lipschitz on R, so that there exists a unique maximal solution
on R (as defined in Section 2) to each ODE ẏ = Fk(y, t). Our goal is to have
a coherent formalism for describing both the continuous and the discrete part
of the hybrid system. We first give the intuition for this semantics (Section 4.1)
and then we describe in detail the lattice structure that we manipulate (Section
4.2) and the computation of the semantics as a fix-point (Section 4.3).

4.1 Intuitive Idea of the Semantics

In an analogy with standard denotational semantics, we want to express the
semantics of κ as a function mapping an initial environment to a final value. If
we know the behavior of the discrete part of the system, we know the times at
which the parameters k ∈ k switch. Thus, we know completely the function F
and the semantics of κ maps an initial value to the semantics of the IVP

ẏ = F (y, t), y(0) = y0 (6)

Basically, the semantics of the IVP is its maximal solution, i.e. a piecewise differ-
entiable, continuous function y : R+ → R which satisfies (6). Thus, the semantics
of κ is a function JκK mapping an initial environment (i.e. the initially available
information y) to the solution of the IVP. This is very close to the denotational
semantics of a program which is a function mapping the environment before the
execution of the program with the environment at the end.

The computation of JκK(y) requires the computation of a fix-point, in the
sense of Banach’s fix-point theory, as shown by Theorem 2. We translate this
fix-point computation into Tarski’s fix-point theory and compute JκK(y) as the
fix-point of an operator Γ . Then, we prove this is the supremum of the iterates
Γ n(⊥). Γ is defined on elements with partial information and it updates them
by increasing their information content. Our notion of partial information is
the following: a function has only partial information if it is defined on a finite
interval [0, X ] for some X ∈ R+ and its value at each point is bounded, i.e. is
an interval. Thus, the maximal elements are the real-valued functions defined
on R+ and our semantics will construct one of these (the solution of (6)) as
the limit of an approximations sequence, each approximation being a partially
defined, interval-valued function.

4.2 The Lattice of Interval-Valued Functions

We now define the set of partially defined, interval-valued functions, i.e. contin-
uous functions with only partial information. We also define an order and shows
that this order provides a lattice structure.



Definition 4 (Partial, interval-valued functions). Let X be a non negative
real number. IFX is the set of interval-valued functions defined on [0, X ]:

IFX = {f : [0, X ] → I(R)}

For such a function, we define its upper f+ and lower f− functions as the two
real-valued functions such that ∀x ∈ [0, X ], f(x) = [f−(x), f+(x)].

When f− (respectively f+) is right-continuous (respectively left-continuous), f
is (Scott) continuous and write IF0

X the set of all continuous, partial, interval-
valued functions. We recall that a function f is right-continuous if, for all x, we
have lim

t→x,t>x
f(t) = f(x), i.e. if t tends toward x from above, f(t) tends toward

f(x); the left-continuity is the opposite. We provide the set IF0
X with a complete

partial order structure with the pointwise reverse order:

f ⊑X g ⇔ ∀x ∈ [0, X ], g(x) ⊆ f(x) (7)

This order means that at every point in [0, X ], g is more informative than f .
Clearly, (IF0

X ,⊑X) is a CPO (actually, it is a continuous Scott domain [10]).
The left-(resp. right) continuity of f+ (resp. f−) is a necessary condition for
f to be Scott-continuous [10] and for IF0

X to be a CPO; consider for example
the piecewise linear functions fn ∈ IF0

1 defined by fn(x) = [0, 1] if x ∈ [0, 1
2 ],

fn(x) = [0, 1 − n
2 (x − 1

2 )] if x ∈ [ 12 , 1
2 + 1

n
] and fn(x) = [0, 1

2 ] otherwise (see
Figure 4.1). Clearly, the supremum f =

⊔

n fn is not continuous in 1
2 , while each

fn is. The right-continuity condition imposes that f+(x) = 1 for x ∈ [0, 1
2 [ and

f+(x) = 1
2 for x ∈ [ 12 , 1].

Fig. 4.1. Necessity of the right-continuity condition



IF0
∞ is the natural extension of IF0

X to the case of interval-valued functions
on R+. We now build the set of interval functions defined over arbitrary intervals
of R.

Definition 5 (Arbitrary long, interval-valued functions). The set of all
continuous, interval-valued functions defined over any interval [0, X ] is D0 =
(

⋃

X∈R+
IF0

X

)

∪ IF0
∞.

For f ∈ D0, its upper limit is Xf = max
{

X | f ∈ IF0
X

}

. Xf is the maximum
time until which f is defined; if f is defined on R+, then Xf = ∞.

Note that for all X ≥ 0, the set of continuous, real-valued functions C0([0, X ]) is
embedded into D0 by the function γ : f 7→ λx.[f(x), f(x)]. Thus, we will identify
a map f ∈ C0([0, X ]) with the map λx.[f(x), f(x)] and write f ∈ D0. We extend
the order ⊑X to D0 by requiring that g is greater than f if it is more precise on
a longer interval than f :

f ⊑ g ⇔

8

<

:

Xf ≤ Xg and
f ⊑Xf

g|[0,Xf ]
and

∀x ∈ [Xf , Xg], g(x) ∈ f(Xf )

(8)

where g|[0,Xf ]
denotes the restriction of g to [0, Xf ]. This order may be seen as

a flexible prefix order: g is greater than f if it extends it, in a coherent way.
Figure 4.2 gives an example of comparable functions (left, the dark one being
bigger than the light one) and an example of incomparable functions (right). The

(a) Comparable functions. (b) Incomparable functions.

Fig. 4.2. Order on partially defined functions.

third hypothesis in Equation (8) states that g remains bounded by the last value
of f on [Xf , Xg]. It is necessary for D0 to be a CPO: in any increasing chain
fn, the functions f+

n and f−
n are bounded, thus (f−

n ) is a bounded increasing
sequence (with respect to the pointwise order for real-valued functions), so it
has a limit f−. Equivalently, (f+

n ) has a limit f+, which proves the existence of
⊔

n fn = [f−, f+].

We extend (D0,⊑) with a bottom ⊥ and a top ⊤ element such that ∀f ∈
D0, ⊥ ⊑ f ⊑ ⊤. We also define the join and meet operators ⊔ and ⊓ as follows.
Let f, g ∈ D0, with Xf ≤ Xg. Then, f ⊔g ∈ IF0

Xg
and f ⊓g ∈ IF0

Xf
are defined



by:

f ⊔ g(x) =



f(x) ∩ g(x) if x ∈ [0, Xf ]
f(X) ∩ g(x) otherwise

f ⊓ g(x) = f(x) ∪ g(x)

This definition of f ⊔ g supposes that ∀x ∈ [0, Xf ], f(x) ∩ g(x) 6= ∅. If this is
not true, f ⊔ g = ⊤. Figure 4.3 shows the effect of ⊔: the join of the two gray
functions (left) is the dark one (right).

F

=

Fig. 4.3. Join on D0

Proposition 3. (D0,⊑,⊤,⊥,⊔,⊓) is a lattice.

Proof. Each underlying set IF0
X is a continuous Scott domain and our extended

order preserves this structure. Clearly, ⊔ and ⊓ define a join and a meet operator,
which completes the lattice structure.

Let us remark that D0 is a lattice and a CPO, so every increasing chain does have
a supremum. It is however not a complete lattice as there exist infinite sequences
without supremum. For example, let us consider the sequence of functions ϕn ∈
IF0

1− 1
n

defined by ϕn(x) = [− 1
1−x

, 1
1−x

]. Clearly, this sequence does not have

a supremum in D0 except ⊤, while there are infinitely many f ∈ D0 greater
than fn for all n (for example, the constant function with value 0). This lattice
is a set of approximate functions, in the sense that a function f ∈ D0 only has
partial information. We will extend and update these functions in order to get
to the solution of Equation (6). We thus need to define some basic operations on
D0 that adapt the classical operations on real-valued functions. The arithmetic
operators +,−, ∗, / are defined as an extension of the interval arithmetic. For
⊙ ∈ {+,−, ∗, /} and f, g ∈ IF0

X , we define f ⊙ g ∈ IF0
X as

∀x ∈ [0, X ], f ⊙ g(x) = {y ⊙ z | y ∈ f(x) and z ∈ g(x)}

We next define the composition, primitive and width of functions in D0.

Definition 6 (Function composition). The composition of a continuous,
real-valued function F : R → R and a partial, interval-valued function f ∈ IF0

X

is the function F ◦X f ∈ IF0
X defined by:

∀x ∈ [0, X ], (F ◦X f)(x) = {F (y) : y ∈ f(x)} .



F ◦X f is well defined because F is continuous and f(x) is an interval, so F ◦f(x)
is an interval for all x. We naturally extend the notion of function composition
to D0 and define the operator ◦ as:

∀F : R → R and f ∈ D0, F ◦ f = F ◦Xf
f

Definition 7 (Primitive). The primitive of a function f ∈ IF0
X is IX(f) ∈

IF0
X defined by:

∀x ∈ [0, X ], IX(f)(x) =

[
∫ x

0

f−(s)ds,

∫ x

0

f+(s)ds

]

Again, the primitive operator is extended to D0 straightforwardly: for f ∈ D0,
we set I(f) = IXf

(f)

Definition 8 (Width). The width of a function f ∈ D0 is computed as the
maximum width of all intervals f(x): w(f) = maxx∈[0,Xf ] w(f(x))

Proposition 4. The operator ◦ is monotone and continuous. The width w is a
monotone, continuous function from (D0,⊑) to ([0,∞[,�) where x � y ⇔ y ≤ x.

The proof of this proposition is straightforward: we use the monotonicity of
functions with respect to set inclusion for ◦ and we note that for two intervals
i1, i2, i1 ⊆ i2 ⇒ w(i2) ≤ w(i1), thus the monotonicity of w. The primitive
operator is not monotone, as it does not preserve the third condition for the
order ⊑ (Equation (8)). However, the second condition is preserved thanks to
the monotonicity of the primitive for real-valued functions.

A measurement for D0

Among all the functions of D0, one is of special interest for us: y∞, the maximal
solution of (6).We will compute it by successive approximations and thus we
need a way to measure the quality of our approximation. Following Keye Mar-
tin’s measure theory [21, 22], a measurement is a continuous function µ from a
CPO D into the set of positive real numbers with reverse ordering: [0,∞[∗. The
measurement of an element f reveals the distance of f to the maximal elements
of D, which should have measure 0. The measurement must also be coherent
with the informational order on D: the more informative f , the smaller its mea-
sure. Moreover, it must be the case that if we measure that the sequence of
approximation fn converges towards 0 (limn→∞ µ(fn) = 0), then the sequence
fn does converge towards a maximal element (

⊔

n fn = f, µ(f) = 0). For a
formal definition of a measurement, the reader is invited to read [21], Chapter
2.
In our case, the maximal elements of D0 are the real-valued functions defined on
R+. These functions have a null width and an infinitely long domain of definition.
Thus, a measurement must takes both aspects into account.

Definition 9 (The measurement µ). Let f ∈ D0. Then, its measurement is:

µ(f) = w(f) +
1

Xf



Clearly, µ(f) is null if and only if f is maximal, so in particular µ(y∞) = 0.

Proposition 5. µ is a measurement, i.e.:

(i) it is a Scott continuous map from (D0,⊑) into [0,∞[∗.

(ii) for all f ∈ D0 such that µ(f) = 0 and all sequences fn ≪ f , we have
limn→∞ µ(fn) = 0 ⇒ ⊔nfn = f

We recall that the far away relation f ≪ g means that for every increasing chain
ϕn with a supremum greater than g, the elements ϕn must become greater than
f at some N ∈ N.

Proof. Point (i) is a straightforward consequence of Proposition 4. The proof of
point (ii) relies on two observations:

1. limn µ(fn) = 0 ⇒ limn(Xfn
) = ∞ and limn

(

w(fn)
)

= 0.

2. fn ≪ f ⇒ fn ⊑ f and thus, ∀x ∈ R+, there exists N ∈ N such that
∀n ≥ N, f(x) ∈ fn(x).

So, for all x ∈ R+, fn(x) converges toward a singleton and always contain f(x),
so limn f−

n (x) = limn f+
n (x) = f(x) and consequently

⊔

n fn = f .

Let us recall the results of this Section. We have built a lattice D0 and defined
three operators on it: I, ◦ and w. Furthermore, we have a measurement µ on D0

which characterizes the maximal elements of D0, i.e. the real-valued functions
defined on R+. This measurement will be used as follows: the semantics JκK
of the continuous model is defined as the fix-point of an operator ΓF,y0 on D0

(see Section 4.3) and this operator is such that the iterates fn = Γ n
F,y0

(⊥) verify
fn ≪ y∞ and limn µ(fn) = 0. By the definition of the measurement, we conclude
that

⊔

fn = y∞. This intuition is formalized in the next section.

4.3 The Semantics

The denotational semantics JκK of a continuous model κ is a function mapping
an initial state y ∈ D0 to the solution of Equation (6). JκK(y) is computed as the
least fix-point of the operator ΓF,y0 : D0 → D0. This operator acts as follows:

given some partial information (i.e. a function f ∈ IF0
X), it first updates the

available information by bringing each f(x) closer to y∞(x) and then it extends
the function to the right by assigning a value to f(x) for x ∈ [X, X +1]. The first
step uses an iteration of the Picard operator (Equation (3)) while the second step
extends the function in such a way that if f encloses the solution at X , then the
extension encloses y∞ on [X, X + 1]. This is possible because F is α-Lipschitz,
so y∞ cannot grow faster than eαx. We recall that the Picard operator is defined
as

P[0,Xf ]

`

F, y0

´

(f) = λx.y0 +

Z x

0

F (f(s))ds = y0 + I(F ◦ f).

Let us now give the formal definition of JκK.



Definition 10 (Updating operator). Let f ∈ D0, we suppose Xf < ∞. Let
F be a continuous, globally α-Lipschitz function and y0 ∈ R. Then, ΓF,y0(f) ∈
IF0

Xf +1 is defined by:

ΓF,y0(f)(x) =

8

>

<

>

:

P[0,Xf ]

`

F, y0

´

(f)(x) if x ≤ Xf

J + F (J) ∗ [−eα, eα] ∗ (x − X),
with J = P[0,Xf ]

`

F, y0

´

(f)(X) otherwise

If f ∈ IF0
∞, ΓF,y0(f) = P[0,∞[

(

F, y0

)

(f). ΓF,y0(⊥) is the function defined on
[0, 0] with value y0.

(a)Update the information (b)Extends the information

Fig. 4.4. The updating operator (two steps).

An example of the effect of ΓF,y0 on a partial function is shown on Figure 4.4.
The black line represents y∞; the left part of the figure shows the updating
mechanism, while the right part is the extension. The operator ΓF,y0 is not
monotone on D0, but we know that it has a fix-point: y∞. We will show in
the following that this fix-point can be computed as the supremum of the ΓF,y0

iterates, i.e. y∞ =
⊔

n Γ n
F,y0

(⊥).

Proposition 6. Let f ∈ IF0
X . ΓF,y0 verifies the invariant:

∀x ∈ [0, X], y∞(x) ∈ f(x) ⇒ ∀x ∈ [0, X + 1], y∞(x) ∈ ΓF,y0(f)(x)

Proof. The proof relies on the fact that y∞ is a fix-point of the Picard operator
and on the classical enclosure of the solution y of the ODE ẏ = F (y) when F is
k-Lipschitz:

‖y(t) − y(t0)‖ ≤ e
k.|t−t0|.F (y(t0)).(t − t0)

The iterates fn+1 = ΓF,y0(fn), starting from f0 = ⊥, form a sequence of ap-
proximation of y∞: they enclose it and their width converge toward 0. Figure
4.5 represent the first 3 iterates of fn when the IVP is Equation (5), with i = 2,
k1 = k2 = 1, v open and x ≤ h. The black curve is the real solution and the
gray lines represent respectively f1, f2 and f3. The semantics of the continuous
subsystem κ =

(

F, {Fk} , y0

)

is the function mapping f ∈ D0 with the least
fix-point of ΓF,y0 starting from f : JκK(f) =

⊔

n Γ n
F,y0

(f). We now give the main
result of this Section.



Fig. 4.5. Example of iterations of ΓF,y0 .

Theorem 3. The solution y∞ of (6) is a fix-point of ΓF,y0 and

JκK(⊥) = Fix(ΓF,y0) =
⊔

n

Γ n
F,y0

(⊥) = y∞.

Proof. By induction on n, we show that ∀n, fn ∈ IF0
[0,n] and ∀x ∈ [0, n], y∞(x) ∈

fn(x). Based on that we prove that fn ≪ y∞. Next, we must prove that
limn→∞ µ(fn) = 0. Clearly, lim 1

Xfn
= 0, so we must prove that limw(fn) = 0.

Let x ∈ R+, we prove that limw(fn(x)) = 0 using the property of the Pi-
card iterates (Theorem 2). Thus, for all x ∈ R+, w(fn(x)) tends toward 0, so
limn w(fn) = 0.

5 Discrete Semantics

We now give a denotational semantics of the discrete subsystem ∆. We recall that
∆ is an imperative program to which some hybrid actions (sens, act and wait)
were added. In this section, we suppose that the semantics of the continuous
system is already computed, i.e. we know exactly the solutions of each IVP
ẏ = Fk(y), y(t0) = y0 for each possible dynamics Fk and each initial condition
(t0, y0). These solutions are Jẏ = Fk(y), y(t0) = y0K(⊥), i.e. the semantics of
the corresponding continuous system. The semantics of the discrete program
∆ is given as a denotational semantics, i.e. a function J∆K : Σ → Σ between
environments. The environments bind every variable with its value, but also carry
information about time. Actually, it is important to know the absolute time at
which an instruction is executed, as the denotation of sens or act action strongly
depend on it. We first present the environments that we consider (Section 5.1),



then the effect of discrete statements on them (Section 5.2) and finally the effect
of hybrid actions (Section 5.3).

5.1 The Environments

Let V ar be the set of all variables of the program and V al be the set of values
that these variables may take. For example, V al may be the set of floating-
point numbers. We suppose that there exist two extra variables time, y 6∈ V ar
that represent respectively the continuous time and the continuous environment.
An environment σ binds every variable with a value, as well as it binds time
with a positive real number and y with a continuous function. The set of all
environments is:

Σ =
{(

V ar → V al
)

∗
(

{time} → R+

)

∗
(

y : R+ → R
)}

.

For σ ∈ Σ, we denote σ.x the value of the variable x ∈ V ar ∪ {time, y}. Thus,
the instantaneous value of the physical environment within σ is σ.y(σ.time). We
also note σ[x 7→ v] the environment σ where the value of the variable x has been
changed to v.

5.2 Denotations of Discrete Statements

The effect of the purely discrete statements on the environments is the same as
for any imperative language. We quickly present the semantics of expressions,
booleans and statements.
The semantics of an expression e ∈ exp is a function mapping an environment
to a value: JeK : Σ → V al. We write the functions Σ → V al as sets of pair
(σ, n) with σ ∈ Σ and n ∈ V al. Some of the denotations of expressions are
given in Table 2. The semantics of a boolean b ∈ bool is a function mapping
an environment to a boolean value: JbK : Σ → {true, false}. The denotations
for the comparison and for the ∨ operator are shown in Table 2. Finally, the
semantics of a statement s ∈ stmt is a function mapping an environment to
another: JsK : Σ → Σ. Table 2 also presents the denotations for the statements
(assignments, if, while and ; sequence).

5.3 Denotations of Hybrid Statements

The semantics of an hybrid statement hyb stmt is a function that modifies an
environment: Jhyb stmtK : Σ → Σ. The modification is as follows:

– sens.y?x changes the value of x to the value of the continuous variable y at
the time the action is executed,

– wait c modifies the value of the variable time and adds c to it,
– act.k!c changes y so that, from the time t0 the action is executed, it follows

the solution of the ODE ẏ = Fc(y). Thus, the new environment maps a time
t to either the value of the previous environment (if t ≤ t0) or to the solution
of ẏ = Fc(y), y(t0) = σ.y(t0) if t ≥ t0.

Table 3 presents the denotations for hybrid instructions with the same conven-
tions as for pure discrete ones.



JnK = {(σ, n) | σ ∈ Σ}
JxK = {(σ, n) | σ ∈ Σ and n = σ.x}

Je1 + e2K = {(σ, n1 + n2) | (σ, n1) ∈ Je1K and (σ, n2) ∈ σ}
Jv < eK = {(σ, true) : JvKσ < JeKσ} ∪ {(σ, false) : JvKσ ≥ JeKσ}

Jb0 ∨ b1K = {(σ, t0 ∨ t1) | (σ, t0) ∈ Jb0K and (σ, t1) ∈ Jb2K}

Ji1; i2K = Ji2K ◦ Ji1K

Jv = eK =
˘

(σ, σ
′) | σ

′ = σ [v 7→ n] and (σ, n) ∈ JeK
¯

Jif b then i1 else i2K =
˘

(σ, σ
′) | (σ, true) ∈ JbK and (σ, σ

′) ∈ Ji1K
¯

∪
˘

(σ, σ
′) | (σ, false) ∈ JbK and (σ, σ

′) ∈ Ji2K
¯

Jwhile(b) instK = Fix(Γ ) with

Γ (ϕ) =
˘

(σ, σ
′) | JbKσ = true and (σ, σ

′) ∈ ϕ ◦ JinstK
¯

∪ {(σ, σ) | JbKσ = false}

Table 2. Denotations for discrete statements.

Jsens.y?xK =
˘

(σ, σ
′)|σ′ = σ[x 7→ σ.y(σ.time)]

¯

Jwait cK =
˘

(σ, σ
′) | σ

′ = σ[time 7→ σ.time + c]
¯

Jact.k!cK =



(σ, σ
′)|σ′ = σ

»

y 7→ λx.



σ.y(x) if x ≤ σ.time

yc(x) else

–ff

where yc = Jẏ = Fc(y), y(σ.time) = σ.y(σ.time)K(⊥)

Table 3. Denotations for hybrid statements.



6 Hybrid Semantics

Let us now give the semantics of the complete hybrid system. The hybrid model
is a pair Ω =

(

∆, κ) consisting of a model ∆ for the discrete system and a model
κ for the continuous environment. These define two dynamical systems (∆ and
κ) that run in parallel and, from time to time, communicate. The communication
between them is of two kinds:

– data are passed from κ to ∆ via the sensors. This communication requires
that both dynamical systems reached the same time before the data is ex-
changed. The sens actions must thus be blocking.

– orders are passed from ∆ to κ via the actuators. Indeed, the discrete system
only indicates to the continuous system what its semantics will be, i.e. it
chooses one of the possible functions Fk. This communication needs not to
be blocking as it does not affect the value of the continuous variables but
only their future behavior.

The hybrid denotations for sens and act respect these observations. The seman-
tics JΩKH of Ω is a function between hybrid environments that are made of a
discrete and a continuous environment. The discrete environment is altered by
the discrete subsystem while the continuous one is computed only when neces-
sary, i.e. when a sens is executed. We first define the hybrid environments, then
the hybrid denotations for the discrete and hybrid statements and we finally
define the semantics of the hybrid system using them.

6.1 Hybrid Environments

A hybrid environment consists of a pair made of a discrete and a continuous
environment. The discrete environment σδ binds every discrete variable v ∈ V ar
to a value and the time time to a positive real value. It also contains the function
F that defines the semantics of the continuous variables. This function F is
piecewisely defined by the discrete program through the act statements and
thus storing F is equivalent to storing the sequence of all executed act actions.
The discrete environment thus completely describes the discrete program: it has
both the value of the variables and the execution time, as well as the sequence
of modifications brought to the continuous system. We write Σ∆ the set of all
discrete environments:

Σ∆ =
˘`

V ar → V al
´

∗
`

{time} → R+

´

∗
`

F : R+ × R → R
´¯

.

The continuous environment σκ contains an approximation of the physical vari-
ables y ∈ D0 and the set of functions Fk defining the continuous dynamics.
These are the set of possible continuous modes that are available for the discrete
program to chose. We write Σκ the set of all continuous environments:

Σκ =
˘`

y ∈ D0
´

∗
`

{Fk} | Fk : R+ × R → R
´¯

.

We write ΣH the set of all hybrid environments:

Σ
H =

8

<

:

`

σδ, σκ

´

˛

˛

˛

˛

˛

˛

σδ ∈ Σ∆ and σκ ∈ Σκ and
∃(tn), (cn) s.t. ∀i ∈ N, ∀t ∈ [ti, ti+1[,

σδ.F (t) = σκ.Fci(t)

9

=

;

(9)



ΣH contains all the pairs
(

σδ, σκ

)

that are compatible, i.e. such that the function
σδ.F is made of fragments of functions from {σκ.Fk}. We write Πδ : (σδ, σκ) 7→
σδ and Πκ : (σδ, σκ) 7→ σκ the two projections of an hybrid environment into
a discrete (resp. continuous) one. As before, we write σδ.X the the value of a
variable X ∈ V ar ∪ {time, F} in the discrete environment and σκ.Y the value
of a variable Y ∈ {y} ∪ {Fk} in the continuous one.

6.2 Hybrid Denotations

The denotation of the purely discrete parts of the language are left unchanged.
The denotation of numerical (resp. boolean) expressions are functions from ΣH

to numerical (resp. boolean) values. These values are the ones computed by the
discrete environment only (see Equation (10)).

JexpKH(σκ, σδ) = JexpK(σκ)
JboolKH(σκ, σδ) = JboolK(σκ)

(10)

The denotation of a statement stmt is a function from ΣH to ΣH. Its definition
is exactly the same as in the discrete case, except that the environments σ must
be changed to pairs (σδ , σκ) in Table 2. The denotation of a wait remains as in
the discrete semantics: the time is actually controlled by the discrete subsystem
that imposes the sampling rate and thus the flow of time.
The denotation of an action sens.y?x is a function from ΣH to ΣH that modifies
a pair (σδ, σκ) as follows: it first updates σκ to ensure that σκ.y has a value at
time σδ.time and then it binds x with this value in σδ. The first step is done by
applying ⌊σδ.time + 1⌋ times the operator ΓF,y0 (see Section 4.3) to σκ.y with
F = σδ.F and y0 = σκ.y(0). The first equation of Table 4 formally defines this
intuition.
The denotation of an action act.k!c is a function from ΣH to ΣH that modifies
a pair (σδ, σκ) as follows: σκ is left unchanged and in σδ, the function F is
modified so that it takes the value of σκ.Fc for times greater than σδ.time. The
definition of Jact.k!cKH is given in the second equation of Table 4.

Jsens.y?xKH(σδ, σκ) = (σ′
δ, σ

′
κ) with

(

σ′
κ = σκ[y 7→ Γ n

σδ.F,y(0)

`

y
´

]

σ′
δ = σδ[x 7→ mid

`

σ′
κ.y(σδ.time)

´

]

where n = ⌊σδ.time + 1⌋

Jact.k!cKH(σδ, σκ) = (σ′
δ, σκ) with σ

′
δ = σδ

"

F 7→ λt, y.

(

σδ.F (y, t) if t ≤ σδ.time

σκ.Fc(y, t) otherwise

#

Table 4. Hybrid denotations for hybrid statements.



6.3 Hybrid Semantics

The semantics of the hybrid model Ω =
(

∆, κ) is a function between hybrid

environments: JΩKH : ΣH → ΣH. JΩKH alters a pair
(

σδ, σκ

)

as follows. It

first applies J∆KH and thus computes
(

σ′
δ, σ

′
κ

)

= J∆KH
(

σδ, σκ

)

. Then, two cases
occur:

– σ′
κ = σκ. This means that the discrete program has no effect on the environ-

ment, i.e. either there are no sens statements in it, or they have no effect on
σκ. This is the case only if σκ.y is a fix-point of ΓF,y0 , i.e. σδ.y = JκK(σδ .y). In
this case, we have computed both the continuous semantics and the discrete
one, so we set JΩKH

(

σδ, σκ

)

=
(

σ′
δ, σ

′
κ

)

.
– σ′

κ 6= σκ. The program has modified the environment and thus brought σδ.y
closer to JκK(σδ.y). σ′

δ (resp. σ′
κ) is only an approximation of the result of the

discrete (resp. continuous) system and we must iterate the process to obtain
a better approximation. We thus propagate σ′

κ into the discrete subsystem,
i.e. we apply J∆KH to

(

σδ, σ
′
κ

)

and repeat the operation.

The semantics JΩKH is computed as a fix-point of a function that applies J∆K
consecutively until the semantics of the continuous environment has been com-
puted. The formal definition of JΩKH is given in Table 5. Let us note that JΩKH is
actually the only fix-point of the function ΓH just like JκK was the only fix-point
of ΓF,y0 in Section 4. JΩKH is compatible with the discrete semantics J∆K pre-
sented in the previous section and with the continuous semantics JκK presented
in Section 4. The continuous environment is finally computed as the fix-point of
the operator ΓF,y0 as in Section 4.3. In comparison with J∆K, the hybrid seman-
tics reveal the hidden fix-point computations. Actually, the denotation for act
in the discrete semantics (see Table 3) requires that we compute the solution of
an IVP, i.e. the fix-point of an operator ΓF,y0 . These internal fix-point compu-
tations are made explicit in Table 5. Let us note that we could have chosen to
place this fix-point computation inside the denotation of the sens action (i.e.
y 7→ Fix(Γσδ.F,y(0)) instead of y 7→ Γ n

σδ.F,y(0)

(

y
)

in Table 4). This would have

been more coherent with the discrete semantics, but requires an infinite compu-
tation between the execution of two statements, which is not compatible with
the standard notion of denotational semantics.

Let us note that this semantics is also compatible with the standard denota-
tional semantics of imperative languages: if ∆ does not have any hybrid actions,
then JΩKH is precisely the semantics of the discrete program as defined in [28]
for example.

6.4 Example

To illustrate our semantics and show that it really computes the behavior of the
hybrid system, let us consider a simplified version of the one-tank controller. We
only consider two iterations of the while loop and don’t take into account the
anticipation mechanism. For the example to be significant, we suppose that the



JΩKH = Fix(ΓH) where

Γ
H(ϕ)(σδ, σκ) = (σ′

δ, σ
′
κ) with

(

σ′
δ = Πδ

`

J∆KH(σδ, σ
′
κ)

´

σ′
κ = Πκ

`

ϕ(σδ, σ
t
κ)

´

where σt
κ = Πκ

`

J∆KH(σκ, σδ)
´

Table 5. The semantics of the hybrid system.

while loop had a period of one second. The program representing this simplified
version is given in Figure 6.1. The continuous system is still given by Equation
(5), with i = 2, k1 = k2 = 1, h = 3, h max = 2.9, and the initial value for
the height of water x is x0 = 2. We suppose that the valve is initially closed.
Let us now compute the semantics of this system. Figure 6.2 on the last page

wait (1);

sens.x?h;

if (h>h_max)

act.k!0; throw( alarm );

wait (1);

sens.x?h;

if (h>h_max)

act.k!0; throw( alarm );

Fig. 6.1. Simplified version of the one-tank controller.

shows the beginning of this computation. The table is to read as follows: the
left column shows the program, then each column corresponds to one iteration
in the fix-point computation. For example, the second column correspond to the
first computation of J∆KH on the initial environment. The first row presents the
environment (σδ, σκ) before the computation, the last row the environment after,
i.e. J∆KH(σδ, σκ). Each intermediate row represents the changes in the hybrid
environment due to the corresponding statement. We notice that the continuous
environment has changed during this first iteration, so we compute J∆KH another
time but with an updated initial environment (second column). We get better
values for the sens actions, and a new continuous environment at the end. We
repeat the iteration once more (third column), which gives us a more accurate
result. Let us remark that during this third iteration, the second act statement
was executed, which corresponds to the real behavior of the program. So, we
see that the consecutive iterations compute an ever more accurate behavior, and
eventually, the real semantics (i.e. as it would have been computed in Sections
4 and 5) is reached.



7 Conclusion

In this article, we presented a new approach to hybrid systems that can be used
for the modeling and analysis of large critical embedded programs. Our model for
hybrid systems is based on a clear separation of the discrete and the continuous
systems. They are described in two different formalisms: ordinary differential
equations with boolean parameters for the continuous system, an imperative
language with hybrid statements for the discrete part. The emphasis has been
placed on making this model as unintrusive as possible for existing software, so
we believe that we can effectively use it for industrial size problems. We gave
a denotational semantics of this model that unifies in a coherent formalism the
semantics of the continuous and the discrete parts. The main difficulty was to
express the solution of an IVP as the semantics of a continuous program, i.e. the
underlying ODE. In [10], Edalat and Lieutier proposed a data type for differential
calculus, we extended their results to consider the maximal solutions of IVP on
R+ and in an analogy with imperative languages we presented the semantics of
the continuous model as a function mapping the initial condition to the maximal
solution. The semantics of the discrete subsystem is an extension of the standard
denotational semantics of imperative languages, we added information on time
and the continuous environment to give a denotation to the actions of sensors
and actuators. The semantics of the hybrid system is a composition of these two
semantics and remains coherent with them.

This model for hybrid systems and especially its denotational semantics is a
first step toward the validation of embedded software with their environment.
The analysis of such systems using, for example, abstract interpretation tech-
niques [8] requires two stages. First, the continuous system must be abstracted in
a non-naive way. Our semantics for the continuous system already does that, as
it constantly computes a partial interval-valued function that encloses the real-
valued solution. This abstraction is however not computable and cannot be used
for a static analyzer. The theory of guaranteed integration of ODE [26] brings us
the adequate tools for the safe abstraction of the continuous system. Validated
ODE solvers [4, 25] compute interval bounds that are proved to contain the so-
lution. They can thus be used to construct piecewise constant interval-valued
functions that enclose the solution at all time. For the analysis of the discrete
part, the use of an implementation level model allows us to use existing meth-
ods (for example, the verification of the absence of run-time errors [9] or of the
numerical precision of floating point computations [14]). These methods must
however be completed so that they consider time. Actually, the main difficulty
in the analysis of the discrete system is to carefully analyze the time at which
every statement is executed (this is necessary for the sensor actions to be precise
enough), but taking time into account makes it hard to find a suitable widening.
This modification of standard static analysis techniques to our framework will
be our main concern for future work.

Another interesting application of our approach for hybrid systems is to
modify standard strictness [23, 24] or termination analysis [7, 3] so that they fit to
our model. This could be used to solve, in an approximate way, the reachability



problem of a discrete state in a hybrid system. It is well-known that this problem
is undecidable [16] and several methods have been proposed for its simplification
[17]. We believe that our approach may be efficiently used for its approximate
solution as it benefits from all the static analysis based methods for programming
languages.
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if (h>h max)

act.k!0; throw(

alarm );

wait (1); time 7→ 2 time 7→ 2 time 7→ 2
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if (h>h max)

act.k!0; throw(

alarm );

F 7→ λt.if(t < 2) then F0 else F1
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