Inverse problems for Einstein manifolds

Colin Guillarmou, Antonio Sa Barreto

To cite this version:

Colin Guillarmou, Antonio Sa Barreto. Inverse problems for Einstein manifolds. 2007. hal00176966v1

HAL Id: hal-00176966 https://hal.science/hal-00176966v1

Preprint submitted on 5 Oct 2007 (v1), last revised 5 Oct 2008 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INVERSE PROBLEMS FOR EINSTEIN MANIFOLDS

COLIN GUILLARMOU AND ANTÔNIO SÁ BARRETO

Abstract

We show that the knowledge of the Dirichlet-to-Neumann operator of the Laplacian on an open subset of the boundary of a compact Einstein manifold with boundary determines the manifold up to isometries. Similarly, for conformally compact Einstein manifolds, we prove that the knowledge of either the scattering operator at energy n, or the Dirichlet-to-Neumann map for the conformal compactification, on an open subset of the boundary of the manifold, determines the manifold up to isometries.

1. Introduction

The purpose of this note is to prove that for either compact Einstein manifolds with boundary or conformally compact Einstein manifolds of even dimensions, the natural Dirichlet-to-Neumann map, on an open subset of the boundary, determines the isometry class of (\bar{X}, g).

The Dirichlet-to-Neumann (DN in short) map $\mathcal{N}: C^{\infty}(\partial \bar{X}) \rightarrow C^{\infty}(\partial \bar{X})$ for the Laplacian on a Riemannian manifold with boundary (\bar{X}, g) is defined by solving the Dirichlet problem

$$
\begin{equation*}
\Delta_{g} u=0,\left.\quad u\right|_{\partial \bar{X}}=f \tag{1.1}
\end{equation*}
$$

where $f \in C^{\infty}(\partial \bar{X})$ is given, then $\mathcal{N} f:=-\left.\partial_{n} u\right|_{M}$ where ∂_{n} is the interior pointing normal vector field to the boundary for the metric g. It is an elliptic pseudodifferential operator of order 1 on the boundary, see for example [17]. Mathematically, it is of interest to know what this map determines about the geometry of the manifold, but \mathcal{N} can also be interpreted as a boundary measurement of current flux in terms of voltage in electrical impedance tomography. We refer to 25) for a survey in the field, and to $17,23,24,15]$ for significant results about that problem.

Our first result answers a conjecture of Lassas and Uhlmann 15
Theorem 1.1. Let $\left(\bar{X}_{1}, g_{1}\right)$ and $\left(\bar{X}_{2}, g_{2}\right)$ be two smooth compact manifolds with respective boundaries $\partial \bar{X}_{1}$ and $\partial \bar{X}_{2}$. We suppose that g_{1} and g_{2} are Einstein with the same constant $\lambda \in \mathbb{R}$, i.e. $\operatorname{Ric}\left(g_{i}\right)=\lambda g_{i}$ for $i=1,2$. Assume that $\partial \bar{X}_{1}$ and $\partial \bar{X}_{2}$ contain a common open set Γ such that the Dirichlet-to-Neumann map \mathcal{N}_{i} of $\Delta_{g_{i}}$ on \bar{X}_{i} for $i=1,2$ satisfy $\left.\left(\mathcal{N}_{1} f\right)\right|_{\Gamma}=\left.\left(\mathcal{N}_{2} f\right)\right|_{\Gamma}$ for any $f \in C_{0}^{\infty}(\Gamma)$, then there exists a diffeomorphism $J: \bar{X}_{1} \rightarrow \bar{X}_{2}$, such that $J^{*} g_{2}=g_{1}$.

Then we consider a class of non-compact complete Einstein manifolds, but conformal to a compact manifold. In this case we say that (X, g) is Einstein, with $\operatorname{dim} X=n+1$, if

$$
\operatorname{Ric}(g)=-n g .
$$

We say that a Riemannian manifold (X, g) is conformally compact if X compactifies into a smooth manifold with boundary \bar{X} and for any boundary defining function ρ of $\bar{X}, \bar{g}:=\rho^{2} g$ extends to \bar{X} as a smooth metric. Such a metric g is necessarily complete on X and its sectional curvatures are pinched negatively outside a compact set of X. The metric \bar{g} is not complete on \bar{X}.

It has been shown in 10, 9 that if (X, g) is asymptotically hyperbolic, or in particular if (X, g) is Einstein, then there exists a family of boundary defining functions ρ (i.e. $\partial \bar{X}=\{\rho=0\}$ and $\left.d \rho\right|_{\partial \bar{X}}$ does not vanish) such that $|d \rho|_{\rho^{2} g}=1$ near the boundary. These will be called geodesic boundary defining functions. Note that, in this case, a DN map can not be defined as in (1.1) since Δ_{g} is not an elliptic operator at the boundary. However there are two natural replacements for the DN map in this setting. The first operator to consider is the DN map of the compactifed metric $\bar{g}=\rho^{2} g$. We prove
Theorem 1.2. Let $\left(X_{1}, g_{1}\right)$ and $\left(X_{2}, g_{2}\right)$ be two conformally compact manifolds with respective conformal boundary $\partial \bar{X}_{1}$ and $\partial \bar{X}_{2}$ which contain an common open set Γ. Assume that g_{1} and g_{2} are Einstein and that, for $i=1,2$, there exist geodesic boundary defining functions ρ_{i} of \bar{X}_{i} such that the Dirichlet-to-Neumann map \mathcal{N}_{i} of the Laplacian on $\left(\bar{X}_{i}, \rho_{i}^{2} g_{i}\right)$ satisfy $\left.\left(\mathcal{N}_{1} f\right)\right|_{\Gamma}=\left.\left(\mathcal{N}_{2} f\right)\right|_{\Gamma}$ for all $f \in C_{0}^{\infty}(\Gamma)$. Then there is a diffeomorphism $J: \bar{X}_{1} \rightarrow \bar{X}_{2}$, such that $J^{*}\left(g_{2}\right)=g_{1}$.

The second natural analogue of the DN map on a conformally compact Einstein manifold (X, g) is related to scattering theory, at least in the point of view of Melrose 22 . We consider an $n+1$-dimensional conformally compact Einstein manifold (X, g) with $n+1$ even. Following [13, 11], the scattering map for a conformally compact Einstein manifold (X, g) (and more generally for asymptotically hyperbolic manifolds) is an operator $\mathcal{S}: C^{\infty}(\partial \bar{X}) \rightarrow C^{\infty}(\partial \bar{X})$, constructed by solving a Dirichlet problem in a way similar to (1.1). This will be discussed in details in section 4. We show that for all $f \in C^{\infty}(\partial \bar{X})$, there exists a unique function $u \in C^{\infty}(\bar{X})$ such that

$$
\begin{equation*}
\Delta_{g} u=0 \text { and }\left.u\right|_{\partial X}=f \tag{1.2}
\end{equation*}
$$

Since there is no canonical normal vector field at the boundary defined from g (recall that g blows-up at the boundary), we can consider $\bar{g}:=\rho^{2} g$ for some geodesic boundary defining function and take the unit normal vector field for H, that is $\nabla^{\bar{g}} \rho$, which we denote by ∂_{ρ}. It turns out that $\left(\left.\partial_{\rho}^{k} u\right|_{\partial \bar{X}}\right)_{k=1, \ldots, n-1}$ are locally determined by $\left.u\right|_{\partial \bar{X}}=f$ and the first term in the Taylor expansion of u which is global is the n-th $\left.\partial_{\rho}^{n} u\right|_{\partial \bar{X}}$. We thus define $\mathcal{S} f \in C^{\infty}(\partial \bar{X})$ by

$$
\begin{equation*}
\mathcal{S} f:=\left.\frac{1}{n!} \partial_{\rho}^{n} u\right|_{\partial \bar{X}} . \tag{1.3}
\end{equation*}
$$

Notice that \mathcal{S} a priori depends on the choice of ρ, we shall say that it is associated to ρ. It can be checked that if $\hat{\rho}=e^{\omega} \rho$ is another geodesic boundary defining function with $\omega \in C^{\infty}(\bar{X})$, then the scattering map $\hat{\mathcal{S}}$ associated to $\hat{\rho}$ satisfy $\hat{\mathcal{S}}=e^{n \omega_{0}} \mathcal{S}$ where $\omega_{0}=\left.\omega\right|_{\partial \bar{X}}$, see [11 and Subsection 5.1 below.

We also remark that the fact that $u \in C^{\infty}(\bar{X})$ strongly depends on the fact that the manifold under consideration is Einstein and has even dimensions. For more general asymptotically hyperbolic manifolds, the solution u to (1.2) possibly has a logarithmic singularity by [11. Our third result is the following
Theorem 1.3. Let $\left(X_{1}, g_{1}\right)$ and $\left(X_{2}, g_{2}\right)$ be two $n+1$-dimensional conformally compact manifolds with $n+1$ even and assume g_{1} and g_{2} are Einstein. Suppose that $\partial \bar{X}_{1}$ and $\partial \bar{X}_{2}$ contain a common open set Γ and that, for $i=1,2$, there exist boundary defining functions ρ_{i} of \bar{X}_{i} such that the scattering maps \mathcal{S}_{i} of $\Delta_{g_{i}}$ associated to ρ_{i} satisfy $\left.\left(\mathcal{S}_{1} f\right)\right|_{\Gamma}=\left.\left(\mathcal{S}_{2} f\right)\right|_{\Gamma}$ for all $f \in C_{0}^{\infty}(\Gamma)$. Then there is a diffeomorphism $J: \bar{X}_{1} \rightarrow \bar{X}_{2}$, such that $J^{*} g_{2}=g_{1}$ in X_{1}.

The proofs are based on the results of Lassas and Uhlmann 15], and Lassas, Taylor and Uhlmann [16], and suitable unique continuation theorems for Einstein's equation.

It is shown in 15 that a compact manifold with boundary $(\bar{X}=X \cup \partial \bar{X}, g)$, is determined by the Dirichlet-to-Neumann if the interior (X, g) is real analytic, and if there exists an open set Γ of the boundary $\partial \bar{X}$ which is real analytic with g real analytic up to Γ. In 16] Lassas, Taylor and Uhlmann prove the analogue of this result for complete manifolds.

A theorem of De Turck and Kazdan [6], says that if (\bar{X}, g) is an Einstein manifold with boundary then g is real-analytic in the interior X, but it is not necessarily real analytic at the boundary, so one cannot directly apply the result of [16]. To prove Theorems 1.1, 1.2, 1.3, we first show that the DN map (or the scattering map) determines the metric in a small neighbourhood U of a point $p \in \Gamma \subset \partial \bar{X}$, then we shall prove that this determines the Green's function in $U \times U$. However one of the results of [16] says that this determines the whole Riemannian manifold, provided it is real-analytic, but according to [6] it is the case of the interior of an Einstein manifold.

The essential part in this paper is the reconstruction near the boundary. This will be done using ellipticity of Einstein equation in harmonic coordinates and by applying a unique continuation theorem for the Cauchy problem for elliptic system. The unique continuation result we need in the compact case was proved by Calderón 44, [5] but the conformally compact case is more involved since the system is actually not truly elliptic at the boundary but only elliptic in the uniformly degenerate sense of [21, 18, 19, 20], see also [1]. We learnt that, at the same time, O. Biquard [3] proved a unique continuation result for Einstein manifolds without using the DN map for functions, this problem is part of the program of M. Anderson [2]. Under our assumptions, it seems somehow natural to use harmonic coordinates for Einstein equation, and we notice that our approach is self-contained and does not require the result of (3].

2. Acknowledgments

The work of both authors was funded by the NSF under grant DMS-0500788. C.G. acknowledges support of french ANR grants JC05-52556 and JC0546063 and thanks the MSI at ANU, Canberra, where part of this work was achieved. We thank Erwann Delay, Robin Graham and Gunther Uhlmann for helpful conversations.

3. Inverse problem for Einstein manifolds with boundary

In [6], De Turck and Kazdan proved that closed or open Einstein manifolds are real analytic, using harmonic coordinates. The principle is that Einstein's equation becomes a non-linear elliptic system in these coordinates and with real analytic coefficient, thus the real analyticity of the solutions. However, for a Riemannian manifold with boundary ($\bar{X}=X \cup \partial \bar{X}, g$) the argument breaks down since the boundary can have low regularity even though g has constant Ricci curvature. We mean that the open incomplete manifold X is real-analytic but not \bar{X}.
3.1. The Dirichlet-to-Neumann map. As written in the Introduction,

$$
\mathcal{N}: C^{\infty}(\partial \bar{X}) \rightarrow C^{\infty}(\partial \bar{X})
$$

is defined by solving the Dirichlet problem (1.1) with $f \in C^{\infty}(\partial \bar{X})$, and setting $\mathcal{N} f:=-\left.\partial_{n} u\right|_{M}$ where ∂_{n} is the interior pointing normal vector to the boundary for the metric g. Its Schwartz kernel is related to the Green function $G\left(z, z^{\prime}\right)$ of the Laplacian Δ_{g} with Dirichlet condition on $\partial \bar{X}$ by the following identity
Lemma 3.1. The Schwartz kernel $\mathcal{N}\left(y, y^{\prime}\right)$ of \mathcal{N} is given for $y, y^{\prime} \in \partial \bar{X}, y \neq y^{\prime}$, by

$$
\mathcal{N}\left(y, y^{\prime}\right)=\left.\partial_{n} \partial_{n^{\prime}} G\left(z, z^{\prime}\right)\right|_{z=y, z^{\prime}=y^{\prime}}
$$

where $\partial_{n}, \partial_{n^{\prime}}$ are respectively the normal vector fields to the boundary in variable z and z^{\prime}.

Proof: Let x be the distance function to the boundary in \bar{X}, it is smooth in a neighbourhood of $\partial \bar{X}$ and the normal vector field to the boundary is the gradient $\partial_{n}=\nabla^{g} x$ of x. The flow ϕ_{t} of $\nabla^{g} x$ induces a diffeomorphism $\phi:[0, \epsilon)_{t} \times \partial \bar{X} \rightarrow$ $\phi([0, \epsilon) \times \partial \bar{X})$ defined by $\phi(t, y):=e^{t \partial_{n}}(y)$ and we have $x(\phi(t, y))=t$. This induces natural coordinates $z=(x, y)$ near the boundary, these are normal geodesic coordinates. The function u in (1.1) can be obtained by taking

$$
u(z):=\chi(z)-\int_{\bar{X}} G\left(z, z^{\prime}\right)\left(\Delta_{g} \chi\right)\left(z^{\prime}\right) d z^{\prime}
$$

where χ is any smooth function on \bar{X} such that $\chi=f+O\left(x^{2}\right)$. Now using Green's formula and $\Delta_{g}(z) G\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right)=\Delta_{g}\left(z^{\prime}\right) G\left(z, z^{\prime}\right)$ where $\delta\left(z-z^{\prime}\right)$ is the Dirac mass on the diagonal, we obtain for $z \in X$

$$
\begin{aligned}
& u(z)=\left.\int_{\partial \bar{X}}\left(\partial_{n^{\prime}} G\left(z, z^{\prime}\right) \chi\left(z^{\prime}\right)\right)\right|_{z^{\prime}=y^{\prime}} d y^{\prime}-\left.\int_{\partial \bar{X}}\left(G\left(z, z^{\prime}\right)\left(\partial_{n} \chi\right)\left(z^{\prime}\right)\right)\right|_{z^{\prime}=y^{\prime}} d y^{\prime} . \\
& u(z)=\left.\int_{\partial \bar{X}}\left(\partial_{n^{\prime}} G\left(z, z^{\prime}\right)\right)\right|_{z^{\prime}=y^{\prime}} f\left(y^{\prime}\right) d y^{\prime}
\end{aligned}
$$

We have a Taylor expansion $u(x, y)=f(y)+x \mathcal{N} f(y)+O\left(x^{2}\right)$ near the boundary and thus pairing with $\phi \in C^{\infty}(\partial \bar{X})$ gives

$$
\int_{\partial \bar{X}} u(x, y) \phi(y) d y=\int_{\partial \bar{X}} f(y) \phi(y) d y+x \int_{\partial \bar{X}} f(y) \mathcal{N} f(y) d y+O\left(x^{2}\right) .
$$

Now taking ϕ such that $\phi f=0$, we see, using the fact that Green's function $G\left(z, z^{\prime}\right)$ is smooth outside the diagonal, that

$$
\int_{\partial \bar{X}} \phi(y) \mathcal{N} f(y) d y=\left.\int_{\partial \bar{X}} \int_{\partial \bar{X}}\left(\partial_{n} \partial_{n^{\prime}} G\left(z, z^{\prime}\right)\right)\right|_{z=y, z^{\prime}=y^{\prime}} f\left(y^{\prime}\right) \phi(y) d y d y^{\prime}
$$

which proves the claim.
3.2. The Ricci tensor in harmonic coordinates and unique continuation. Let us take coordinates $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ near a point $p \in \partial \bar{X}$, with x_{0} a boundary defining function of $\partial \bar{X}$, then $\operatorname{Ric}(g)$ is given by definition by

$$
\begin{equation*}
\operatorname{Ric}(g)_{i j}=\sum_{k}\left(\partial_{x_{k}} \Gamma_{j i}^{k}-\partial_{x_{j}} \Gamma_{k i}^{k}+\sum_{l} \Gamma_{k l}^{k} \Gamma_{j i}^{l}-\sum_{l} \Gamma_{j l}^{k} \Gamma_{k i}^{l}\right) \tag{3.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma_{j i}^{k}=\frac{1}{2} \sum_{m} g^{k m}\left(\partial_{x_{i}} g_{m j}+\partial_{x_{j}} g_{m i}-\partial_{x_{m}} g_{i j}\right) \tag{3.2}
\end{equation*}
$$

Lemma 1.1 of [6] shows that $\Delta_{g} x_{k}=\sum_{i, j} g^{i j} \Gamma_{i j}^{k}$, so Einstein equation $\operatorname{Ric}(g)=\lambda g$ for some $\lambda \in \mathbb{R}$ can be written as the system

$$
\begin{equation*}
-\frac{1}{2} \sum_{\mu, \nu} g^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} g_{i j}-\frac{1}{2} \sum_{r}\left(g^{r i} \partial_{x_{j}}\left(\Delta_{g} x_{r}\right)+g^{r j} \partial_{x_{i}}\left(\Delta_{g} x_{r}\right)\right)+Q_{i j}(x, g, \partial g)=0 \tag{3.3}
\end{equation*}
$$

where $Q_{i j}(x, A, B)$ is smooth and polynomial of degree two in B, where A, B denote vectors $\left(g_{k l}\right)_{k, l} \in \mathbb{R}^{(n+1)^{2}}$ and $\left(\partial_{x_{m}} g_{k l}\right)_{k, l, m} \in \mathbb{R}^{(n+1)^{3}}$. From this discussion we deduce the following

Proposition 3.2. Let $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be harmonic coordinates for Δ_{g} near a point $p \in\left\{x_{0}=0\right\}$, then there exists $Q_{i j}(x, A, B)$ polynomial of degree 2 in $B \in \mathbb{R}^{(n+1)^{3}}$,
with smooth coefficients in a neighbourhood of p, such that $\operatorname{Ric}(g)=-n g$ is equivalent near p to the system

$$
\begin{equation*}
\sum_{\mu, \nu} g^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} g_{i j}+Q_{i j}(x, g, \partial g)=0 \tag{3.4}
\end{equation*}
$$

with $\partial g:=\left(\partial_{x_{m}} \bar{g}_{k l}\right)_{k, l, m} \in \mathbb{R}^{(n+1)^{3}}$.
Now we may apply directly Calderon uniqueness theorem [4, 5], which gives
Proposition 3.3. If $C:=\left(c_{i j}\right)_{i, j=0, \ldots, n}, D:=\left(d_{i j}\right)_{i, j=0, \ldots, n}$ are smooth symmetric 2 -tensors near $p \in\left\{x_{0}=0\right\}$, with C positive definite, the system (3.4) near p with boundary conditions $\left.g_{i j}\right|_{x_{0}=0}=c_{i j}$ and $\left.\partial_{x_{0}} g_{i j}\right|_{x_{0}=0}=d_{i j}, i, j=0, \ldots, n$, has at most a unique smooth solution.
3.3. Reconstruction near the boundary. Throughout this section we assume that $\left(\bar{X}_{1}, g_{1}\right),\left(\bar{X}_{2}, g_{2}\right)$ are Einstein manifolds with boundary $M_{j}=\partial \bar{X}_{j}, j=1,2$, such that M_{1} and M_{2} contain a common open set Γ. Moreover we assume that for every $f \in C_{0}^{\infty}(\Gamma)$, the Dirichlet-to-Neumann maps satisfy

$$
\left.\mathcal{N}_{1} f\right|_{\Gamma}=\left.\mathcal{N}_{2} f\right|_{\Gamma}
$$

We first prove
Lemma 3.4. For $i=1,2$, there exists $p \in \Gamma$, some neighbouroods U_{i} of p in \bar{X}_{i} with $U_{i} \cap X_{i} \neq \emptyset$ and a diffeomorphism $F: U_{1} \rightarrow U_{2},\left.F\right|_{U_{1} \cap \Gamma}=I d$, such that $F^{*} g_{2}=g_{1}$.

Proof: For $i=1,2$, let $t_{i}=\operatorname{dist}\left(., \partial \bar{X}_{i}\right)$ be the distance to the boundary in \bar{X}_{i}, then the flow $e^{t \nabla^{g_{i}} t_{i}}$ of the gradient $\nabla^{g_{i}} t_{i}$ induces a diffeomorphism

$$
\begin{gathered}
\phi^{i}:[0, \epsilon) \times \partial \bar{X}_{i} \rightarrow \phi^{i}\left([0, \epsilon) \times \partial \bar{X}_{i}\right) \\
\phi^{i}(t, y):=e^{t \nabla^{g_{i}} t_{i}}(y),
\end{gathered}
$$

and we have the decomposition near the boundary $\left(\phi^{i}\right)^{*} g_{i}=d t_{i}^{2}+h_{i}\left(t_{i}\right)$ for some one-parameter family of metrics $h_{i}\left(t_{i}\right)$ on $\partial \bar{X}_{i}$. Lee-Uhlmann 15 proved that $\left.\mathcal{N}_{1}\right|_{\Gamma}=\left.\mathcal{N}_{2}\right|_{\Gamma}$ implies that

$$
\begin{equation*}
\left.\partial_{t_{1}}^{k} h_{1}\right|_{\Gamma}=\left.\partial_{t_{2}}^{k} h_{2}\right|_{\Gamma}, \quad \forall k \in \mathbb{N}_{0} \tag{3.5}
\end{equation*}
$$

Let us now consider $H_{i}:=\phi^{i^{*}} g_{i}$ on the collar $[0, \epsilon)_{t} \times \Gamma$. Let $p \in \Gamma$ be a point of the boundary and $\left(y_{1}, \ldots, y_{n}\right)$ be a set of local coordinates in a neighbourhood of p in Γ, and extend each y_{j} to $[0, \epsilon) \times \Gamma$ by the function $(t, m) \rightarrow y_{j}(m)$. Using $z:=\left(t, y_{1}, \ldots, y_{n}\right)$ as coordinates on $[0, \epsilon) \times \Gamma$ near p, then (3.5) shows that there is an open neighbourhood U of p in $[0, \epsilon)_{t} \times \Gamma$ such that $H_{2}=H_{1}+O\left(t^{\infty}\right)$ and we can always assume $U \cap\{t=0\} \neq \Gamma$. Let $y_{0} \in C_{0}^{\infty}(\Gamma)$ with $y_{0}=0$ on $U \cap\{t=0\}$ but y_{0} not identically 0 , and by cutting off far from p me may assume that $y_{j} \in C_{0}^{\infty}(\Gamma)$ for $j=1, \ldots, n$. Now let $\left(x_{0}^{1}, x_{1}^{1}, \ldots, x_{n}^{1}\right)$ and $\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{n}^{2}\right)$ be harmonic functions near p in $[0, \epsilon) \times \Gamma$ for respectively H_{1} and H_{2} such that $x_{j}^{1}=x_{j}^{2}=y_{j}$ on $\{t=0\}$. These functions are constructed by solving the Dirichlet problem $\Delta_{g_{i}} w_{j}^{i}=0$ on \bar{X}_{i} with boundary data $\left.w_{j}^{i}\right|_{M_{i}}=y_{j}, i=1,2$, and $j=0, \ldots, n$, and by setting $x_{j}^{i}=\phi^{i^{*}} w_{j}^{i}$. Note that $\left\{m \in U \cap \Gamma ; x_{0}^{i}(m)=0, d x_{0}^{i}(m)=0\right\}$ is a closed set with empty interior in $U \cap\{t=0\}$, since otherwise x_{0}^{i} would vanish to order 2 on an open set of $\{t=0\}$, thus by unique continuation it would be identically 0 since it is harmonic. Then $\left(x_{0}^{1}, \ldots, x_{n}^{1}\right)$ and $\left(x_{0}^{2}, \ldots, x_{n}^{2}\right)$ form coordinate systems near at least a common point of $U \cap\{t=0\}$; for convenience let us denote again p this point and $U \subset[0, \epsilon) \times \Gamma$ an open set containing p where they both form coordinates.

We have $\Delta_{H_{1}}\left(x_{j}^{1}-x_{j}^{2}\right)=O\left(t^{\infty}\right)$ and $\left.\partial_{t} x_{j}^{1}\right|_{t=0}=\left.\partial_{t} x_{j}^{2}\right|_{t=0}$ for all j since $\left.\mathcal{N}_{1}\right|_{\Gamma}=$ $\left.\mathcal{N}_{2}\right|_{\Gamma}$. Since $u=x_{j}^{1}-x_{j}^{2}$ is solution of $\Delta_{H_{1}} u=O\left(t^{\infty}\right)$ in U with u vanishing
at order 2 at the boundary $t=0$, a standard Taylor expansion argument shows that $x_{j}^{1}=x_{j}^{2}+O\left(t^{\infty}\right)$ in U for all j. Now define $\psi: U \rightarrow \psi(U) \subset U$ so that $\left(x_{0}^{1}, \ldots, x_{n}^{1}\right)=\left(\psi^{*} x_{0}^{2}, \ldots, \psi^{*} x_{n}^{2}\right)$. Then $\psi=\operatorname{Id}+O\left(t^{\infty}\right)$ in U, and consequently we obtain in U

$$
\begin{equation*}
\psi^{*} H_{2}=H_{1}+O\left(t^{\infty}\right) \tag{3.6}
\end{equation*}
$$

The metrics $g=H_{1}$ and $g=\psi^{*} H_{2}$ both satisfy Einstein equation $\operatorname{Ric}(g)=\lambda g$ in U. Moreover in coordinates $\left(x_{0}^{1}, \ldots, x_{n}^{1}\right)$ this correspond to the system (3.4) and since the coordinates are harmonic with respect to g, the system is elliptic and diagonal to leading order. From the unique continuation result in Proposition 3.3, we conclude that there exists a unique solution to this system in U_{1} with given initial data $\left.g\right|_{U \cap\{t=0\}}$ and $\left.\left.\partial_{x_{0}^{1}} g\right|_{U \cap\{t=0}\right\}$. In view of (3.6), this proves that $H_{1}=\psi^{*} H_{2}$ in U. Now it suffices to go back to \bar{X}_{1} and \bar{X}_{2} through ϕ^{1}, ϕ^{2} and we have proved the Lemma by setting $U_{i}:=\phi^{i}(U)$ and

$$
\begin{equation*}
F:=\phi^{2} \circ \psi \circ\left(\phi^{1}\right)^{-1} . \tag{3.7}
\end{equation*}
$$

Next we prove
Corollary 3.5. For $i=1,2$, let $G_{i}\left(z, z^{\prime}\right)$ be the Green function of $\Delta_{g_{i}}$ in \bar{X}_{i} with Dirichlet condition at M, then $\left.\mathcal{N}_{1}\right|_{\Gamma}=\left.\mathcal{N}_{2}\right|_{\Gamma}$ implies that there exists an open set $U_{1} \subset X_{1}$ with

$$
G_{2}\left(F(z), F\left(z^{\prime}\right)\right)=G_{1}\left(z, z^{\prime}\right), \quad\left(z, z^{\prime}\right) \in\left(U_{1} \times U_{1}\right) \backslash\left\{z=z^{\prime}\right\}
$$

where F was defined in (3.7)
Proof: First we remark that g_{1} is Einstein and thus real analytic in $U_{1} \backslash\left(U_{1} \cap M\right)$, so is any harmonic function in this open set. Let $\partial_{n}, \partial_{n^{\prime}}$ be the normal vector fields to the boundary in first and second variables in $U_{1} \times U_{1}$ respectively, as defined in Lemma 3.1. We see from the proof of Lemma 3.4 that $F_{*} \partial_{n}$ and $F_{*} \partial_{n^{\prime}}$ are the normal vector fields to the boundary in the first and second variable in $U_{2} \times U_{2}$ (since $\psi=\mathrm{Id}+O\left(t^{\infty}\right)$ in that Lemma). So we get $\partial_{n^{\prime}} G_{2}\left(F(z), F\left(z^{\prime}\right)\right)=$ $\left(F_{*} \partial_{n^{\prime}}\right) G_{2}\left(F(z), z^{\prime}\right)$ for $z^{\prime} \in M$ since $\left.F\right|_{U_{1} \cap \Gamma}=$ Id.

We first show that $\partial_{n^{\prime}} G_{2}\left(F(z), F\left(z^{\prime}\right)\right)=\partial_{n^{\prime}} G_{1}\left(z, z^{\prime}\right)$ for any $\left(z, z^{\prime}\right) \in U_{1} \times$ $\left(U_{1} \cap \Gamma\right) \backslash\left\{z=z^{\prime}\right\}$. Now fix $z^{\prime} \in U_{1} \cap \Gamma$, then the function $T_{1}(z):=G_{1}\left(z, z^{\prime}\right)$ solves $\Delta_{g_{1}} T_{1}=0$ in $U_{1} \backslash\left\{z^{\prime}\right\}$ and, using Lemma 3.1, it has boundary values $\left.T_{1}\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=$ 0 and $\left.\partial_{n} T_{1}\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=\mathcal{N}_{1}\left(., z^{\prime}\right)$ where $\mathcal{N}_{i}(.,$.$) denote the Schwartz kernel of \mathcal{N}_{i}, i=$ 1,2 . The function $T_{2}(z):=\partial_{n^{\prime}} G_{2}\left(F(z), F\left(z^{\prime}\right)\right)$ solves $\Delta_{F^{*} g_{2}} T_{2}(z)=\Delta_{g_{1}} T_{2}(z)=0$ in $U_{1} \backslash\left\{z^{\prime}\right\}$. We also have $\left.\partial_{n} T_{2}\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=F^{*}\left[\left.\left(F_{*} \partial_{n}\right)\left(F_{*} \partial_{n^{\prime}}\right) G_{2}\left(., z^{\prime}\right)\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}\right]$ and $\left.T_{2}\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=0$. But from Lemma 3.1, $\left.\left(F_{*} \partial_{n}\right)\left(F_{*} \partial_{n^{\prime}}\right) G_{2}\left(., z^{\prime}\right)\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=$ $\mathcal{N}_{2}\left(., z^{\prime}\right)$ where $\mathcal{N}_{2}(.,$.$) is the Schwartz kernel of \mathcal{N}_{2}$. Using again that $\left.F\right|_{U_{1} \cap \Gamma}=I d$, we deduce that $\left.\partial_{n} T_{2}\right|_{U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}}=\mathcal{N}_{2}\left(., z^{\prime}\right)$. By our assumption $\left.\mathcal{N}_{1}\right|_{\Gamma}=\left.\mathcal{N}_{2}\right|_{\Gamma}$, we conclude that T_{1} and T_{2} solve the same Cauchy problem near $U_{1} \cap \Gamma \backslash\left\{z^{\prime}\right\}$, so first by unique continuation near the boundary and then real analyticity in $U_{1} \backslash\left(U_{1} \cap \Gamma\right)$, we obtain $T_{1}=T_{2}$ there.

Now we can use again similar arguments to prove that $G_{1}\left(z, z^{\prime}\right)=G_{2}\left(F(z), F\left(z^{\prime}\right)\right)$ in $\left(U_{1} \times U_{1}\right) \backslash\left\{z=z^{\prime}\right\}$. Indeed, fix $z^{\prime} \in U_{1}$, then $T_{1}(z):=G_{1}\left(z^{\prime}, z\right)$ and $T_{2}(z):=G_{2}\left(F\left(z^{\prime}\right), F(z)\right)$ solve $\Delta_{g_{1}} T_{i}=0$ in $U_{1} \backslash\left\{z^{\prime}\right\}$ and with boundary values $\left.T_{i}\right|_{\Gamma}=0$ and $\left.\partial_{n} T_{1}\right|_{U_{1} \cap \Gamma}=\left.\partial_{n} T_{2}\right|_{U_{1} \cap \Gamma}$ by what we proved above. Thus unique continuation for Cauchy problem and real analyticity allow us to conclude that $T_{1}=T_{2}$.
3.4. Proof of Theorem 1.1. To conclude the proof of 1.1, we use the following Proposition which is implicitly proved by Lassas-Taylor-Uhlmann 16

Proposition 3.6. For $i=1,2$, let $\left(\bar{X}_{i}, g_{i}\right)$ be smooth Riemannian manifold with boundary, with interior X_{i} real-analytic and metric g_{i} real analytic on X_{i}. Let $G_{i}\left(z, z^{\prime}\right)$ be the Green function of the Laplacian $\Delta_{g_{i}}$ with Dirichlet condition at $\partial \bar{X}_{i}$, and assume there exists an open set $U \subset X_{1}$ and a diffeomorphism $F: U_{1} \rightarrow$ $F\left(U_{1}\right) \subset X_{2}$ such that $G_{1}\left(z, z^{\prime}\right)=G_{2}\left(F(z), F\left(z^{\prime}\right)\right)$ for $\left(z, z^{\prime}\right) \in\left(U_{1} \times U_{1}\right) \backslash\left\{z=z^{\prime}\right\}$. Then there exists a diffeomorphism $J: X_{1} \rightarrow X_{2}$ such that $J^{*} g_{2}=g_{1}$ and $\left.J\right|_{U_{1}}=F$.

The proof is entirely done in section 3 of [16], although not explicitly written under that form. The principle is to define maps

$$
\mathcal{G}_{j}: X_{j} \rightarrow H^{s}\left(U_{1}\right), \quad \mathcal{G}_{1}(z):=G_{1}(z, .), \quad \mathcal{G}_{2}(z):=G_{2}(z, F(.))
$$

where $H^{s}\left(U_{1}\right)$ is the s-Sobolev space of U_{1} for some $s<1-(n+1) / 2$, then prove that \mathcal{G}_{j} are embeddings with $G_{1}\left(X_{1}\right)=G_{2}\left(X_{2}\right)$, and finally show that $J:=\mathcal{G}_{2}^{-1} \circ \mathcal{G}_{1}: X_{1} \rightarrow X_{2}$ is an isometry. Note that J restricts to F on U_{1} since $G_{1}\left(z, z^{\prime}\right)=G_{2}\left(F(z), F\left(z^{\prime}\right)\right)$.

Proposition 3.6 and Corollary 3.5 imply Theorem 1.1, after noticing that an isometry $\psi:\left(X_{1}, g_{1}\right) \rightarrow\left(X_{2}, g_{2}\right)$ extends smoothly to the manifold with boundary $\left(\bar{X}_{1}, g_{1}\right)$ by smoothness of the metrics g_{i} up to the boundaries $\partial \bar{X}_{i}$.

4. The first inverse problem for conformally compact Einstein MANIFOLDS

Now we consider an $n+1$ dimensional conformally compact Einstein manifold (X, g), it necessarily has negative constant Ricci curvature $\operatorname{Ric}(g)=-n g$ since conformally compact metric has pinched negative curvature near infinity [10, 9]. Let ρ be a geodesic boundary defining function in \bar{X}, that is $|d \rho|_{\rho^{2} g}=1$. Let us denote by $\bar{g}=\rho^{2} g$ the compactified metric on \bar{X}.
4.1. Harmonic coordinates for \bar{g} and unique continuation. The relation between $\operatorname{Ric}(g)$ and $\operatorname{Ric}(\bar{g})$ is given by

$$
\begin{equation*}
\operatorname{Ric}(g)=\operatorname{Ric}(\bar{g})+\rho^{-1}\left((n-1) \operatorname{Hess}_{\bar{g}}(\rho)-\left(\Delta_{\bar{g}} \rho\right) \bar{g}\right)-n \rho^{-2}|d \rho|_{\bar{g}}^{2} \bar{g} \tag{4.1}
\end{equation*}
$$

Then if $\operatorname{Ric}(g)=-n g$, (4.1) can be rewritten under the form

$$
\begin{equation*}
\rho^{2} \operatorname{Ric}(\bar{g})=-\rho\left((n-1) \operatorname{Hess}_{\bar{g}}(\rho)-\left(\Delta_{\bar{g}} \rho\right) \bar{g}\right) \tag{4.2}
\end{equation*}
$$

Let us take a set of harmonic coordinates $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ for the Laplacian $\Delta_{\bar{g}}$ near a point $p \in \partial \bar{X}$, with x_{0} a boundary defining function of $\partial \bar{X}$, then by previous Section 3.2, $\operatorname{Ric}(\bar{g})$ can be written under the form

$$
\operatorname{Ric}(\bar{g})_{i j}=-\frac{1}{2} \sum_{\mu, \nu} \bar{g}^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} \bar{g}_{i j}+Q_{i j}(x, \bar{g}, \partial \bar{g})
$$

where $Q_{i j}(x, A, B)$ is smooth and polynomial of degree 2 in B, where A, B denote vectors $\left(\bar{g}_{k l}\right)_{k, l} \in \mathbb{R}^{(n+1)^{2}}$ and $\left(\partial_{x_{m}} \bar{g}_{k l}\right)_{k, l, m} \in \mathbb{R}^{(n+1)^{3}}$. Since $\rho=x_{0} e^{f}$ for some smooth f, we obtain

$$
\rho^{2} \operatorname{Ric}(\bar{g})_{i j}=-\frac{1}{2} \sum_{\mu, \nu} g^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} \bar{g}_{i j}+\widetilde{Q}_{i j}\left(x, \bar{g}, x_{0} \partial \bar{g}\right)
$$

where $\widetilde{Q}_{i j}\left(x, \bar{g}, x_{0} \partial \bar{g}\right)$ satisfying exactly the same properties than $Q_{i j}$ and where $x_{0} \partial \bar{g}:=\left(x_{0} \partial_{x_{m}} \bar{g}_{k l}\right)_{k, l, m} \in \mathbb{R}^{(n+1)^{3}}$. Finally, it is clear that $\operatorname{Hess}_{\bar{g}}(\rho)$ and $\Delta_{\bar{g}} \rho$ involve at most derivative of order 1 of \bar{g} so this term multiplied by ρ is of the same form than $\widetilde{Q}_{i j}\left(x, \bar{g}, x_{0} \partial \bar{g}\right)$ and we have thus proved

Lemma 4.1. Let $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be harmonic coordinates near $p \in\left\{x_{0}=0\right\}$ for $\Delta_{\bar{g}}$ where $\bar{g}=\rho^{2} g$ is the compactified metric. Then there exists $Q_{i j}(x, A, B)$ polynomial of degree 2 in $B \in \mathbb{R}^{(n+1)^{3}}$, with smooth coefficients in a neighbourhood of p, such that $\operatorname{Ric}(g)=-n g$ is equivalent near p to the system

$$
\begin{equation*}
\sum_{\mu, \nu} x_{0}^{2} \bar{g}^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} \bar{g}_{i j}+Q_{i j}\left(x, \bar{g}, x_{0} \partial \bar{g}\right)=0, \quad i, j=0, \ldots, n . \tag{4.3}
\end{equation*}
$$

where $x_{0} \partial \bar{g}:=\left(x_{0} \partial_{x_{m}} \bar{g}_{k l}\right)_{k, l, m} \in \mathbb{R}^{(n+1)^{3}}$.
This is a non-linear system of order 2, elliptic in the uniformly degenerate sense of 19, 20, 21] and diagonal at leading order. We state the following unique continuation result for this system:

Proposition 4.2. Assume \bar{g}_{1} and \bar{g}_{2} are two smooth solutions of the system (4.3) with $\bar{g}_{1}=\bar{g}_{2}+O\left(x_{0}^{\infty}\right)$ near p. Then $\bar{g}_{1}=\bar{g}_{2}$ near p.

Proof: this is a straightforward application of Mazzeo's unique continuation result 18]. We work in a small neighbourhood U of p and set $w=\left(\bar{g}_{1}-\bar{g}_{2}\right)$ near p. For h metric near p and ℓ symmetric tensor near p, let

$$
G(x, h, \ell):=-\sum_{\mu, \nu} x_{0}^{2} h^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} \bar{g}_{2}-Q(x, h, \ell)
$$

where $Q:=\left(Q_{i j}\right)_{i, j=0, \ldots, n}$. Note that G is smooth in all its components. We have from (4.3)

$$
\begin{equation*}
\sum_{\mu, \nu} x_{0}^{2} \bar{g}_{1}^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} w=G\left(x, \bar{g}_{1}, x_{0} \partial \bar{g}_{1}\right)-G\left(x, \bar{g}_{2}, x_{0} \partial \bar{g}_{2}\right) \tag{4.4}
\end{equation*}
$$

Let $g_{1}:=x_{0}^{-2} \bar{g}_{1}$ and let ∇ be the connection on symmetric 2 tensors on U induced by g_{1}, then $\nabla^{*} \nabla w=\sum_{\mu, \nu} g_{1}^{\mu \nu} \nabla_{\partial_{x_{\nu}}} \nabla_{\partial_{x_{\mu}}} w$ and in coordinates it is easy to check that $x_{0}\left(\nabla_{\partial_{x_{\mu}}}-\partial_{x_{\mu}}\right)$ is a zeroth order operator with smooth coefficients up to the boundary, using (3.2) for instance. Therefore one obtains, using (4.4),

$$
\left|\nabla^{*} \nabla w\right|_{g_{1}} \leq C\left(|w|_{g_{1}}+|\nabla w|_{g_{1}}\right)
$$

for some C depending on \bar{g}_{1}, \bar{g}_{2}. It then suffices to apply Corollary 11 of 18], this proves that $w=0$ and we are done.
4.2. Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1. Let $\left(X_{1}, g_{1}\right)$ and $\left(X_{2}, g_{2}\right)$ be conformally compact Einstein manifolds and let $\rho_{i}, i=1,2$ be geodesic boundary defining functions in \bar{X}_{i} such that the Dirichlet-to-Neumann maps \mathcal{N}_{i} for $\bar{g}_{i}=\rho_{i}^{2} g_{i}$ coincide on Γ. We first show the
Lemma 4.3. For $i=1,2$, there exist $p \in \Gamma$, exist neighbouroods U_{i} of p in \bar{X}_{i} with $U_{i} \cap X_{i} \neq \emptyset$ and a diffeomorphism $F: U_{1} \rightarrow U_{2},\left.F\right|_{U_{1} \cap \Gamma}=\mathrm{Id}$, such that $F^{*} \bar{g}_{2}=\bar{g}_{1}$.

Proof: we choose harmonic coordinates $x^{i}:=\left(x_{0}^{i}, \ldots, x_{n}^{i}\right)$ for \bar{g}_{i} in a neighbourhood U_{i} of a fixed point $p \in \Gamma$ exactly like in the proof of Lemma 3.4. In particular x_{0}^{i} defines Γ near p. Then the diffeomorphism $F: U_{1} \rightarrow U_{2}$ defined by $x^{1} \rightarrow x^{2}$ is such that $F^{*} \bar{g}_{2}$ and \bar{g}_{1} satisfy in U_{1} the system (4.3) by Lemma 4.1. Moreover $F^{*} \bar{g}_{2}=\bar{g}_{1}+O\left(\left(x_{0}^{1}\right)^{\infty}\right)$ in U_{1} by 17. It then suffices to apply Proposition 4.2 to conclude.

Then the same result than Corollary 3.5 holds with g_{i} replaced by \bar{g}_{i} and we can conclude that there exists $J: \bar{X}_{1} \rightarrow \bar{X}_{2}$ such that $J^{*} \bar{g}_{2}=\bar{g}_{1}$ just like in Subsection 3.4. It remains to remark that $J^{*} \rho_{2}=\rho_{1}$ near $\partial \bar{X}_{1}$: indeed ρ_{i} is the unique solution, near $\partial \bar{X}_{i}$, of the first order non-linear PDE $\left|d \rho_{i}\right|_{\bar{g}_{i}}^{2}=1$ with boundary condition $\left.\rho_{i}^{2} g_{i}\right|_{T \partial \bar{X}_{i}}=\left.\bar{g}_{i}\right|_{\partial \bar{X}_{i}}$ by [9, Lemma 2.1], but $\left|d\left(J^{*} \rho_{2}\right)\right|_{\bar{g}_{1}}^{2}=1$ since J is an isometry
and $\left(J^{*} \rho_{2}\right)^{2} g_{1}=J^{*}\left(\rho_{2}^{2} g_{2}\right)=\bar{g}_{1}$. Therefore $J^{*} g_{2}=g_{1}$ near $\partial \bar{X}_{1}$ and since g_{1} and g_{2} are Einstein manifold, they are real analytic in X_{1} and thus $J^{*} g_{2}=g_{1}$ in X_{1} by the unique continuation result 114 , Lem. 3', p.256].

5. Inverse scattering for conformally compact Einstein manifolds

Consider an $n+1$ dimensional conformally compact Einstein manifold (\bar{X}, g) with $n+1$ even, and let ρ be a geodesic boundary defining function and $\bar{g}:=\rho^{2} g$. Using the flow $\phi_{t}(y)$ of the gradient $\nabla^{\rho^{2} g} \rho$, one has a diffeomorphism $\phi:[0, \epsilon)_{t} \times \partial \bar{X} \rightarrow$ $\phi([0, \epsilon) \times \partial \bar{X}) \subset \bar{X}$ defined by $\phi(t, y):=\phi_{t}(y)$, and the metric pulls back to

$$
\begin{equation*}
\phi^{*} g=\frac{d t^{2}+h(t)}{t^{2}} \tag{5.1}
\end{equation*}
$$

for some smooth one-parameter family of metrics $h(t)$ on the boundary $\partial \bar{X}$. Note that here $\phi^{*} \rho=t$.
5.1. The scattering map. The scattering map \mathcal{S} defined in the Introduction is really $\mathcal{S}=S(n)$, where $S(\lambda)$ for $\lambda \in \mathbb{C}$ is defined in [13, 11]. Let us construct \mathcal{S} by solving the boundary value problem $\Delta_{g} u=0$ with $u \in C^{\infty}(\bar{X})$ and $\left.u\right|_{\partial \bar{X}}=f$ where $f \in C^{\infty}(\partial \bar{X})$ is given. This follows the construction in section 4.1 of 11 . Writing Δ_{g} in the collar $[0, \epsilon)_{t} \times \partial \bar{X}$ through the diffeomorphism ϕ, we have

$$
\Delta_{g}=-t^{2} \partial_{t}^{2}+\left(n-1-\frac{t}{2} \operatorname{Tr}_{h(t)}\left(\partial_{t} h(t)\right)\right) t \partial_{t}+t^{2} \Delta_{h(t)}
$$

and for any $f_{j} \in C^{\infty}(\partial \bar{X})$ and $j \in \mathbb{N}_{0}$

$$
\begin{align*}
\Delta_{g}\left(f_{j}(y) t^{j}\right) & =j(n-j) f_{j}(y) t^{j}+t^{j}\left(H(n-j) f_{j}\right)(t, y), \tag{5.2}\\
\left(H(z) f_{j}\right)(t, y) & :=t^{2} \Delta_{h(t)} f_{j}(y)-\frac{(n-z) t}{2} \operatorname{Tr}_{h(t)}\left(\partial_{t} h(t)\right) f_{j}(y) .
\end{align*}
$$

Now recall that since g is Einstein and even dimensional, we have $\partial_{t}^{2 j+1} h(0)=0$ for $j \in \mathbb{N}_{0}$ such that $2 j+1<n$, see for instance Section 2 of [9]. Consequently, $H(n-j) f_{j}$ is an even function of t modulo $O\left(t^{n}\right)$ for $j \neq 0$, and modulo $O\left(t^{n+2}\right)$ when $j=0$. Since $H(n-j) f_{j}$ also vanishes at $t=0$, we can construct by induction a Taylor series using (5.2)

$$
\begin{equation*}
F_{j}=\sum_{k=0}^{j} t^{k} f_{k}(y), \quad F_{0}=f_{0}=f, \quad F_{j}=F_{j-1}+t^{j} \frac{\left.\left[t^{-j}\left(\Delta_{g} F_{j-1}\right)\right]\right|_{t=0}}{j(j-n)} \tag{5.3}
\end{equation*}
$$

for $j<n$ such that $\Delta_{g} F=O\left(t^{j+1}\right)$. Note that, since $H(n-j) f_{j}$ has even powers of t modulo $O\left(t^{n}\right)$, we get $f_{2 j+1}=0$ for $2 j+1<n$. For $j=n$, the construction of F_{n} seems to fail but actually we can remark that $\Delta_{g} F_{n-1}=O\left(t^{n+1}\right)$ instead of $O\left(t^{n}\right)$ thanks to the fact that $t^{2 j} H(n-2 j) f_{2 j}$ has even Taylor expansion at $t=0$ modulo $O\left(t^{2 j+n+2}\right)$ by the discussion above. So we can set $F_{n}:=F_{n-1}$ and then continue to define F_{j} for $j>n$ using (5.3). Using Borel's Lemma, one can construct $F_{\infty} \in C^{\infty}(\bar{X})$ such that $\phi^{*} F_{\infty}-F_{j}=O\left(t^{j+1}\right)$ for all $j \in \mathbb{N}$ and $\Delta_{g} F_{\infty}=O\left(\rho^{\infty}\right)$. Now we finally set $u=F_{\infty}-G \Delta_{g} F_{\infty}$ where $G: L^{2}\left(X, \operatorname{dvol}_{g}\right) \rightarrow L^{2}\left(X, \operatorname{dvol}_{g}\right)$ is the Green operator, i.e. such that $\Delta_{g} G=\mathrm{Id}$, recalling that $\operatorname{ker}_{L^{2}} \Delta_{g}=0$ by [21]. From the analysis of G in 21], one has that G maps $\dot{C}^{\infty}(\bar{X})=\left\{v \in C^{\infty}(\bar{X}), v=O\left(\rho^{\infty}\right)\right\}$ to $\rho^{n} C^{\infty}(\bar{X})$. This proves that $u \in C^{\infty}(\bar{X})$ and has an asymptotic

$$
\begin{equation*}
\phi^{*} u(t, y)=f(y)+\sum_{0<2 j<n} t^{2 j} f_{2 j}(y)-\phi^{*}\left(G \Delta_{g} F_{\infty}\right)+O\left(t^{n+1}\right) . \tag{5.4}
\end{equation*}
$$

In particular the first odd power is of order t^{n} and with coefficient the smooth function $\left[t^{-n} \phi^{*}\left(G \Delta_{g} F_{\infty}\right)\right]_{t=0}$ of $C^{\infty}(\partial \bar{X})$. Notice that the $f_{2 j}$ in the construction are local with respect to f, more precisely $f_{2 j}=p_{2 j} f$ for some differential operator
$p_{2 j}$ on the boundary. Note that we used strongly that X is Einstein and has even dimensions, indeed for a general asymptotically hyperbolic manifold u has logarithmic singularities, see 12, 11].

Since $\phi^{*} \nabla^{\rho^{2} g} \rho=\partial_{t}$, the definition of $\mathcal{S} f$ in the Introduction is equivalent to $\mathcal{S} f=\left.\frac{1}{n!} \partial_{t}^{n} \phi^{*} u\right|_{t=0}$, i.e. the n-th Taylor coefficient of the expansion of $\phi^{*} u$ at $t=0$, in other words

$$
\mathcal{S} f=-\left[t^{-n} \phi^{*}\left(G \Delta_{g} F_{\infty}\right)\right]_{t=0}=-\left.\left[\rho^{-n} G \Delta_{g} F_{\infty}\right]\right|_{\partial \bar{X}}
$$

From the analysis of Mazzeo-Melrose [21], one can describe the behaviour of the Green kernel $G\left(z, z^{\prime}\right)$ near the boundary and, say outside the diagonal $\operatorname{diag}_{\bar{X} \times \bar{X}}$:

$$
\begin{equation*}
\rho(z)^{-n} \rho\left(z^{\prime}\right)^{-n} G\left(z, z^{\prime}\right) \in C^{\infty}\left(\bar{X} \times \bar{X} \backslash \operatorname{diag}_{\bar{X} \times \bar{X}}\right) \tag{5.5}
\end{equation*}
$$

We can show easily that the kernel of \mathcal{S} is the boundary value of (5.5) at the corner $\partial \bar{X} \times \partial \bar{X}$:

Lemma 5.1. The Schwartz kernel $\mathcal{S}\left(y, y^{\prime}\right)$ of the scattering map \mathcal{S} is, for $y \neq y^{\prime}$,

$$
\mathcal{S}\left(y, y^{\prime}\right)=n\left[\rho(z)^{-n} \rho\left(z^{\prime}\right)^{-n} G\left(z, z^{\prime}\right)\right]_{z=y, z^{\prime}=y^{\prime}}
$$

where $G\left(z, z^{\prime}\right)$ is the Green kernel for Δ_{g}.
Proof: Consider $\left(G \Delta_{g} F_{\infty}\right)(z)$ for $z \in X$ fixed and use Green formula on the compact $U_{\epsilon}:=\left\{z^{\prime} \in X ; \rho(z) \geq \epsilon, \operatorname{dist}\left(z^{\prime}, z\right) \geq \epsilon\right\}$
$\int_{U_{\epsilon}} G\left(z, z^{\prime}\right) \Delta_{g} F_{\infty}\left(z^{\prime}\right) \mathrm{dv}_{g}\left(z^{\prime}\right)=\int_{\partial U_{\epsilon}}\left(G\left(z, z^{\prime}\right) \partial_{n^{\prime}} F_{\infty}\left(z^{\prime}\right)-\partial_{n^{\prime}} G\left(z, z^{\prime}\right) F_{\infty}\left(z^{\prime}\right)\right) d \nu_{\epsilon}\left(z^{\prime}\right)$
where $\partial_{n^{\prime}}$ is the unit normal interior pointing vector field of ∂U_{ϵ} (in the right variable z^{\prime}) and $d \nu_{\epsilon}$ the measure induced by g there. Consider the part $\rho\left(z^{\prime}\right)=\epsilon$ in the variables as in (5.1) using the diffeomorphism ϕ, i.e. $\phi\left(t^{\prime}, y^{\prime}\right)=z^{\prime}$, then $\phi^{*} \partial_{n^{\prime}}=t^{\prime} \partial_{t}^{\prime}$ and $\phi^{*}\left(d \nu_{t^{\prime}}\right)=t^{\prime-n} \operatorname{dvol}_{h\left(t^{\prime}\right)}$. Using (5.5) and $F_{\infty}=f+O\left(\rho^{2}\right)$ by the construction of F_{∞} above the Lemma, we see that the integral on $\rho^{\prime}=\epsilon$ converges to

$$
n \int_{\partial \bar{X}}\left[\rho\left(z^{\prime}\right)^{-n} G\left(z, z^{\prime}\right)\right]_{z^{\prime}=y^{\prime}} f\left(y^{\prime}\right) \operatorname{dv}_{h(0)}\left(y^{\prime}\right)
$$

as $\epsilon \rightarrow 0$. As for the part on $\operatorname{dist}\left(z^{\prime}, z\right)=\epsilon$, by another application of Green formula and $\Delta_{g}\left(z^{\prime}\right) G\left(z, z^{\prime}\right)=\delta\left(z-z^{\prime}\right)$, this converges to $F_{\infty}(z)$ as $\epsilon \rightarrow 0$. We deduce that the solution u of $\Delta_{g} u$ with $\left.u\right|_{\partial \bar{X}}=f$ is given by

$$
\begin{equation*}
u(z)=n \int_{\partial \bar{X}}\left[\rho\left(z^{\prime}\right)^{-n} G\left(z, z^{\prime}\right)\right]_{z^{\prime}=y^{\prime}} f\left(y^{\prime}\right) \operatorname{dv}_{h(0)}\left(y^{\prime}\right) \tag{5.6}
\end{equation*}
$$

Let us write $d y$ for $\operatorname{dv}_{h_{0}}(y)$. So take $\psi \in C^{\infty}(\partial \bar{X})$ with $\psi f=0$, and consider the pairing

$$
\int_{\partial \bar{X}} \phi^{*} u(t, y) \psi(y) d y
$$

a Taylor expansion at $t=0$ and the structure of $G\left(z, z^{\prime}\right)$ given by (5.5) show that

$$
\int_{\partial \bar{X}} \psi(y) \mathcal{S} f(y) d y=\left.n \int_{\partial \bar{X}}\left[\rho(z)^{-n} \rho\left(z^{\prime}\right)^{-n} G\left(z, z^{\prime}\right)\right]\right|_{z=y, z^{\prime}=y^{\prime}} \psi(y) f\left(y^{\prime}\right) d y^{\prime} d y
$$

this ends the proof.
Remark: A more general relation between the kernel of the resolvent of Δ_{g}, $\left(\Delta_{g}-\lambda(n-\lambda)\right)^{-1}$, and the kernel of the scattering operator $S(\lambda)$ holds, as proved in [13], but since the proof of Lemma 5.1 is rather elementary, we included it to make the paper essentially self-contained.
5.2. Einstein equation for g. We shall analyze Einstein equation in a good system of coordinates, actually constructed from harmonic coordinates for Δ_{g}. First choose coordinates $\left(y_{1}, \ldots, y_{n}\right)$ in a neighbourhood $V \subset \partial \bar{X}$ of $p \in \partial \bar{X}$. Take an open set $W \subset \partial \bar{X}$ which contains V, we may assume that $y_{i} \in C_{0}^{\infty}(W)$. From the resolution of the $\Delta_{g} u=0$ as in Subsection 5.1 (which follows Graham-Zworski [11]), there exists n smooth functions $\left(x_{1}, \ldots, x_{n}\right)$ on \bar{X} such that

$$
\Delta_{g} x_{i}=0, \quad x_{i}=y_{i}+\sum_{0<2 k<n} \rho^{2 k} p_{2 k} y_{i}+\rho^{n} \delta y_{i}+O\left(\rho^{n+1}\right)
$$

where p_{k} are differential operators on $\partial \bar{X}$ determined by the $\left(\partial_{t}^{k} h(0)\right)_{k=0, \ldots, n-1}$ at the boundary (using the form (5.1). Similarly let $y_{0} \in C_{0}^{\infty}(W)$ be a non zero smooth function such that $y_{0}=0$ in V, then by Subsection 5.1 there exists $v \in C^{\infty}(\bar{X})$ such that

$$
\Delta_{g} v=0, \quad v=y_{0}+\sum_{0<2 k<n} \rho^{2 k} p_{2 k} y_{0}+\rho^{n} \mathcal{S} y_{0}+O\left(\rho^{n+1}\right)
$$

Thus in particular v vanishes near p of order ρ^{n} since $p_{k} y_{0}=0$ in V for $k=1, \ldots, n$, thus one can write

$$
v=\rho^{n}(w+O(\rho))
$$

where w is a smooth function on $\partial \bar{X}$ near p. The set $\{m \in V ; w(m) \neq 0\}$ is an open dense set of V. Indeed, otherwise w would vanish in an open set of V but an easy computation shows that if $U \in \rho^{j} C^{\infty}(\bar{X})$ then $\Delta_{g} U=-j(j-n) U+O\left(\rho^{j+1}\right)$ so v would vanish to infinite order at an open set of V and by Mazzeo's unique continuation result 18, it would vanish identically in \bar{X}. Thus, possibly by changing p to another point (still denoted p for convenience), there exists $v \in C^{\infty}(\bar{X})$ such that v is harmonic for Δ_{g} and $v=\rho^{n}(w+O(\rho))$ with $w>0$ near p, the function $x_{0}:=u^{1 / n}$ then defines a boundary defining function of $\partial \bar{X}$ near p, it can be written as $v=\rho e^{f}$ for some smooth f. Then $\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ defines a system of coordinates near p.

Let us now consider Einstein equations in these coordinates. Again like (3.3), the principal part of $\operatorname{Ric}(g)$ is given by

$$
-\frac{1}{2} \sum_{\mu, \nu} g^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} g_{i j}-\frac{1}{2} \sum_{r}\left(g^{r i} \partial_{x_{j}}\left(\Delta_{g} x_{r}\right)+g^{r j} \partial_{x_{i}}\left(\Delta_{g} x_{r}\right)\right) .
$$

But all functions x_{r} are harmonics except v which satisfies

$$
0=\Delta_{g} x_{0}^{n}=-n \operatorname{div}_{g}\left(x_{0}^{n-1} \nabla^{g} x_{0}\right)=-n x_{0}^{n-1} \Delta_{g} x_{0}-n(n-1) x_{0}^{n-2}\left|d x_{0}\right|_{g}^{2}
$$

or equivalently $\Delta_{g} x_{0}=(1-n) x_{0}\left|d x_{0}\right|_{\rho^{2} g}^{2} e^{-2 f}$. But this involves only terms of order 0 in the metric g or $\bar{g}:=\rho^{2} g$ so the principal part of $\operatorname{Ric}(g)$ in these coordinates is

$$
-\frac{1}{2} \sum_{\mu, \nu} g^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} g_{i j}
$$

which is elliptic in the interior X. We multiply the equation $\operatorname{Ric}(g)=-n g$ by ρ^{2} and using (3.1) and (3.2), with the commutations relations $\left[x_{0} \partial_{x_{0}}, x_{0}^{\alpha}\right]=\alpha$ for all $\alpha \in \mathbb{C}$, it is straightforward to obtain
Lemma 5.2. Let $x=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be the coordinates defined above near a point $p \in\left\{x_{0}=0\right\}$, then Einstein equation for g can be written under the system

$$
\begin{equation*}
\sum_{\mu, \nu} x_{0}^{2} \bar{g}^{\mu \nu} \partial_{x_{\mu}} \partial_{x_{\nu}} \bar{g}_{i j}+Q_{i j}\left(x, \bar{g}, x_{0} \partial \bar{g}\right)=0, \quad i, j=0, \ldots, n \tag{5.7}
\end{equation*}
$$

where $\bar{g}=\rho^{2} g$ with ρ geodesic boundary defining function in $\bar{X}, Q_{i j}(x, A, B)$ are smooth and polynomial of order 2 in B, and $x_{0} \partial \bar{g}:=\left(x_{0} \partial_{x_{m}} \bar{g}_{i j}\right)_{m, i, j} \in \mathbb{R}^{(n+1)^{3}}$.
5.3. Reconstruction near the boundary and proof of Theorem 1.3. The proof of Theorem 1.3 is again fairly close to that of Theorem 1.1. Let $\left(X_{1}, g_{1}\right)$ and $\left(\bar{X}_{2}, g_{2}\right)$ be conformally compact Einstein manifolds with geodesic boundary defining functions ρ_{1} and ρ_{2}. Let S_{i} be the scattering map for g_{i} defined by (1.3) using the boundary defining function ρ_{i}, assume that $\partial \bar{X}_{1}$ and $\partial \bar{X}_{2}$ contain a common open set Γ such that $\left.S_{1} f\right|_{\Gamma}=\left.S_{2} f\right|_{\Gamma}$ for all $f \in C_{0}^{\infty}(\Gamma)$. Using the geodesic boundary defining function ρ_{i} for $g_{i}, i=1,2$, there is a diffeomorphism $\phi^{i}:[0, \epsilon)_{t} \times$ $\partial \bar{X}_{i} \rightarrow \phi^{i}\left([0, \epsilon) \times \partial \bar{X}_{i}\right) \subset \bar{X}_{i}$ as in (5.1) so that

$$
\begin{equation*}
\left(\phi^{i}\right)^{*} g_{i}=\frac{d t^{2}+h_{i}(t)}{t^{2}} \tag{5.8}
\end{equation*}
$$

where $h_{i}(t)$ is a family of metric on $\partial \bar{X}_{i}$. We first show the
Lemma 5.3. The metrics $h_{1}(t)$ and $h_{2}(t)$ satisfy $\left.\partial_{t}^{j} h_{1}(0)\right|_{\Gamma}=\left.\partial_{t}^{j} h_{2}(0)\right|_{\Gamma}$ for all $j \in \mathbb{N}_{0}$.

Proof: For M compact manifold, let us denote $\Psi^{z}(M)$ the set of classical pseudodifferential operators of order $z \in \mathbb{R}$ on M. Since S_{i} is the scattering operator $S_{i}(\lambda)$ at energy $\lambda=n$ for $\Delta_{g_{i}}$ as defined in 13], we can use [13, Th.1.1], then we have that $\mathcal{S}_{i} \in \Psi^{n}\left(\partial \bar{X}_{i}\right)$ for $i=1,2$, with principal symbol $\sigma_{n}^{i}(y, \xi)=2^{-n} \Gamma\left(-\frac{n}{2}\right) / \Gamma\left(\frac{n}{2}\right)|\xi|_{h_{i}(0)}$, thus $h_{1}(0)=h_{2}(0)$ on Γ and $\chi\left(\mathcal{S}_{1}-\mathcal{S}_{2}\right) \chi \in \Psi^{n+1}(\Gamma)$ for all $\chi \in C_{0}^{\infty}(\Gamma)$. Now we use Einstein equation, for instance the results of 7, 8] (see also [9, Sec. 2]) show, using only Taylor expansion of $\operatorname{Ric}(g)=-n g$ at the boundary, that

$$
\left.\partial_{t}^{j} h_{1}(0)\right|_{\Gamma}=\left.\partial_{t}^{j} h_{2}(0)\right|_{\Gamma}, \quad j=0, \ldots, n-1
$$

Then we use Theorem 1.2 of [13] which computes the principal symbol of $\mathcal{S}_{1}-\mathcal{S}_{2}$. Since this result is entirely local, we can rephrase it on the piece Γ of the boundary: if there exists a symmetric 2-tensor L on Γ such that $h_{1}(t)=h_{2}(t)+t^{k} L+O\left(t^{k+1}\right)$ on $[0, \epsilon)_{t} \times \Gamma$ for some $k \in \mathbb{N}$, then for any $\chi \in C_{0}^{\infty}(\Gamma)$ we have $\chi\left(\mathcal{S}_{1}-\mathcal{S}_{2}\right) \chi \in \Psi^{n-k}(\Gamma)$ and the principal symbol of this operator at $(y, \xi) \in T^{*} \Gamma$ is ${ }^{1}$

$$
\begin{equation*}
A_{1}(k, n) L\left(\xi^{*}, \xi^{*}\right)|\xi|_{h_{0}}^{n-k-2}+A_{2}(k, n) \frac{k(k-n) \operatorname{Tr}_{h_{0}}(L)}{4}|\xi|_{h_{0}}^{n-k} \tag{5.9}
\end{equation*}
$$

where $h_{0}:=\left.h_{1}(0)\right|_{\Gamma}=\left.h_{2}(0)\right|_{\Gamma}, \xi^{*}:=h_{0}^{-1} \xi \in T_{y} \Gamma$ is the dual of ξ through h_{0}, and $A_{i}(k, \lambda)$ are the meromorphic functions of $\lambda \in \mathbb{C}$ defined by

$$
\begin{aligned}
A_{1}(k, \lambda) & :=-\pi^{-\frac{n}{2}} 2^{k-2 \lambda+n} \frac{\Gamma\left(\frac{n}{2}-\lambda+\frac{k}{2}+1\right)}{\Gamma\left(\lambda-\frac{k}{2}-1\right)} \frac{\Gamma(\lambda)^{2}}{\Gamma\left(\lambda-\frac{n}{2}+1\right)^{2}} \frac{T_{1}(k, \lambda)}{M(\lambda)} \\
A_{2}(k, \lambda) & :=\pi^{-\frac{n}{2}} 2^{k-2 \lambda+n-2} \frac{\Gamma\left(\frac{n}{2}-\lambda+\frac{k}{2}\right)}{\Gamma\left(\lambda-\frac{k}{2}\right)} \frac{\Gamma(\lambda)^{2}}{\Gamma\left(\lambda-\frac{n}{2}+1\right)^{2}} \frac{T_{2}(k, \lambda)}{M(\lambda)}
\end{aligned}
$$

where $T_{l}(k, \lambda)$ is defined, when the integral converges, by

$$
T_{l}(k, \lambda):=\int_{0}^{\infty} \int_{\mathbb{R}^{n}} \frac{u^{2 \lambda-n+k+3-2 l}}{\left(u^{2}+|v|^{2}\right)^{\lambda}\left(u^{2}+\left|e_{1}-v\right|^{2}\right)^{\lambda}} d v_{\mathbb{R}^{n}} d u, \quad e_{1}=(1,0, \ldots, 0)
$$

and $M(\lambda) \in \mathbb{C}$ is a constant not explicitly computed in 13. However at $\lambda=n$ the constant $M(n)$ is defined in 13, Sec. 4] such that $u(z) / n=M(n) f+O(\rho(z))$ where $u(z)$ is the function of (5.6), so $M(n)=n$ by (5.4). Since we are interested

[^0]in the case $k=n$, only the term with $A_{1}(n, n)$ appears, and setting $\lambda=n$ in $A_{1}(n, \lambda)$, with the explicit formulae above and the fact that $T_{1}(n, n)>0$ converges by Lemma 5.2 of [13], we see easily that $A_{1}(n, n) \neq 0$ if $n>2$. Since we assumed $\chi \mathrm{S}_{1} \chi=\chi \mathrm{S}_{2} \chi$, this implies that $L=0$ and $h_{1}-h_{2}=O\left(t^{n+1}\right)$ near Γ. We finally use again [7, 8, where it is proved that if $g_{1}=g_{2}+O\left(\rho^{n-1}\right)$ with g_{1}, g_{2} conformally compact Einstein and n odd, then $g_{1}=g_{2}+O\left(\rho^{\infty}\right)$. Notice that their arguments are entirely local near any point of the boundary, so we can apply it near the piece Γ of the boundary.

Lemma 5.4. For $i=1,2$, there exist $p \in \Gamma$, some neighbourhoods U_{i} of p in \bar{X}_{i} with $U_{i} \cap X_{i} \neq \emptyset$ and a diffeomorphism $F: U_{1} \rightarrow U_{2},\left.F\right|_{U_{1} \cap \Gamma}=I d$, such that $F^{*} H_{2}=H_{1}$.

Proof: It is very similar to the proof of Lemma 3.4, we will thus be more concise. We may work in the collar $[0, \epsilon)_{t} \times \Gamma$ through the diffeomorphism ϕ^{i} as in (5.8). In a neighbourhood $U \subset[0, \epsilon) \times \Gamma$ of $p \in \Gamma$, we use coordinates $x^{i}:=\left(x_{0}^{i}, \ldots, x_{n}^{i}\right)$ defined in Subsection 5.2 for g_{i} with boundary values $\left.x_{j}^{1}\right|_{t=0}=\left.x_{j}^{2}\right|_{t=0} \in C_{0}^{\infty}(\Gamma)$ for all j, and set $\psi: U \rightarrow \psi(U) \subset[0, \epsilon) \times \Gamma$ such that $x_{j}^{1}=\psi^{*} x_{j}^{2}$, which is a diffeomorphism near p. Then Einstein equation is of the form (5.7) by Lemma 5.2. Moreover g_{1} and g_{2} coincide to infinite order at $t=0$ by Lemma 5.3, so the coordinates x^{1} and x^{2} satisfy $\Delta_{g_{1}}\left(x_{j}^{1}-x_{j}^{2}\right)=O\left(t^{\infty}\right)$ for all j. Since x^{1}, x^{2} have the same boundary values, they agree to order $O\left(t^{n}\right)$ using the construction of F_{n-1} in (5.3). But since $\mathcal{S}_{1}\left(\left.x_{j}^{1}\right|_{\Gamma}\right)=\mathcal{S}_{2}\left(\left.x_{j}^{2}\right|_{\Gamma}\right)$, one has $x_{j}^{1}=x_{j}^{2}+O\left(t^{n+1}\right)$, which again by induction and (5.2) shows that $x_{j}^{1}=x_{j}^{2}+O\left(t^{\infty}\right)$. In particular, if $H_{i}:=\phi^{i^{*}}\left(\rho_{i}^{2} g_{i}\right)$, this implies that $\left.H_{1}\right|_{U \cap\{t=0\}}=\left.\psi^{*} H_{2}\right|_{U \cap\{t=0\}}$ and $\left.\partial_{x_{0}^{1}} H_{1}\right|_{U \cap\{t=0\}}=\left.\partial_{x_{0}^{1}} \psi^{*} H_{2}\right|_{U \cap\{t=0\}}$. Thus $\bar{g}:=H_{1}$ and $\bar{g}:=\psi^{*} H_{2}$ both satisfy the system (5.7) with same Cauchy data at the boundary $\{t=0\}$ near p, so by Proposition 4.2, we deduce that $H_{1}=\psi^{*} H_{2}$ and this ends the proof by setting $F:=\phi^{2} \circ \psi \circ\left(\phi^{1}\right)^{-1}$.

We finish by the following Corollary, similar to Corollary 3.5.
Corollary 5.5. Let $G_{i}\left(z, z^{\prime}\right)$ be the Green kernel for $g_{i}, i=1,2$. Then $\left.\mathcal{S}_{1}\right|_{\Gamma}=\left.\mathcal{S}_{2}\right|_{\Gamma}$ implies that there exists an open set U_{1} such that $G_{1}\left(z, z^{\prime}\right)=G_{2}\left(F(z), F\left(z^{\prime}\right)\right)$ for all $\left(z, z^{\prime}\right) \in\left(U_{1} \times U_{1}\right) \backslash\left\{z=z^{\prime}\right\}$.

Proof: Again the proof is very close to that of Corollary 3.5, we do not repeat it in full detail then. To prove it, we first take $y^{\prime} \in U_{1} \cap \Gamma$, and consider $T_{1}(z):=$ $\left.\left[\rho_{1}\left(z^{\prime}\right)^{-n} G_{1}\left(z, z^{\prime}\right)\right]\right]_{z^{\prime}=y^{\prime}}$ and $T_{2}(z):=\left.\left[F^{*} \rho_{2}\left(z^{\prime}\right)^{-n} G_{2}\left(F(z), F\left(z^{\prime}\right)\right)\right]\right|_{z^{\prime}=y^{\prime}}$. They both satsify $\Delta_{g_{1}} T_{i}(z)=0$ for $z \in U_{1}$ and by Lemma .1 and the assumption $\left.\mathcal{S}_{1}\right|_{\Gamma}=\left.\mathcal{S}_{2}\right|_{\Gamma}$, we have that $T_{1}-T_{2}=O\left(\rho_{1}^{n+1}\right)$ near $\Gamma \backslash\left\{y^{\prime}\right\}$, so by induction on (5.2), $T_{1}=$ $T_{2}+O\left(\rho_{\infty}^{1}\right)$ in $U_{1} \backslash\left\{y^{\prime}\right\}$, and then by the unique continuation result of Mazzeo [18], $T_{1}=T_{2}$ in the same set. Now this means that for $z^{\prime} \in U_{1}, z \rightarrow G_{1}\left(z^{\prime}, z\right)$ and $z \rightarrow G_{2}\left(F\left(z^{\prime}\right), F(z)\right)$ are harmonic for $\Delta_{g_{1}}$ in $U_{1} \backslash\left\{z^{\prime}\right\}$, and they coincide to order ρ_{1}^{n+1} at Γ, so again by unique continuation they are equal.
5.4. Proof of Theorem 1.3. Using Corollary 5.5 and the fact that $\left(X_{1}, g_{1}\right)$ and $\left(X_{2}, g_{2}\right)$ are analytic since Einstein, it suffices to apply Theorem 4.1 of 16], which is essentially the same as Proposition 3.6 but for complete manifold.

References

[1] S. Alinhac, S. Baouendi, Uniqueness for the characteristic Cauchy problem and strong unique continuation for higher order partial differential operators, Amer. Journ. Math. 102, no. 1, (1980), 179-217.
[2] M. Anderson, Geometric aspects of the AdS/CFT correspondence. AdS/CFT correspondence: Einstein metrics and their conformal boundaries, IRMA Lect. Math. Theor. Phys., 8, Eur. Math. Soc., Zrich, 2005, 1-31.
[3] O. Biquard, Continuation unique a partir de l'infini conforme pour les metriques d'Einstein, Arxiv:0708.4346.
[4] A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. Jour. Math. 80 (1958), 16-36.
[5] A.P. Calderón, Existence and uniqueness for systems of partial differential equations, in Proc. Symp. Fluid Dynamics and Appl. Maths (University of Maryland, 1961), Gordon and Breach (1962).
[6] D.M. DeTurck, J.L. Kazdan, Some regularity theorems in Riemannian geometry. Ann. Sci. cole Norm. Sup. (4) 14 (1981), no. 3, 249-260.
[7] C. Fefferman and C. R. Graham, Conformal invariants, Asterisque, vol. hors série, Soc. math. France, 1985, 95-116.
[8] C. Fefferman and C.R. Graham, The ambient metric, in preparation.
[9] C.R. Graham, Volume and area renormalizations for conformally compact Einstein metrics, Rend. Circ. Mat. Palermo, Ser.II, Suppl. 63 (2000), 31-42.
[10] C.R. Graham, J.M. Lee, Einstein metrics with prescribed conformal infinity on the ball, Adv. Math. 87 (1991), no. 2, 186-225.
[11] C.R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (2003), no. 1, 89-118.
[12] C. Guillarmou, Meromorphic properties of the resolvent for asymptotically hyperbolic manifolds, Duke Math. J. 129 no 1 (2005), 1-37.
[13] M. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41-86.
[14] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol 1, Intersciences, NewYork, 1964
[15] M. Lassas, G. Uhlmann, On determining a Riemannian manifold from the Dirichlet-toNeumann map. Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 771-787.
[16] M. Lassas, M. Taylor, G. Uhlmann, The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Communications in Analysis and Geometry 11 (2003), 207-222.
[17] J.M. Lee, G. Uhlmann, Determining anisotropic real-analytic conductivities by boundary measurements. Comm. Pure Appl. Math. 42 (1989), no. 8, 1097-1112.
[18] R. Mazzeo, Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds. Amer. J. Math. 113 (1991), no. 1, 25-45.
[19] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Diff. Geom. 28 (1988), 309-339.
[20] R. Mazzeo, Elliptic theory of differential edge operators. I, Commun. Partial Diff. Equations 16 (1991), 1615-1664.
[21] R. Mazzeo, R.B. Melrose Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310.
[22] R.B. Melrose, Geometric scattering theory, Cambridge University Press, Cambridge, 1995.
[23] A. Nachman, Reconstructions from boundary measurements. Ann. of Math. (2) 128 (1988), no. 3, 531-576.
[24] J. Sylvester, G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. of Math. (2) $\mathbf{1 2 5}$ (1987), no. 1, 153-169
[25] G. Uhlmann, Developments in inverse problems since Calderón's foundational paper. Harmonic analysis and partial differential equations (Chicago, IL, 1996), 295-345, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 1999.

Laboratoire J.-A. Dieudonné, U.M.R. 6621 du C.N.R.S., Université de Nice, Parc Valrose, 06108 Nice Cedex 02, France

E-mail address: cguillar@math.unice.fr
Department of mathematics, Purdue University, 150 N. University Street, WestLafayette, IN 47907, USA

E-mail address: sabarre@math.purdue.edu

[^0]: ${ }^{1}$ It is important to notice that the coefficient of $|\xi|^{n-k}$ in 5.9 is not exactly that of Theorem 1.2 of [13], indeed there is a typo in equation (3.5) in 13, Prop 3.1]: the coefficient in front of $T=\operatorname{Tr}_{h_{0}}(L)$ there should be $k(k-n) / 4$ instead of $k(k+1) / 4$, this comes from the fact that, in the proof of 13, Prop 3.1], the term

 $$
 \frac{1}{16} x^{2} f \partial_{x} \log \left(\delta_{2} / \delta_{1}\right) \partial_{x} \log \left(\delta_{2} \delta_{1}\right)=-\frac{k(n+1)}{4} f x^{k} T+O\left(x^{k+1}\right)
 $$

 while it has been considered as a $O\left(x^{k+1}\right)$ there.

