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Introduction

The purpose of this note is to prove two results: first that compact connected Einstein manifolds with boundary are determined modulo isometries from the Dirichletto-Neumann map on an open subset of its boundary. Secondly, that a conformally compact connected Einstein manifolds of even dimension n + 1 is determined, modulo isometries, by the scattering matrix on an open subset of the boundary.

The Dirichlet-to-Neumann (DN in short) map N : C ∞ (∂ X) → C ∞ (∂ X) for the Laplacian on a Riemannian manifold with boundary ( X, g) is defined by solving the Dirichlet problem (1.1) ∆ g u = 0, u| ∂ X = f where f ∈ C ∞ (∂ X) is given, then Nf := -∂ n u| M where ∂ n is the interior pointing normal vector field to the boundary for the metric g. It is an elliptic pseudodifferential operator of order 1 on the boundary, see for example [START_REF] Lee | Determining anisotropic real-analytic conductivities by boundary measurements[END_REF]. Mathematically, it is of interest to know what this map determines about the geometry of the manifold, but N can also be interpreted as a boundary measurement of current flux in terms of voltage in electrical impedance tomography. We refer to [START_REF] Uhlmann | Developments in inverse problems since Calderón's foundational paper[END_REF] for a survey in the field, and to [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF][START_REF] Lassas | On determining a Riemannian manifold from the Dirichlet-to-Neumann map[END_REF][START_REF] Lee | Determining anisotropic real-analytic conductivities by boundary measurements[END_REF][START_REF] Nachman | Reconstructions from boundary measurements[END_REF][START_REF] Sylvester | A global uniqueness theorem for an inverse boundary value problem[END_REF] for significant results about that problem.

Our first result answers a conjecture of Lassas and Uhlmann [START_REF] Lassas | On determining a Riemannian manifold from the Dirichlet-to-Neumann map[END_REF] Theorem 1.1. Let ( X1 , g 1 ) and ( X2 , g 2 ) be two smooth connected compact manifolds with respective boundaries ∂ X1 and ∂ X2 . We suppose that g 1 and g 2 are Einstein with the same constant λ ∈ R, i.e. Ric(g i ) = λg i for i = 1, 2. Assume that ∂ X1 and ∂ X2 contain a common open set Γ such that the identity map

Id : Γ ⊂ X1 → Γ ⊂ X2 is a smooth diffeomorphism. If the Dirichlet-to-Neumann map N i of ∆ gi on Xi for i = 1, 2 satisfy (N 1 f )| Γ = (N 2 f )| Γ for any f ∈ C ∞ 0 (Γ)
, then there exists a diffeomorphism J : X1 → X2 , such that J * g 2 = g 1 .

Then we consider a class of non-compact complete Einstein manifolds, but conformal to a compact manifold. In this case we say that (X, g) is Einstein, with dim X = n + 1, if Ric(g) = -ng.

We say that a Riemannian manifold (X, g) is conformally compact if X compactifies into a smooth manifold with boundary X and for any smooth boundary defining function ρ of X, ḡ := ρ 2 g extends to X as a smooth metric. Such a metric g is necessarily complete on X and its sectional curvatures are pinched negatively 1 outside a compact set of X. If in addition the sectional curvatures of g tends to -1 at the boundary, we say that (X, g) is asymptotically hyperbolic.

It has been shown in [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF][START_REF] Graham | Einstein metrics with prescribed conformal infinity on the ball[END_REF] that if (X, g) is asymptotically hyperbolic, or in particular if (X, g) is Einstein, then there exists a family of boundary defining functions ρ (i.e. ∂ X = {ρ = 0} and dρ| ∂ X does not vanish) such that |dρ| ρ 2 g = 1 near the boundary. These will be called geodesic boundary defining functions. Note that, in this case, a DN map can not be defined as in (1.1) since ∆ g is not an elliptic operator at the boundary. The natural analogue of the DN map on a conformally compact Einstein manifold (X, g) is related to scattering theory, at least in the point of view of Melrose [START_REF] Melrose | Geometric scattering theory[END_REF]. We consider an n + 1-dimensional conformally compact Einstein manifold (X, g) with n + 1 even. Following [START_REF] Graham | Scattering matrix in conformal geometry[END_REF][START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF], the scattering matrix or scattering map in this case, and more generally for asymptotically hyperbolic manifolds, is an operator S :

C ∞ (∂ X) → C ∞ (∂ X),
constructed by solving a Dirichlet problem in a way similar to (1.1). This will be discussed in details in section 4. We show that for all f ∈ C ∞ (∂ X), there exists a unique function u ∈ C ∞ ( X) such that

∆ g u = 0 and u| ∂X = f. (1.2)
Since there is no canonical normal vector field at the boundary defined from g (recall that g blows-up at the boundary), we can consider ḡ := ρ 2 g for some geodesic boundary defining function and take the unit normal vector field for ḡ, that is ∇ ḡ ρ, which we denote by ∂ ρ . It turns out that (∂ k ρ u| ∂ X ) k=1,...,n-1 are locally determined by u| ∂ X = f and the first term in the Taylor expansion of u which is global is the

n-th ∂ n ρ u| ∂ X . We thus define Sf ∈ C ∞ (∂ X) by (1.3) Sf := 1 n! ∂ n ρ u| ∂ X .
Notice that S a priori depends on the choice of ρ, we shall say that it is associated to ρ. It can be checked that if ρ = e ω ρ is another geodesic boundary defining function with ω ∈ C ∞ ( X), then the scattering map Ŝ associated to ρ satisfy Ŝ = e -nω0 S where ω 0 = ω| ∂ X , see [START_REF] Graham | Scattering matrix in conformal geometry[END_REF] and Subsection 4.1 below. We also remark that the fact that u ∈ C ∞ ( X) strongly depends on the fact that the manifold under consideration is Einstein and has even dimensions. For more general asymptotically hyperbolic manifolds, the solution u to (1.2) possibly has a logarithmic singularity as shown in [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. Our second result is the following Theorem 1.2. Let (X 1 , g 1 ) and (X 2 , g 2 ) be connected, C ∞ , (n + 1)-dimensional conformally compact manifolds, with n+1 even. Suppose that g 1 and g 2 are Einstein and that ∂ X1 and ∂ X2 contain a common open set Γ such that the identity map

Id : Γ ⊂ X1 → Γ ⊂ X2 is a smooth diffeomorphism. If for i = 1, 2, there exist boundary defining functions ρ i of ∂ Xi such that the scattering maps S i of ∆ gi associated to ρ i satisfy (S 1 f )| Γ = (S 2 f )| Γ for all f ∈ C ∞ 0 (Γ). Then there is a diffeomorphism J : X1 → X2 , such that J * g 2 = g 1 in X 1 .
The proofs are based on the results of Lassas and Uhlmann [START_REF] Lassas | On determining a Riemannian manifold from the Dirichlet-to-Neumann map[END_REF], and Lassas, Taylor and Uhlmann [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF], and suitable unique continuation theorems for Einstein equation.

It is shown in [START_REF] Lassas | On determining a Riemannian manifold from the Dirichlet-to-Neumann map[END_REF] that a connected compact manifold with boundary ( X = X ∪ ∂ X, g), is determined by the Dirichlet-to-Neumann if the interior (X, g) is real analytic, and if there exists an open set Γ of the boundary ∂ X which is real analytic with g real analytic up to Γ. In [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF] Lassas, Taylor and Uhlmann prove the analogue of this result for complete manifolds.

A theorem of De Turck and Kazdan, Theorem 5.2 of [START_REF] Deturck | Some regularity theorems in Riemannian geometry[END_REF], says that if ( X, g) is a connected Einstein manifold with boundary then the collection of harmonic coordinates give X, the interior of X, a real analytic structure which is compatible with its C ∞ structure, and moreover g is real analytic in those coordinates. The principle is that Einstein's equation becomes a non-linear elliptic system with real analytic coefficient in these coordinates, thus the real analyticity of the metric. But since the harmonic coordinates satisfy the Laplace equation, they are analytic as well.

However this construction is not necessarily valid at the boundary. Therefore one cannot guarantee that ( X, g) is real analytic at the boundary, and hence one cannot directly apply the results of [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF].

To prove Theorems 1.1 and 1.2, we first show that the DN map (or the scattering map) determines the metric in a small neighbourhood U of a point p ∈ Γ ⊂ ∂ X, then we shall prove that this determines the Green's function in U × U. However one of the results of [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF] says that this determines the whole Riemannian manifold, provided it is real-analytic, but as mentioned above, this is the case of the interior of an Einstein manifold.

The essential part in this paper is the reconstruction near the boundary. This will be done using the ellipticity of Einstein equation in harmonic coordinates, and by applying a unique continuation theorem for the Cauchy problem for elliptic systems with diagonal principal part. The unique continuation result we need in the compact case was essentially proved by Calderón [START_REF] Calderón | Uniqueness in the Cauchy problem for partial differential equations[END_REF][START_REF] Calderón | Existence and uniqueness for systems of partial differential equations[END_REF]. The conformally compact case is more involved since the system is only elliptic in the uniformly degenerate sense of [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF][START_REF] Mazzeo | The Hodge cohomology of a conformally compact metric[END_REF][START_REF] Mazzeo | Elliptic theory of differential edge operators. I[END_REF][START_REF] Mazzeo | Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF], see also [START_REF] Alinhac | Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential operators[END_REF]. When the first version of this paper was completed we learned that O. Biquard [START_REF] Biquard | Continuation unique a partir de l'infini conforme pour les metriques d'Einstein[END_REF] proved a unique continuation result for Einstein manifolds without using the DN map for functions, which was a problem that was part of the program of M. Anderson [START_REF] Anderson | Geometric aspects of the AdS/CFT correspondence. AdS/CFT correspondence: Einstein metrics and their conformal boundaries[END_REF]. Under our assumptions, it seems somehow natural to use harmonic coordinates for Einstein equation, and we notice that our approach is self-contained and does not require the result of [START_REF] Biquard | Continuation unique a partir de l'infini conforme pour les metriques d'Einstein[END_REF].

Throughout this paper when we refer to the real analyticity of the metric, we mean that it is real analytic with respect to the real analytic structure defined from harmonic coordinates corresponding to the Einstein metric g.
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Inverse problem for Einstein manifolds with boundary

The result of De Turck and Kazdan concerning the analyticity of the metric does not apply to Einstein manifolds with boundary ( X = X ∪ ∂ X, g). Their argument breaks down since the boundary can have low regularity even though g has constant Ricci curvature. This means that the open incomplete manifold (X, g) is real-analytic with respect to the analytic structure defined by harmonic coordinates, but a priori ( X, g) does not satisfy this property. We will use the Dirichlet-to-Neumann map to overcome this difficulty.

3.1.

The Dirichlet-to-Neumann map. As in section 1,

N : C ∞ (∂ X) → C ∞ (∂ X)
is defined by solving the Dirichlet problem (1.1) with f ∈ C ∞ (∂ X), and setting Nf := -∂ n u| M where ∂ n is the interior pointing normal vector to the boundary for the metric g. Its Schwartz kernel is related to the Green function G(z, z ′ ) of the Laplacian ∆ g with Dirichlet condition on ∂ X by the following identity Lemma 3.1. The Schwartz kernel N(y, y ′ ) of N is given for y, y ′ ∈ ∂ X, y = y ′ , by

N(y, y ′ ) = ∂ n ∂ n ′ G(z, z ′ )| z=y,z ′ =y ′
where ∂ n , ∂ n ′ are respectively the inward pointing normal vector fields to the boundary in variable z and z ′ .

Proof : Let x be the distance function to the boundary in X, it is smooth in a neighbourhood of ∂ X and the normal vector field to the boundary is the gradient

∂ n = ∇ g x of x. The flow e t∂n of ∇ g x induces a diffeomorphism φ : [0, ǫ) t × ∂ X → φ([0, ǫ) × ∂ X)
defined by φ(t, y) := e t∂n (y) and we have x(φ(t, y)) = t. This induces natural coordinates z = (x, y) near the boundary, these are normal geodesic coordinates. The function u in (1.1) can be obtained by taking

u(z) := χ(z) - X G(z, z ′ )(∆ g χ)(z ′ )dz ′ where χ is any smooth function on X such that χ = f + O(x 2 ). Now using Green's formula and ∆ g (z)G(z, z ′ ) = δ(z -z ′ ) = ∆ g (z ′ )G(z, z ′ ) where δ(z -z ′ ) is the Dirac mass on the diagonal, we obtain for z ∈ X u(z) = ∂ X ∂ n ′ G(z, z ′ )χ(z ′ ) | z ′ =y ′ dy ′ - ∂ X G(z, z ′ )(∂ n χ)(z ′ ) | z ′ =y ′ dy ′ u(z) = ∂ X ∂ n ′ G(z, z ′ ) | z ′ =y ′ f (y ′ )dy ′ .
We have a Taylor expansion u(x, y) = f (y) + xNf (y) + O(x 2 ) near the boundary. Let y ∈ ∂X and take f ∈ C ∞ (X) supported near y. Thus pairing with φ ∈ C ∞ (∂ X) gives

∂ X u(x, y)φ(y)dy = ∂ X f (y)φ(y)dy -x ∂ X φ(y)Nf (y)dy + O(x 2 ). (3.1)
Now taking φ with support disjoint to the support of f, thus φf = 0, and differentiating (3.1) in x, we see, using the fact that Green's function G(z, z ′ ) is smooth outside the diagonal, that

∂ X φ(y)Nf (y)dy = ∂ X ∂ X ∂ n ∂ n ′ G(z, z ′ ) | z=y,z ′ =y ′ f (y ′ )φ(y)dydy ′ ,
which proves the claim.

The Ricci tensor in harmonic coordinates and unique continuation.

Let us take coordinates x = (x 0 , x 1 , . . . , x n ) near a point p ∈ ∂ X, with x 0 a boundary defining function of ∂ X, then Ric(g) is given by definition by

(3.2) Ric(g) ij = k ∂ x k Γ k ji -∂ xj Γ k ki + l Γ k kl Γ l ji - l Γ k jl Γ l ki with (3.3) Γ k ji = 1 2 m g km ∂ xi g mj + ∂ xj g mi -∂ xm g ij .
Lemma 1.1 of [START_REF] Deturck | Some regularity theorems in Riemannian geometry[END_REF] shows that ∆ g x k = i,j g ij Γ k ij , so Einstein equation Ric(g) = λg for some λ ∈ R can be written as the system (see also Lemma 4.1 in [START_REF] Deturck | Some regularity theorems in Riemannian geometry[END_REF])

(3.4) - 1 2 µ,ν g µν ∂ xµ ∂ xν g ij + 1 2 r (g ri ∂ xj (∆ g x r ) + g rj ∂ xi (∆ g x r )) + Q ij (g, ∂g) = 0
where Q ij (A, B) is smooth and polynomial of degree two in B, where A, B denote vectors (g kl ) k,l ∈ R (n+1) 2 and (∂ xm g kl ) k,l,m ∈ R (n+1) 3 . From this discussion we deduce the following Proposition 3.2. Let (x 0 , x 1 , . . . , x n ) be harmonic coordinates for ∆ g near a point p ∈ {x 0 = 0}, then there exist Q ij (A, B) smooth, polynomial of degree 2 in B ∈ R (n+1) 3 , such that Ric(g) = λg is equivalent near p to the system

(3.5) µ,ν g µν ∂ xµ ∂ xν g ij + Q ij (g, ∂g) = 0, i, j = 0, . . . , n with ∂g := (∂ xm ḡkl ) k,l,m ∈ R (n+1) 3 .
Now we may use a uniqueness theorem for the Cauchy problem of such elliptic systems. Proof : The system is elliptic and the leading symbol is a scalar times the identity, the result could then be proved using Carleman estimates. For instance, uniqueness properties are proved by Calderon [START_REF] Calderón | Uniqueness in the Cauchy problem for partial differential equations[END_REF][START_REF] Calderón | Existence and uniqueness for systems of partial differential equations[END_REF] for elliptic systems when the characteristics of the system are non-multiple, but in our case they are multiple. However, since the leading symbol is scalar and this scalar symbol has only non-multiple characteristics, the technics used in Calderon could be applied like in the case of a single equation with non-multiple characteristics. Since we did not find references that we can cite directly, we prefer to use Proposition 4.3 which is a consequence of a uniqueness result of Mazzeo [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF]. Indeed, first it is straightforward to notice, by using boundary normal coordinates, that two solutions of (3.5) with same Cauchy data agree to infinite order at the boundary, therefore we may multiply (3.5) by x 2 0 and (3.5) becomes of the form (4.7) thus Proposition 4.3 below proves uniqueness.

3.3.

Reconstruction near the boundary. Throughout this section we assume that ( X1 , g 1 ), ( X2 , g 2 ) are C ∞ connected Einstein manifolds with boundary M j = ∂ Xj , j = 1, 2, such that M 1 and M 2 contain a common open set Γ, and that the identity map Id : Γ ⊂ ∂X 1 -→ Γ ⊂ ∂X 2 is a C ∞ diffeomorphism. Moreover we assume that for every f ∈ C ∞ 0 (Γ), the Dirichlet-to-Neumann maps satisfy

N 1 f | Γ = N 2 f | Γ .
We first prove Lemma 3.4. For i = 1, 2, there exists p ∈ Γ, some neighbouroods U i of p in Xi and a diffeomorphism F :

U 1 → U 2 , F | U1∩X1 analytic, such that F * g 2 = g 1 and F | U1∩Γ = Id.
Proof : For i = 1, 2, let t i = dist(., ∂ Xi ) be the distance to the boundary in Xi , then the flow e t∇ g i ti of the gradient ∇ gi t i induces a diffeomorphism

φ i : [0, ǫ) × ∂ Xi → φ i ([0, ǫ) × ∂ Xi )
φ i (t, y) := e t∇ g i ti (y), and we have the decomposition near the boundary (φ i ) * g i = dt 2 +h i (t) for some oneparameter family of metrics h i (t) on ∂ Xi . Lee-Uhlmann [START_REF] Lassas | On determining a Riemannian manifold from the Dirichlet-to-Neumann map[END_REF] proved that

N 1 | Γ = N 2 | Γ implies that (3.6) ∂ k t h 1 | Γ = ∂ k t h 2 | Γ , ∀ k ∈ N 0 .
Let us now consider H i := φ i * g i on the collar [0, ǫ) t × Γ. Let p ∈ Γ be a point of the boundary and (y 1 , . . . , y n ) be a set of local coordinates in a neighbourhood of p in Γ, and extend each y j to [0, ǫ) × Γ by the function (t, m) → y j (m). Notice that φ 2 • (φ 1 ) -1 is a smooth diffeomorphism from a neighbourhood of p in X1 to a neighbourhood of p in X2 , this is a consequence of the fact that Id : Γ ⊂ X1 → Γ ⊂ X2 is a diffeomorphism. Using z := (t, y 1 , . . . , y n ) as coordinates on [0, ǫ) × Γ near p, then (3.6) shows that there is an open neighbourhood

U of p in [0, ǫ) t × Γ such that H 2 = H 1 + O(t ∞
) and we can always assume U ∩ {t = 0} = Γ. Let y 0 ∈ C ∞ 0 (Γ) with y 0 = 0 on U ∩ {t = 0} but y 0 not identically 0, and by cutting off far from p me may assume that y j ∈ C ∞ 0 (Γ) for j = 1, . . . , n. Now let (x 1 0 , x 1 1 , . . . , x 1 n ) and (x 2 0 , x 2 1 , . . . , x 2 n ) be harmonic functions near p in [0, ǫ) × Γ for respectively H 1 and H 2 such that x 1 j = x 2 j = y j on {t = 0}. These functions are constructed by solving the Dirichlet problem ∆ gi w i j = 0 on Xi with boundary data w i j | Mi = y j , i = 1, 2, and j = 0, . . . , n, and by setting x i j = φ i * w i j . Note that {m ∈ U ∩ Γ; x i 0 (m) = 0, dx i 0 (m) = 0} is a closed set with empty interior in U ∩ {t = 0}, since otherwise x i 0 would vanish to order 2 on an open set of {t = 0}, thus by unique continuation it would be identically 0 since it is harmonic. Then (x 1 0 , . . . , x 1 n ) and (x 2 0 , . . . , x 2 n ) form smooth coordinate systems near at least a common point of U ∩ {t = 0}; for convenience let us denote again p this point and U ⊂ [0, ǫ) × Γ an open set containing p where they both form smooth coordinates.

We have ∆ H1 (x

1 j -x 2 j ) = O(t ∞ ) and ∂ t x 1 j | t=0 = ∂ t x 2 j | t=0 for all j since N 1 | Γ = N 2 | Γ . Since u = x 1 j -x 2 j is solution of ∆ H1 u = O(t ∞
) in U with u vanishing at order 2 at the boundary t = 0, a standard Taylor expansion argument shows that x

1 j = x 2 j + O(t ∞ ) in U for all j. Now define ψ : U → ψ(U ) ⊂ U so that (x 1 0 , . . . , x 1 n ) = (ψ * x 2 0 , . . . , ψ * x 2 n ). Then ψ = Id + O(t ∞
) in U , and consequently we obtain in U

(3.7) ψ * H 2 = H 1 + O(t ∞ ).
The metrics g = H 1 and g = ψ * H 2 both satisfy Einstein equation Ric(g) = λg in U . Moreover in coordinates (x 1 0 , . . . , x 1 n ) this correspond to the system (3.5) and since the coordinates are harmonic with respect to g, the system is elliptic and diagonal to leading order. From the unique continuation result in Proposition 3.3, we conclude that there exists a unique solution to this system in U 1 with given initial data g| U∩{t=0} and ∂ x 1 0 g| U∩{t=0} . In view of (3.7), this proves that H 1 = ψ * H 2 in U . Although it is not relevant for the proof, we remark that ψ is actually the Identity on U since ψ| U∩Γ = Id and it pulls back one metric in geodesic normal coordinates to the other. Now it suffices to go back to X1 and X2 through φ 1 , φ 2 and we have proved the Lemma by setting U i := φ i (U ) and

F := φ 2 • ψ • (φ 1 ) -1 . (3.8) Remark that F is analytic from U 1 ∩ {t 1 = 0} to U 2 ∩ {t 2 = 0}
since the harmonic functions w i j define the analytic structure in U i ∩ {t i = 0} for all j = 0, . . . , n and F is the map that identify w 1 j to w 2 j for all j.

Next we prove Corollary 3.5. For i = 1, 2, let G i (z, z ′ ) be the Green function of ∆ gi in Xi with Dirichlet condition at M , then

N 1 | Γ = N 2 | Γ implies that there exists an open set U 1 ⊂ X 1 with G 2 (F (z), F (z ′ )) = G 1 (z, z ′ ), (z, z ′ ) ∈ (U 1 × U 1 ) \ {z = z ′ },
where F was defined in (3.8)

Proof : First we remark that g 1 is Einstein and thus real analytic in U 1 \ (U 1 ∩ M ), so is any harmonic function in this open set. Let ∂ n , ∂ n ′ be the normal vector fields to the boundary in the first and second variables in U 1 × U 1 respectively, as defined in Lemma 3.1. We see from the proof of Lemma 3.4 that F * ∂ n and F * ∂ n ′ are the normal vector fields to the boundary in the first and second variable in

U 2 × U 2 (since ψ = Id + O(t ∞ ) in that Lemma). So we get ∂ n ′ G 2 (F (z), F (z ′ )) = (F * ∂ n ′ )G 2 (F (z), z ′ ) for z ′ ∈ M since F | U1∩Γ = Id. We first show that ∂ n ′ G 2 (F (z), F (z ′ )) = ∂ n ′ G 1 (z, z ′ ) for any (z, z ′ ) ∈ U 1 × (U 1 ∩ Γ) \ {z = z ′ }. Now fix z ′ ∈ U 1 ∩ Γ, then the function T 1 (z) := ∂ n ′ G 1 (z, z ′ ) solves ∆ g1 T 1 = 0 in U 1 \{z ′ } and, using Lemma 3.1, it has boundary values T 1 | U1∩Γ\{z ′ } = 0 and ∂ n T 1 | U1∩Γ\{z ′ } = N 1 (., z ′ ) where N i (., .) denote the Schwartz kernel of N i , i = 1, 2. The function T 2 (z) := ∂ n ′ G 2 (F (z), F (z ′ )) solves ∆ F * g2 T 2 (z) = ∆ g1 T 2 (z) = 0 in U 1 \ {z ′ }. We also have ∂ n T 2 | U1∩Γ\{z ′ } = F * [(F * ∂ n )(F * ∂ n ′ )G 2 (., z ′ )| U1∩Γ\{z ′ } ] and T 2 | U1∩Γ\{z ′ } = 0. But from Lemma 3.1, (F * ∂ n )(F * ∂ n ′ )G 2 (., z ′ )| U1∩Γ\{z ′ } = N 2 (., z ′ ) where N 2 (., .) is the Schwartz kernel of N 2 . Using again that F | U1∩Γ = Id, we deduce that ∂ n T 2 | U1∩Γ\{z ′ } = N 2 (., z ′ ). By our assumption N 1 | Γ = N 2 | Γ ,
we conclude that T 1 and T 2 solve the same Cauchy problem near U 1 ∩ Γ \ {z ′ }, so first by unique continuation near the boundary and then real analyticity in U 1 \ (U 1 ∩Γ), we obtain T 1 = T 2 there. Now we can use again similar arguments to prove that

G 1 (z, z ′ ) = G 2 (F (z), F (z ′ )) in (U 1 × U 1 ) \ {z = z ′ }. Indeed, fix z ′ ∈ U 1 , then T 1 (z) := G 1 (z ′ , z) and T 2 (z) := G 2 (F (z ′ ), F (z)) solve ∆ g1 T i = 0 in U 1 \ {z ′ } and with boundary val- ues T i | Γ = 0 and ∂ n T 1 | U1∩Γ = ∂ n T 2 |
U1∩Γ by what we proved above. Thus unique continuation for Cauchy problem and real analyticity allow us to conclude that

T 1 = T 2 .
3.4. Proof of Theorem 1.1. To conclude the proof of 1.1, we use the following Proposition which is implicitly proved by Lassas-Taylor-Uhlmann [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF] Proposition 3.6. For i = 1, 2, let ( Xi , g i ) be C ∞ connected Riemannian manifolds with boundary, assume that its interior X i has a real-analytic structure compatible with the smooth structure and such that the metric g i is real analytic on X i . Let G i (z, z ′ ) be the Green function of the Laplacian ∆ gi with Dirichlet condition at ∂ Xi , and assume there exists an open set U 1 ⊂ X 1 and an analytic diffeomorphism

F : U 1 → F (U 1 ) ⊂ X 2 such that G 1 (z, z ′ ) = G 2 (F (z), F (z ′ )) for (z, z ′ ) ∈ (U 1 ×U 1 )\ {z = z ′ }. Then there exists a diffeomorphism J : X 1 → X 2 such that J * g 2 = g 1 and J| U1 = F .
The proof is entirely done in section 3 of [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF], although not explicitly written under that form. The principle is to define maps

G j : X j → H s (U 1 ), G 1 (z) := G 1 (z, .), G 2 (z) := G 2 (z, F (.))
where H s (U 1 ) is the s-Sobolev space of U 1 for some s < 1 -(n + 1)/2, then prove that G j are embeddings with G 1 (X 1 ) = G 2 (X 2 ), and finally show that

J := G -1 2 • G 1 : X 1 → X 2 is an isometry. Note that J restricts to F on U 1 since G 1 (z, z ′ ) = G 2 (F (z), F (z ′ )).
Proposition 3.6 and Corollary 3.5 imply Theorem 1.1, after noticing that an isometry ψ : (X 1 , g 1 ) → (X 2 , g 2 ) extends smoothly to the manifold with boundary ( X1 , g 1 ) by smoothness of the metrics g i up to the boundaries ∂ Xi .

Inverse scattering for conformally compact Einstein manifolds

Consider an n+ 1 dimensional connected conformally compact Einstein manifold ( X, g) with n + 1 even, and let ρ be a geodesic boundary defining function and ḡ := ρ 2 g. Using the flow φ t (y) of the gradient ∇ ρ 2 g ρ, one has a diffeomorphism φ : [0, ǫ) t × ∂ X → φ([0, ǫ) × ∂ X) ⊂ X defined by φ(t, y) := φ t (y), and the metric pulls back to (4.1)

φ * g = dt 2 + h(t) t 2
for some smooth one-parameter family of metrics h(t) on the boundary ∂ X. Note that here φ * ρ = t.

4.1. The scattering map. The scattering map S, or scattering matrix, defined in the introduction is really S = S(n), where S(λ) for λ ∈ C is defined in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF][START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. Let us construct S by solving the boundary value problem ∆ g u = 0 with u ∈ C ∞ ( X) and u| ∂ X = f where f ∈ C ∞ (∂ X) is given. This follows the construction in section 4.1 of [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]. Writing ∆ g in the collar [0, ǫ) t × ∂ X through the diffeomorphism φ, we have

∆ g = -(t∂ t ) 2 + (n - t 2 Tr h(t) (∂ t h(t)))t∂ t + t 2 ∆ h(t)
and for any

f j ∈ C ∞ (∂ X) and j ∈ N 0 (4.2) ∆ g (f j (y)t j ) = j(n -j)f j (y)t j + t j (H(n -j)f j )(t, y), (H(z)f j )(t, y) := t 2 ∆ h(t) f j (y) - (n -z)t 2 Tr h(t) (∂ t h(t))f j (y).
Now recall that since g is Einstein and even dimensional, we have ∂ 2j+1 t h(0) = 0 for j ∈ N 0 such that 2j + 1 < n, see for instance Section 2 of [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF]. Consequently, H(n -j)f j is an even function of t modulo O(t n ) for j = 0, and modulo O(t n+2 ) when j = 0. Since H(n -j)f j also vanishes at t = 0, we can construct by induction a Taylor series using (4.2)

(4.3) F j = j k=0 t k f k (y), F 0 = f 0 = f, F j = F j-1 + t j [t -j (∆ g F j-1 )]| t=0 j(j -n) for j < n such that ∆ g F j = O(t j+1
). Note that, since H(n -j)f j has even powers of t modulo O(t n ), we get f 2j+1 = 0 for 2j + 1 < n. For j = n, the construction of F n seems to fail but actually we can remark that ∆ g F n-1 = O(t n+1 ) instead of O(t n ) thanks to the fact that t 2j H(n -2j)f 2j has even Taylor expansion at t = 0 modulo O(t 2j+n+2 ) by the discussion above. So we can set F n := F n-1 and then continue to define F j for j > n using (4.3). Using Borel's Lemma, one can construct

F ∞ ∈ C ∞ ( X) such that φ * F ∞ -F j = O(t j+1 ) for all j ∈ N and ∆ g F ∞ = O(ρ ∞ ). Now we finally set u = F ∞ -G∆ g F ∞ where G : L 2 (X, dvol g ) → L 2 (X, dvol g ) is the
Green operator, i.e. such that ∆ g G = Id, recalling that ker L 2 ∆ g = 0 by [START_REF] Mazzeo | Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF]. From the analysis of G in [START_REF] Mazzeo | Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF], one has that G maps Ċ∞ ( X)

:= {v ∈ C ∞ ( X), v = O(ρ ∞ )} to ρ n C ∞ ( X)
. This proves that u ∈ C ∞ ( X) and has an asymptotic expansion

(4.4) φ * u(t, y) = f (y) + 0<2j<n t 2j f 2j (y) -φ * (G∆ g F ∞ ) + O(t n+1 ).
In particular the first odd power is of order t n and its coefficient is given by the smooth function

[t -n φ * (G∆ g F ∞ )] t=0 of C ∞ (∂ X).
Notice that the f 2j in the construction are local with respect to f , more precisely f 2j = p 2j f for some differential operator p 2j on the boundary. Note that we used strongly that the Taylor expansion of the metric t 2 φ * g at t = 0 is even to order t n , which comes from the fact that X is Einstein and has even dimensions. Indeed for a general asymptotically hyperbolic manifold, u has logarithmic singularities, see [START_REF] Graham | Scattering matrix in conformal geometry[END_REF][START_REF] Guillarmou | Meromorphic properties of the resolvent for asymptotically hyperbolic manifolds[END_REF].

Since φ * ∇ ρ 2 g ρ = ∂ t , the definition of Sf in the Introduction is equivalent to Sf = 1 n! ∂ n t φ * u| t=0 , i.e. the n-th Taylor coefficient of the expansion of φ * u at t = 0, in other words

Sf = -[t -n φ * (G∆ g F ∞ )] t=0 = -[ρ -n G∆ g F ∞ ]| ∂ X .
From the analysis of Mazzeo-Melrose [START_REF] Mazzeo | Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF], one can describe the behaviour of the Green kernel G(z, z ′ ) near the boundary and outside the diagonal diag X× X :

(4.5) ρ(z) -n ρ(z ′ ) -n G(z, z ′ ) ∈ C ∞ ( X × X \ diag X× X ).
We can show easily that the kernel of S is the boundary value of (4.5) at the corner ∂ X × ∂ X:

Lemma 4.1. The Schwartz kernel S(y, y ′ ) of the scattering map S is, for y = y ′ ,

S(y, y ′ ) = n[ρ(z) -n ρ(z ′ ) -n G(z, z ′ )] z=y,z ′ =y ′
where G(z, z ′ ) is the Green kernel for ∆ g .

Proof : Consider (G∆ g F ∞ )(z) for z ∈ X fixed and use Green formula on the compact

U ǫ := {z ′ ∈ X; ρ(z) ≥ ǫ, dist(z ′ , z) ≥ ǫ} Uǫ G(z, z ′ )∆ g F ∞ (z ′ )dv g (z ′ ) = ∂Uǫ (G(z, z ′ )∂ n ′ F ∞ (z ′ ) -∂ n ′ G(z, z ′ )F ∞ (z ′ ))dν ǫ (z ′ )
where ∂ n ′ is the unit normal interior pointing vector field of ∂U ǫ (in the right variable z ′ ) and dν ǫ the measure induced by g there. Consider the part ρ(z ′ ) = ǫ in the variables as in (4.1) using the diffeomorphism φ, i.e. φ(t ′ , y ′ ) = z ′ , then φ * ∂ n ′ = t ′ ∂ ′ t and φ * (dν t ′ ) = t ′-n dvol h(t ′ ) . Using (4.5) and F ∞ = f + O(ρ 2 ) by the construction of F ∞ above the Lemma, we see that the integral on ρ ′ = ǫ converges to

n ∂ X [ρ(z ′ ) -n G(z, z ′ )] z ′ =y ′ f (y ′ )dv h(0) (y ′ ).
as ǫ → 0. As for the part on dist(z ′ , z) = ǫ, by another application of Green formula and ∆ g (z ′ )G(z, z ′ ) = δ(z -z ′ ), this converges to F ∞ (z) as ǫ → 0. We deduce that the solution u of ∆ g u with u| ∂ X = f is given by

(4.6) u(z) = n ∂ X [ρ(z ′ ) -n G(z, z ′ )] z ′ =y ′ f (y ′ )dv h(0) (y ′ ).
Let us write dy for dv h0 (y). So given y ∈ ∂X, let f be supported in a neighborhood of y and take ψ ∈ C ∞ (∂ X) with ψf = 0 and consider the pairing

∂ X φ * u(t, y)ψ(y)dy.
The Taylor expansion of u at t = 0 and the structure of G(z, z ′ ) given by (4.5) show that

∂ X ψ(y)Sf (y)dy = n ∂ X [ρ(z) -n ρ(z ′ ) -n G(z, z ′ )]
| z=y,z ′ =y ′ ψ(y)f (y ′ )dy ′ dy, which proves the claim.

Remark: A more general relation between the kernel of the resolvent of ∆ g , (∆ g -λ(n -λ)) -1 , and the kernel of the scattering operator S(λ) holds, as proved in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]. But since the proof of Lemma 4.1 is rather elementary, we included it to make the paper essentially self-contained. 4.2. Einstein equation for g. We shall analyze Einstein equation in a good system of coordinates, actually constructed from harmonic coordinates for ∆ g . First choose coordinates (y 1 , . . . , y n ) in a neighbourhood V ⊂ ∂ X of p ∈ ∂ X. Take an open set W ⊂ ∂ X which contains V , we may assume that y i ∈ C ∞ 0 (W ). Let φ be the diffeomorpism as in (4.1). From the properties of the solution of the equation ∆ g u = 0, as in subsection 4.1 (which follows Graham-Zworski [START_REF] Graham | Scattering matrix in conformal geometry[END_REF]), there exists n smooth functions (x 1 , . . . , x n ) on X such that

∆ g x i = 0, φ * x i = y i + 0<2k<n t 2k p 2k y i + t n Sy i + O(t n+1 )
where p k are differential operators on ∂ X determined by the (∂ k t h(0)) k=0,...,n-1 at the boundary (using the form (4.1)). Similarly let y 0 ∈ C ∞ 0 (W ) be a non zero smooth function such that y 0 = 0 in V , then by Subsection 4.1 there exists

v ∈ C ∞ ( X) such that ∆ g v = 0, φ * v = y 0 + 0<2k<n t 2k p 2k y 0 + t n Sy 0 + O(t n+1 ).
Thus in particular v vanishes near p to order ρ n since p k y 0 = 0 in V for k = 1, . . . , n, thus one can write

v = ρ n (w + O(ρ)),
where w is a smooth function on ∂ X near p. The set {m ∈ V ; w(m) = 0} is an open dense set of V . Indeed, otherwise w would vanish in an open set of V but an easy computation shows that if

U ∈ ρ j C ∞ ( X) then ∆ g U = -j(j -n)U + O(ρ j+1
) so v would vanish to infinite order at an open set of V and by Mazzeo's unique continuation result [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF], it would vanish identically in X. Thus, possibly by changing p to another point (still denoted p for convenience), there exists v ∈ C ∞ ( X) such that v is harmonic for ∆ g and v = ρ n (w + O(ρ)) with w > 0 near p, the function x 0 := v 1/n then defines a boundary defining function of ∂ X near p, it can be written as ρe f for some smooth f . Then (x 0 , x 1 , . . . , x n ) defines a system of coordinates near p.

Let us now consider Einstein equations in these coordinates. Again like (3.4), the principal part of Ric(g) is given by

- 1 2 µ,ν g µν ∂ xµ ∂ xν g ij + 1 2 r (g ri ∂ xj (∆ g x r ) + g rj ∂ xi (∆ g x r )).
But all functions x r are harmonic, except x 0 , and the latter satisfies

0 = ∆ g x n 0 = -ndiv g (x n-1 0 ∇ g x 0 ) = -nx n-1 0 ∆ g x 0 -n(n -1)x n-2 0 |dx 0 | 2 g or equivalently ∆ g x 0 = (1 -n)x 0 |dx 0 | x 2 0 g
. But this involves only terms of order 0 in the metric g or ḡ := x 2 0 g so the principal part of Ric(g) in these coordinates is

- 1 2 µ,ν g µν ∂ xµ ∂ xν g ij
which is elliptic in the interior X. We multiply the equation Ric(g) = -ng by x 2 0 near p and using (3.2) and (3.3), with the commutations relations [x 0 ∂ x0 , x α 0 ] = αx α 0 for all α ∈ C, it is straightforward to obtain Lemma 4.2. Let x = (x 0 , x 1 , . . . , x n ) be the coordinates defined above near a point p ∈ {x 0 = 0}, then Einstein equation for g can be written under the system

(4.7) µ,ν x 2 0 ḡµν ∂ xµ ∂ xν ḡij + Q ij (x 0 , ḡ, x 0 ∂ḡ) = 0, i, j = 0, . . . , n
where ḡ = x 2 0 g near p, Q ij (x 0 , A, B) are smooth and polynomial of order 2 in B, and

x 0 ∂ḡ := (x 0 ∂ xm ḡij ) m,i,j ∈ R (n+1) 3 .
This is a non-linear system of order 2, elliptic in the uniformly degenerate sense of [START_REF] Mazzeo | The Hodge cohomology of a conformally compact metric[END_REF][START_REF] Mazzeo | Elliptic theory of differential edge operators. I[END_REF][START_REF] Mazzeo | Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature[END_REF] and diagonal at leading order. We state the following unique continuation result for this system: Proposition 4.3. Assume ḡ1 and ḡ2 are two smooth solutions of the system (4.7) with ḡ1 = ḡ2 + O(x ∞ 0 ) near p. Then ḡ1 = ḡ2 near p. Proof : This is an application of Mazzeo's unique continuation result [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF]. We work in a small neighbourhood U of p and set w = (ḡ 1 -ḡ2 ) near p. For h metric near p and ℓ symmetric tensor near p, let G(x 0 , h, ℓ) := -

µ,ν x 2 0 h µν ∂ xµ ∂ xν ḡ2 -Q(x 0 , h, ℓ)
where Q := (Q ij ) i,j=0,...,n . Note that G is smooth in all its components. We have from (4.7) (4.8)

µ,ν

x 2 0 ḡµν 1 ∂ xµ ∂ xν w = G(x 0 , ḡ1 , x 0 ∂ḡ 1 ) -G(x 0 , ḡ2 , x 0 ∂ḡ 2 ).

Let g 1 := x -2 0 ḡ1 and let ∇ be the connection on symmetric 2 tensors on U induced by g 1 , then ∇ * ∇w = µ,ν g µν 1 ∇ ∂x ν ∇ ∂x µ w and in coordinates it is easy to check that x 0 (∇ ∂x µ -∂ xµ ) is a zeroth order operator with smooth coefficients up to the boundary, using (3.3) for instance. Therefore one obtains, using (4.8), |∇ * ∇w| g1 ≤ C(|w| g1 + |∇w| g1 ) for some C depending on ḡ1 , ḡ2 . It then suffices to apply Corollary 11 of [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF], this proves that w = 0 and we are done. 4.3. Reconstruction near the boundary and proof of Theorem 1.2. The proof of Theorem 1.2 is fairly close to that of Theorem 1.1. Let ( X1 , g 1 ) and ( X2 , g 2 ) be conformally compact Einstein manifolds with geodesic boundary defining functions ρ 1 and ρ 2 . Let S i be the scattering map for g i defined by (1.3) using the boundary defining function ρ i , assume that ∂ X1 and ∂ X2 contain a common open set Γ such that the identity map which identifies the copies of Γ is a diffeomorphism, and that S 1 f | Γ = S 2 f | Γ for all f ∈ C ∞ 0 (Γ). Using the geodesic boundary defining function ρ i for g i ,i = 1, 2, there is a diffeomorphism φ i : [0, ǫ) t × ∂ Xi → φ i ([0, ǫ) × ∂ Xi ) ⊂ Xi as in (4.1) so that (4.9) (φ i ) * g i = dt 2 + h i (t) t 2 where h i (t) is a family of metric on ∂ Xi . We first show the Lemma 4.4. The metrics h 1 (t) and h 2 (t) satisfy ∂ j t h 1 (0)| Γ = ∂ j t h 2 (0)| Γ for all j ∈ N 0 .

Proof : For a compact manifold M, let us denote Ψ z (M ) the set of classical pseudodifferential operators of order z ∈ R on M . Since S i is the scattering operator S i (λ) at energy λ = n for ∆ gi as defined in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF], we can use [13, Th.1.1], then we have that S i ∈ Ψ n (∂ Xi ) for i = 1, 2, with principal symbol σ i n (y, ξ) = 2 -n Γ(-n 2 )/Γ( n 2 )|ξ| hi(0) , thus h 1 (0) = h 2 (0) on Γ and χ(S 1 -S 2 )χ ∈ Ψ n+1 (Γ) for all χ ∈ C ∞ 0 (Γ). Now we use Einstein equation, for instance the results of [START_REF] Fefferman | Conformal invariants, Asterisque[END_REF][START_REF] Fefferman | The ambient metric[END_REF] (see also [START_REF] Graham | Volume and area renormalizations for conformally compact Einstein metrics[END_REF]Sec. 2]) show, using only Taylor expansion of Ric(g) = -ng at the boundary, that ∂ j t h 1 (0)| Γ = ∂ j t h 2 (0)| Γ , j = 0, . . . , n -1.

Proposition 3 . 3 .

 33 If C := (c ij ) i,j=0,...,n , D := (d ij ) i,j=0,...,n are smooth symmetric 2-tensors near p ∈ {x 0 = 0}, with C positive definite, the system (3.5) near p with boundary conditions g ij | x0=0 = c ij and ∂ x0 g ij | x0=0 = d ij , i, j = 0, . . . , n, has at most a unique smooth solution.

Then we use Theorem 1.2 of [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF] which computes the principal symbol of S 1 -S 2 . Since this result is entirely local, we can rephrase it on the piece Γ of the boundary: if there exists a symmetric 2-tensor L on Γ such that h 1 (t) = h 2 (t)+t k L+O(t k+1 ) on [0, ǫ) t × Γ for some k ∈ N, then for any χ ∈ C ∞ 0 (Γ) we have χ(S 1 -S 2 )χ ∈ Ψ n-k (Γ) and the principal symbol of this operator at (y, ξ) ∈ T * Γ is 1 (4.10)

where

where T l (k, λ) is defined, when the integral converges, by

and M (λ) ∈ C is a constant not explicitly computed in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]. However at λ = n the constant M (n) is defined in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]Sec. 4] 

where u(z) is the function of (4.6), so M (n) = n by (4.4). Since we are interested in the case k = n, only the term with A 1 (n, n) appears, and setting λ = n in A 1 (n, λ), with the explicit formulae above and the fact that T 1 (n, n) > 0 converges by Lemma 5.2 of [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF], we see easily that A 1 (n, n) = 0 if n > 2. Since we assumed χS 1 χ = χS 2 χ, this implies that L = 0 and h 1 -h 2 = O(t n+1 ) near Γ. We finally use again [START_REF] Fefferman | Conformal invariants, Asterisque[END_REF] (see [START_REF] Fefferman | The ambient metric[END_REF]Sect. 4] for full proofs), where it is proved that if g 1 = g 2 +O(ρ n-1 ) with g 1 , g 2 conformally compact Einstein and n odd, then g 1 = g 2 + O(ρ ∞ ). Notice that their arguments are entirely local near any point of the boundary, so we can apply it near the piece Γ of the boundary. Lemma 4.5. For i = 1, 2, there exist p ∈ Γ, neighbourhoods U i of p in Xi and a diffeomorphism F :

Proof : We work in the collar [0, ǫ) t × Γ through the diffeomorphisms φ i as in (4.9). In a neighbourhood U ⊂ [0, ǫ) × Γ of p ∈ Γ, we use coordinates xi := (x i 0 , . . . , xi n ) where xi j := φ i * x i j and x i j is the function defined in Subsection 4.2 for g i with boundary values

This is a diffeomorphism near p and moreover φ 1 * g 1 and φ 2 * g 2 coincide to infinite order at t = 0 by Lemma 4.4, so the coordinates x1 and x2 satisfy ∆ φ 1 * g1 (x 1 j -x2 j ) = O(t ∞ ) for all j. Since x1 , x2 have the same boundary values, they agree to order O(t n ) using the construction of

) near p, which again 1 It is important to notice that the coefficient of |ξ| n-k in (4.10) is not exactly that of Theorem 1.2 of [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF], indeed there is a typo in equation (3.5) in [START_REF] Joshi | Inverse scattering on asymptotically hyperbolic manifolds[END_REF]Prop 3.1]: the coefficient in front of T = Tr h 0 (L) there should be k(k -n)/4 instead of k(k + 1)/4, this comes from the fact that, in the proof of [13, Prop 3.1], the term

while it has been considered as a O(x k+1 ) there.

by induction and (4.2) shows that x1 j = x2 j + O(t ∞ ) near p. In particular, setting ḡ1 :

, one obtains that ḡ1 = ḡ2 + O((x 1 0 ) ∞ ), i.e. the metrics agree to infinite order in the coordinates x1 . Thus from Lemma 4.2, ḡ1 and ḡ2 both satisfy the same system (4.7) and agree to infinite order at the boundary {t = 0} near p in the coordinate system x1 , so by Proposition 4.3, we deduce that φ 1 * g 1 = ψ * φ 2 * g 2 and this ends the proof by setting

We finish by the following Corollary, similar to Corollary 3.5.

Corollary 4.6. Let G i (z, z ′ ) be the Green kernel for g

Proof : We first take y ′ ∈ U 1 ∩ Γ, and consider T 1 (z

They both satisfy ∆ g1 T i (z) = 0 for z ∈ U 1 and by Lemma 4.1 and the assumption

and then by the unique continuation result of Mazzeo [START_REF] Mazzeo | Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds[END_REF], T 1 = T 2 in the same set. Now this means that for z ′ ∈ U 1 , z → G 1 (z ′ , z) and z → G 2 (F (z ′ ), F (z)) are harmonic for ∆ g1 in U 1 \ {z ′ }, and they coincide to order ρ n+1 1 at Γ, so again by unique continuation they are equal. 4.4. Proof of Theorem 1.2. Using Corollary 4.6 and the fact that (X 1 , g 1 ) and (X 2 , g 2 ) Einstein, and by Theorem 5.2 of [START_REF] Deturck | Some regularity theorems in Riemannian geometry[END_REF] are analytic in harmonic coordinates, it suffices to apply Theorem 4.1 of [START_REF] Lassas | The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary[END_REF], which is essentially the same as Proposition 3.6 but for a complete manifold.