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INVERSE PROBLEMS FOR EINSTEIN MANIFOLDS

COLIN GUILLARMOU AND ANTÔNIO SÁ BARRETO

Abstract. We show that the knowledge of the Dirichlet-to-Neumann opera-
tor of the Laplacian on an open subset of the boundary of a compact Einstein
manifold with boundary determines the manifold up to isometries. Similarly,
for conformally compact Einstein manifolds, we prove that the knowledge of
either the scattering operator at energy n, or the Dirichlet-to-Neumann map
for the conformal compactification, on an open subset of the boundary of the
manifold, determines the manifold up to isometries.

1. Introduction

The purpose of this note is to prove that for either compact Einstein manifolds
with boundary or conformally compact Einstein manifolds of even dimensions, the
natural Dirichlet-to-Neumann map, on an open subset of the boundary, determines
the isometry class of (X̄, g).

The Dirichlet-to-Neumann (DN in short) map N : C∞(∂X̄) → C∞(∂X̄) for the
Laplacian on a Riemannian manifold with boundary (X̄, g) is defined by solving
the Dirichlet problem

(1.1) ∆gu = 0, u|∂X̄ = f

where f ∈ C∞(∂X̄) is given, then Nf := −∂nu|M where ∂n is the interior pointing
normal vector field to the boundary for the metric g. It is an elliptic pseudo-
differential operator of order 1 on the boundary, see for example [17]. Mathemat-
ically, it is of interest to know what this map determines about the geometry of
the manifold, but N can also be interpreted as a boundary measurement of current
flux in terms of voltage in electrical impedance tomography. We refer to [25] for
a survey in the field, and to [17, 23, 24, 15] for significant results about that problem.

Our first result answers a conjecture of Lassas and Uhlmann [15]

Theorem 1.1. Let (X̄1, g1) and (X̄2, g2) be two smooth compact manifolds with

respective boundaries ∂X̄1 and ∂X̄2. We suppose that g1 and g2 are Einstein with

the same constant λ ∈ R, i.e. Ric(gi) = λgi for i = 1, 2. Assume that ∂X̄1 and

∂X̄2 contain a common open set Γ such that the Dirichlet-to-Neumann map Ni of

∆gi
on X̄i for i = 1, 2 satisfy (N1f)|Γ = (N2f)|Γ for any f ∈ C∞

0 (Γ), then there

exists a diffeomorphism J : X̄1 → X̄2, such that J∗g2 = g1.

Then we consider a class of non-compact complete Einstein manifolds, but con-
formal to a compact manifold. In this case we say that (X, g) is Einstein, with
dimX = n+ 1, if

Ric(g) = −ng.

We say that a Riemannian manifold (X, g) is conformally compact if X compactifies
into a smooth manifold with boundary X̄ and for any boundary defining function
ρ of X̄, ḡ := ρ2g extends to X̄ as a smooth metric. Such a metric g is necessarily
complete onX and its sectional curvatures are pinched negatively outside a compact
set of X. The metric ḡ is not complete on X̄.
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It has been shown in [10, 9] that if (X, g) is asymptotically hyperbolic, or in
particular if (X, g) is Einstein, then there exists a family of boundary defining
functions ρ (i.e. ∂X̄ = {ρ = 0} and dρ|∂X̄ does not vanish) such that |dρ|ρ2g = 1
near the boundary. These will be called geodesic boundary defining functions. Note
that, in this case, a DN map can not be defined as in (1.1) since ∆g is not an
elliptic operator at the boundary. However there are two natural replacements for
the DN map in this setting. The first operator to consider is the DN map of the
compactifed metric ḡ = ρ2g. We prove

Theorem 1.2. Let (X1, g1) and (X2, g2) be two conformally compact manifolds

with respective conformal boundary ∂X̄1 and ∂X̄2 which contain an common open

set Γ. Assume that g1 and g2 are Einstein and that, for i = 1, 2, there exist geodesic

boundary defining functions ρi of X̄i such that the Dirichlet-to-Neumann map Ni

of the Laplacian on (X̄i, ρ
2
i gi) satisfy (N1f)|Γ = (N2f)|Γ for all f ∈ C∞

0 (Γ). Then

there is a diffeomorphism J : X̄1 → X̄2, such that J∗(g2) = g1.

The second natural analogue of the DN map on a conformally compact Einstein
manifold (X, g) is related to scattering theory, at least in the point of view of Mel-
rose [22]. We consider an n+1-dimensional conformally compact Einstein manifold
(X, g) with n + 1 even. Following [13, 11], the scattering map for a conformally
compact Einstein manifold (X, g) (and more generally for asymptotically hyper-
bolic manifolds) is an operator S : C∞(∂X̄) → C∞(∂X̄), constructed by solving
a Dirichlet problem in a way similar to (1.1). This will be discussed in details
in section 4. We show that for all f ∈ C∞(∂X̄), there exists a unique function
u ∈ C∞(X̄) such that

∆gu = 0 and u|∂X = f.(1.2)

Since there is no canonical normal vector field at the boundary defined from g
(recall that g blows-up at the boundary), we can consider ḡ := ρ2g for some geodesic
boundary defining function and take the unit normal vector field for H , that is ∇ḡρ,
which we denote by ∂ρ. It turns out that (∂k

ρu|∂X̄)k=1,...,n−1 are locally determined
by u|∂X̄ = f and the first term in the Taylor expansion of u which is global is the
n-th ∂n

ρ u|∂X̄ . We thus define Sf ∈ C∞(∂X̄) by

(1.3) Sf :=
1

n!
∂n

ρ u|∂X̄ .

Notice that S a priori depends on the choice of ρ, we shall say that it is associated to
ρ. It can be checked that if ρ̂ = eωρ is another geodesic boundary defining function

with ω ∈ C∞(X̄), then the scattering map Ŝ associated to ρ̂ satisfy Ŝ = enω0S

where ω0 = ω|∂X̄ , see [11] and Subsection 5.1 below.
We also remark that the fact that u ∈ C∞(X̄) strongly depends on the fact that

the manifold under consideration is Einstein and has even dimensions. For more
general asymptotically hyperbolic manifolds, the solution u to (1.2) possibly has a
logarithmic singularity by [11]. Our third result is the following

Theorem 1.3. Let (X1, g1) and (X2, g2) be two n + 1-dimensional conformally

compact manifolds with n + 1 even and assume g1 and g2 are Einstein. Suppose

that ∂X̄1 and ∂X̄2 contain a common open set Γ and that, for i = 1, 2, there

exist boundary defining functions ρi of X̄i such that the scattering maps Si of ∆gi

associated to ρi satisfy (S1f)|Γ = (S2f)|Γ for all f ∈ C∞
0 (Γ). Then there is a

diffeomorphism J : X̄1 → X̄2, such that J∗g2 = g1 in X1.

The proofs are based on the results of Lassas and Uhlmann [15], and Lassas,
Taylor and Uhlmann [16], and suitable unique continuation theorems for Einstein’s
equation.
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It is shown in [15] that a compact manifold with boundary (X̄ = X ∪ ∂X̄, g), is
determined by the Dirichlet-to-Neumann if the interior (X, g) is real analytic, and
if there exists an open set Γ of the boundary ∂X̄ which is real analytic with g real
analytic up to Γ. In [16] Lassas, Taylor and Uhlmann prove the analogue of this
result for complete manifolds.

A theorem of De Turck and Kazdan [6], says that if (X̄, g) is an Einstein manifold
with boundary then g is real-analytic in the interior X, but it is not necessarily real
analytic at the boundary, so one cannot directly apply the result of [16]. To prove
Theorems 1.1, 1.2, 1.3, we first show that the DN map (or the scattering map)
determines the metric in a small neighbourhood U of a point p ∈ Γ ⊂ ∂X̄, then we
shall prove that this determines the Green’s function in U ×U. However one of the
results of [16] says that this determines the whole Riemannian manifold, provided
it is real-analytic, but according to [6] it is the case of the interior of an Einstein
manifold.

The essential part in this paper is the reconstruction near the boundary. This
will be done using ellipticity of Einstein equation in harmonic coordinates and by
applying a unique continuation theorem for the Cauchy problem for elliptic system.
The unique continuation result we need in the compact case was proved by Calderón
[4, 5] but the conformally compact case is more involved since the system is actually
not truly elliptic at the boundary but only elliptic in the uniformly degenerate sense
of [21, 18, 19, 20], see also [1]. We learnt that, at the same time, O. Biquard [3]
proved a unique continuation result for Einstein manifolds without using the DN
map for functions, this problem is part of the program of M. Anderson [2]. Under
our assumptions, it seems somehow natural to use harmonic coordinates for Einstein
equation, and we notice that our approach is self-contained and does not require
the result of [3].
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The work of both authors was funded by the NSF under grant DMS-0500788.
C.G. acknowledges support of french ANR grants JC05-52556 and JC0546063 and
thanks the MSI at ANU, Canberra, where part of this work was achieved. We thank
Erwann Delay, Robin Graham and Gunther Uhlmann for helpful conversations.

3. Inverse problem for Einstein manifolds with boundary

In [6], De Turck and Kazdan proved that closed or open Einstein manifolds are
real analytic, using harmonic coordinates. The principle is that Einstein’s equation
becomes a non-linear elliptic system in these coordinates and with real analytic
coefficient, thus the real analyticity of the solutions. However, for a Riemannian
manifold with boundary (X̄ = X ∪ ∂X̄, g) the argument breaks down since the
boundary can have low regularity even though g has constant Ricci curvature. We
mean that the open incomplete manifold X is real-analytic but not X̄.

3.1. The Dirichlet-to-Neumann map. As written in the Introduction,

N : C∞(∂X̄) → C∞(∂X̄)

is defined by solving the Dirichlet problem (1.1) with f ∈ C∞(∂X̄), and setting
Nf := −∂nu|M where ∂n is the interior pointing normal vector to the boundary for
the metric g. Its Schwartz kernel is related to the Green function G(z, z′) of the
Laplacian ∆g with Dirichlet condition on ∂X̄ by the following identity

Lemma 3.1. The Schwartz kernel N(y, y′) of N is given for y, y′ ∈ ∂X̄, y 6= y′, by

N(y, y′) = ∂n∂n′G(z, z′)|z=y,z′=y′
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where ∂n, ∂n′ are respectively the normal vector fields to the boundary in variable z
and z′.

Proof : Let x be the distance function to the boundary in X̄, it is smooth in a
neighbourhood of ∂X̄ and the normal vector field to the boundary is the gradient
∂n = ∇gx of x. The flow φt of ∇gx induces a diffeomorphism φ : [0, ǫ)t × ∂X̄ →
φ([0, ǫ) × ∂X̄) defined by φ(t, y) := et∂n(y) and we have x(φ(t, y)) = t. This
induces natural coordinates z = (x, y) near the boundary, these are normal geodesic
coordinates. The function u in (1.1) can be obtained by taking

u(z) := χ(z) −

∫

X̄

G(z, z′)(∆gχ)(z′)dz′

where χ is any smooth function on X̄ such that χ = f +O(x2). Now using Green’s
formula and ∆g(z)G(z, z′) = δ(z− z′) = ∆g(z

′)G(z, z′) where δ(z− z′) is the Dirac
mass on the diagonal, we obtain for z ∈ X

u(z) =

∫

∂X̄

(
∂n′G(z, z′)χ(z′)

)
|z′=y′dy′ −

∫

∂X̄

(
G(z, z′)(∂nχ)(z′)

)
|z′=y′dy′

u(z) =

∫

∂X̄

(
∂n′G(z, z′)

)
|z′=y′f(y′)dy′

.

We have a Taylor expansion u(x, y) = f(y) + xNf(y) + O(x2) near the boundary
and thus pairing with φ ∈ C∞(∂X̄) gives

∫

∂X̄

u(x, y)φ(y)dy =

∫

∂X̄

f(y)φ(y)dy + x

∫

∂X̄

f(y)Nf(y)dy +O(x2).

Now taking φ such that φf = 0, we see, using the fact that Green’s function G(z, z′)
is smooth outside the diagonal, that

∫

∂X̄

φ(y)Nf(y)dy =

∫

∂X̄

∫

∂X̄

(
∂n∂n′G(z, z′)

)
|z=y,z′=y′f(y′)φ(y)dydy′,

which proves the claim. �

3.2. The Ricci tensor in harmonic coordinates and unique continuation.

Let us take coordinates x = (x0, x1, . . . , xn) near a point p ∈ ∂X̄, with x0 a
boundary defining function of ∂X̄, then Ric(g) is given by definition by

(3.1) Ric(g)ij =
∑

k

(
∂xk

Γk
ji − ∂xj

Γk
ki +

∑

l

Γk
klΓ

l
ji −

∑

l

Γk
jlΓ

l
ki

)

with

(3.2) Γk
ji =

1

2

∑

m

gkm
(
∂xi

gmj + ∂xj
gmi − ∂xm

gij

)
.

Lemma 1.1 of [6] shows that ∆gxk =
∑

i,j g
ijΓk

ij , so Einstein equation Ric(g) = λg
for some λ ∈ R can be written as the system
(3.3)

−
1

2

∑

µ,ν

gµν∂xµ
∂xν

gij −
1

2

∑

r

(gri∂xj
(∆gxr) + grj∂xi

(∆gxr)) +Qij(x, g, ∂g) = 0

where Qij(x,A,B) is smooth and polynomial of degree two in B, where A,B denote

vectors (gkl)k,l ∈ R(n+1)2 and (∂xm
gkl)k,l,m ∈ R(n+1)3 . From this discussion we

deduce the following

Proposition 3.2. Let (x0, x1, . . . , xn) be harmonic coordinates for ∆g near a point

p ∈ {x0 = 0}, then there exists Qij(x,A,B) polynomial of degree 2 in B ∈ R(n+1)3 ,



INVERSE PROBLEMS FOR EINSTEIN MANIFOLDS 5

with smooth coefficients in a neighbourhood of p, such that Ric(g) = −ng is equiv-

alent near p to the system

(3.4)
∑

µ,ν

gµν∂xµ
∂xν

gij +Qij(x, g, ∂g) = 0

with ∂g := (∂xm
ḡkl)k,l,m ∈ R

(n+1)3 .

Now we may apply directly Calderon uniqueness theorem [4, 5], which gives

Proposition 3.3. If C := (cij)i,j=0,...,n, D := (dij)i,j=0,...,n are smooth symmetric

2-tensors near p ∈ {x0 = 0}, with C positive definite, the system (3.4) near p with

boundary conditions gij |x0=0 = cij and ∂x0
gij |x0=0 = dij , i, j = 0, . . . , n, has at

most a unique smooth solution.

3.3. Reconstruction near the boundary. Throughout this section we assume
that (X̄1, g1), (X̄2, g2) are Einstein manifolds with boundary Mj = ∂X̄j, j = 1, 2,
such that M1 and M2 contain a common open set Γ. Moreover we assume that for
every f ∈ C∞

0 (Γ), the Dirichlet-to-Neumann maps satisfy

N1f |Γ = N2f |Γ.

We first prove

Lemma 3.4. For i = 1, 2, there exists p ∈ Γ, some neighbouroods Ui of p in X̄i

with Ui ∩ Xi 6= ∅ and a diffeomorphism F : U1 → U2, F |U1∩Γ = Id, such that

F ∗g2 = g1.

Proof : For i = 1, 2, let ti = dist(., ∂X̄i) be the distance to the boundary in X̄i,
then the flow et∇gi ti of the gradient ∇giti induces a diffeomorphism

φi : [0, ǫ) × ∂X̄i → φi([0, ǫ) × ∂X̄i)

φi(t, y) := et∇gi ti(y),

and we have the decomposition near the boundary (φi)∗gi = dt2i + hi(ti) for some
one-parameter family of metrics hi(ti) on ∂X̄i. Lee-Uhlmann [15] proved that
N1|Γ = N2|Γ implies that

(3.5) ∂k
t1h1|Γ = ∂k

t2h2|Γ, ∀ k ∈ N0.

Let us now consider Hi := φi∗gi on the collar [0, ǫ)t × Γ. Let p ∈ Γ be a point
of the boundary and (y1, . . . , yn) be a set of local coordinates in a neighbourhood
of p in Γ, and extend each yj to [0, ǫ) × Γ by the function (t,m) → yj(m). Using
z := (t, y1, . . . , yn) as coordinates on [0, ǫ)×Γ near p, then (3.5) shows that there is
an open neighbourhood U of p in [0, ǫ)t×Γ such that H2 = H1 +O(t∞) and we can
always assume U ∩{t = 0} 6= Γ. Let y0 ∈ C∞

0 (Γ) with y0 = 0 on U ∩{t = 0} but y0
not identically 0, and by cutting off far from p me may assume that yj ∈ C∞

0 (Γ) for
j = 1, . . . , n. Now let (x1

0, x
1
1, . . . , x

1
n) and (x2

0, x
2
1, . . . , x

2
n) be harmonic functions

near p in [0, ǫ) × Γ for respectively H1 and H2 such that x1
j = x2

j = yj on {t = 0}.

These functions are constructed by solving the Dirichlet problem ∆gi
wi

j = 0 on

X̄i with boundary data wi
j |Mi

= yj, i = 1, 2, and j = 0, . . . , n, and by setting

xi
j = φi∗wi

j . Note that {m ∈ U ∩ Γ;xi
0(m) = 0, dxi

0(m) = 0} is a closed set with

empty interior in U ∩ {t = 0}, since otherwise xi
0 would vanish to order 2 on an

open set of {t = 0}, thus by unique continuation it would be identically 0 since it
is harmonic. Then (x1

0, . . . , x
1
n) and (x2

0, . . . , x
2
n) form coordinate systems near at

least a common point of U ∩ {t = 0}; for convenience let us denote again p this
point and U ⊂ [0, ǫ)×Γ an open set containing p where they both form coordinates.

We have ∆H1
(x1

j − x2
j ) = O(t∞) and ∂tx

1
j |t=0 = ∂tx

2
j |t=0 for all j since N1|Γ =

N2|Γ. Since u = x1
j − x2

j is solution of ∆H1
u = O(t∞) in U with u vanishing
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at order 2 at the boundary t = 0, a standard Taylor expansion argument shows
that x1

j = x2
j + O(t∞) in U for all j. Now define ψ : U → ψ(U) ⊂ U so that

(x1
0, . . . , x

1
n) = (ψ∗x2

0, . . . , ψ
∗x2

n). Then ψ = Id +O(t∞) in U , and consequently we
obtain in U

(3.6) ψ∗H2 = H1 +O(t∞).

The metrics g = H1 and g = ψ∗H2 both satisfy Einstein equation Ric(g) = λg in
U . Moreover in coordinates (x1

0, . . . , x
1
n) this correspond to the system (3.4) and

since the coordinates are harmonic with respect to g, the system is elliptic and
diagonal to leading order. From the unique continuation result in Proposition 3.3,
we conclude that there exists a unique solution to this system in U1 with given initial
data g|U∩{t=0} and ∂x1

0

g|U∩{t=0}. In view of (3.6), this proves that H1 = ψ∗H2 in

U . Now it suffices to go back to X̄1 and X̄2 through φ1, φ2 and we have proved the
Lemma by setting Ui := φi(U) and

F := φ2 ◦ ψ ◦ (φ1)−1.(3.7)

�

Next we prove

Corollary 3.5. For i = 1, 2, let Gi(z, z
′) be the Green function of ∆gi

in X̄i with

Dirichlet condition at M , then N1|Γ = N2|Γ implies that there exists an open set

U1 ⊂ X1 with

G2(F (z), F (z′)) = G1(z, z
′), (z, z′) ∈ (U1 × U1) \ {z = z′},

where F was defined in (3.7)

Proof : First we remark that g1 is Einstein and thus real analytic in U1 \ (U1 ∩M),
so is any harmonic function in this open set. Let ∂n, ∂n′ be the normal vector
fields to the boundary in first and second variables in U1 × U1 respectively, as
defined in Lemma 3.1. We see from the proof of Lemma 3.4 that F∗∂n and F∗∂n′

are the normal vector fields to the boundary in the first and second variable in
U2 × U2 (since ψ = Id + O(t∞) in that Lemma). So we get ∂n′G2(F (z), F (z′)) =
(F∗∂n′)G2(F (z), z′) for z′ ∈M since F |U1∩Γ = Id.

We first show that ∂n′G2(F (z), F (z′)) = ∂n′G1(z, z
′) for any (z, z′) ∈ U1 ×

(U1 ∩Γ) \ {z = z′}. Now fix z′ ∈ U1 ∩Γ, then the function T1(z) := G1(z, z
′) solves

∆g1
T1 = 0 in U1\{z′} and, using Lemma 3.1, it has boundary values T1|U1∩Γ\{z′} =

0 and ∂nT1|U1∩Γ\{z′} = N1(., z
′) where Ni(., .) denote the Schwartz kernel of Ni, i =

1, 2. The function T2(z) := ∂n′G2(F (z), F (z′)) solves ∆F∗g2
T2(z) = ∆g1

T2(z) = 0
in U1 \ {z′}. We also have ∂nT2|U1∩Γ\{z′} = F ∗[(F∗∂n)(F∗∂n′)G2(., z

′)|U1∩Γ\{z′}]
and T2|U1∩Γ\{z′} = 0. But from Lemma 3.1, (F∗∂n)(F∗∂n′)G2(., z

′)|U1∩Γ\{z′} =
N2(., z

′) where N2(., .) is the Schwartz kernel of N2. Using again that F |U1∩Γ = Id,
we deduce that ∂nT2|U1∩Γ\{z′} = N2(., z

′). By our assumption N1|Γ = N2|Γ, we
conclude that T1 and T2 solve the same Cauchy problem near U1 ∩Γ \ {z′}, so first
by unique continuation near the boundary and then real analyticity in U1\(U1∩Γ),
we obtain T1 = T2 there.

Now we can use again similar arguments to prove thatG1(z, z
′) = G2(F (z), F (z′))

in (U1 × U1) \ {z = z′}. Indeed, fix z′ ∈ U1, then T1(z) := G1(z
′, z) and

T2(z) := G2(F (z′), F (z)) solve ∆g1
Ti = 0 in U1 \ {z′} and with boundary val-

ues Ti|Γ = 0 and ∂nT1|U1∩Γ = ∂nT2|U1∩Γ by what we proved above. Thus unique
continuation for Cauchy problem and real analyticity allow us to conclude that
T1 = T2. �

3.4. Proof of Theorem 1.1. To conclude the proof of 1.1, we use the following
Proposition which is implicitly proved by Lassas-Taylor-Uhlmann [16]
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Proposition 3.6. For i = 1, 2, let (X̄i, gi) be smooth Riemannian manifold with

boundary, with interior Xi real-analytic and metric gi real analytic on Xi. Let

Gi(z, z
′) be the Green function of the Laplacian ∆gi

with Dirichlet condition at

∂X̄i, and assume there exists an open set U ⊂ X1 and a diffeomorphism F : U1 →
F (U1) ⊂ X2 such that G1(z, z

′) = G2(F (z), F (z′)) for (z, z′) ∈ (U1×U1)\{z = z′}.
Then there exists a diffeomorphism J : X1 → X2 such that J∗g2 = g1 and J |U1

= F .

The proof is entirely done in section 3 of [16], although not explicitly written
under that form. The principle is to define maps

Gj : Xj → Hs(U1), G1(z) := G1(z, .), G2(z) := G2(z, F (.))

where Hs(U1) is the s-Sobolev space of U1 for some s < 1 − (n + 1)/2, then
prove that Gj are embeddings with G1(X1) = G2(X2), and finally show that

J := G
−1
2 ◦ G1 : X1 → X2 is an isometry. Note that J restricts to F on U1

since G1(z, z
′) = G2(F (z), F (z′)).

Proposition 3.6 and Corollary 3.5 imply Theorem 1.1, after noticing that an
isometry ψ : (X1, g1) → (X2, g2) extends smoothly to the manifold with boundary
(X̄1, g1) by smoothness of the metrics gi up to the boundaries ∂X̄i.

4. The first inverse problem for conformally compact Einstein

manifolds

Now we consider an n + 1 dimensional conformally compact Einstein manifold
(X, g), it necessarily has negative constant Ricci curvature Ric(g) = −ng since
conformally compact metric has pinched negative curvature near infinity [10, 9].
Let ρ be a geodesic boundary defining function in X̄, that is |dρ|ρ2g = 1. Let us
denote by ḡ = ρ2g the compactified metric on X̄.

4.1. Harmonic coordinates for ḡ and unique continuation. The relation be-
tween Ric(g) and Ric(ḡ) is given by

(4.1) Ric(g) = Ric(ḡ) + ρ−1
(
(n− 1)Hessḡ(ρ) − (∆ḡρ)ḡ

)
− nρ−2|dρ|2ḡ ḡ

Then if Ric(g) = −ng, (4.1) can be rewritten under the form

(4.2) ρ2Ric(ḡ) = −ρ
(
(n− 1)Hessḡ(ρ) − (∆ḡρ)ḡ

)
.

Let us take a set of harmonic coordinates x = (x0, x1, . . . , xn) for the Laplacian ∆ḡ

near a point p ∈ ∂X̄, with x0 a boundary defining function of ∂X̄, then by previous
Section 3.2, Ric(ḡ) can be written under the form

Ric(ḡ)ij = −
1

2

∑

µ,ν

ḡµν∂xµ
∂xν

ḡij +Qij(x, ḡ, ∂ḡ)

where Qij(x,A,B) is smooth and polynomial of degree 2 in B, where A,B denote

vectors (ḡkl)k,l ∈ R
(n+1)2 and (∂xm

ḡkl)k,l,m ∈ R
(n+1)3 . Since ρ = x0e

f for some
smooth f , we obtain

ρ2Ric(ḡ)ij = −
1

2

∑

µ,ν

gµν∂xµ
∂xν

ḡij + Q̃ij(x, ḡ, x0∂ḡ)

where Q̃ij(x, ḡ, x0∂ḡ) satisfying exactly the same properties than Qij and where

x0∂ḡ := (x0∂xm
ḡkl)k,l,m ∈ R(n+1)3 . Finally, it is clear that Hessḡ(ρ) and ∆ḡρ

involve at most derivative of order 1 of ḡ so this term multiplied by ρ is of the same

form than Q̃ij(x, ḡ, x0∂ḡ) and we have thus proved



8 COLIN GUILLARMOU AND ANTÔNIO SÁ BARRETO

Lemma 4.1. Let x = (x0, x1, . . . , xn) be harmonic coordinates near p ∈ {x0 = 0}
for ∆ḡ where ḡ = ρ2g is the compactified metric. Then there exists Qij(x,A,B)

polynomial of degree 2 in B ∈ R(n+1)3 , with smooth coefficients in a neighbourhood

of p, such that Ric(g) = −ng is equivalent near p to the system

(4.3)
∑

µ,ν

x2
0ḡ

µν∂xµ
∂xν

ḡij +Qij(x, ḡ, x0∂ḡ) = 0, i, j = 0, . . . , n.

where x0∂ḡ := (x0∂xm
ḡkl)k,l,m ∈ R(n+1)3 .

This is a non-linear system of order 2, elliptic in the uniformly degenerate sense
of [19, 20, 21] and diagonal at leading order. We state the following unique contin-
uation result for this system:

Proposition 4.2. Assume ḡ1 and ḡ2 are two smooth solutions of the system (4.3)
with ḡ1 = ḡ2 +O(x∞0 ) near p. Then ḡ1 = ḡ2 near p.

Proof : this is a straightforward application of Mazzeo’s unique continuation
result [18]. We work in a small neighbourhood U of p and set w = (ḡ1 − ḡ2) near
p. For h metric near p and ℓ symmetric tensor near p, let

G(x, h, ℓ) := −
∑

µ,ν

x2
0h

µν∂xµ
∂xν

ḡ2 −Q(x, h, ℓ)

where Q := (Qij)i,j=0,...,n. Note that G is smooth in all its components. We have
from (4.3)

(4.4)
∑

µ,ν

x2
0ḡ

µν
1 ∂xµ

∂xν
w = G(x, ḡ1, x0∂ḡ1) −G(x, ḡ2, x0∂ḡ2).

Let g1 := x−2
0 ḡ1 and let ∇ be the connection on symmetric 2 tensors on U induced

by g1, then ∇∗∇w =
∑

µ,ν g
µν
1 ∇∂xν

∇∂xµ
w and in coordinates it is easy to check

that x0(∇∂xµ
− ∂xµ

) is a zeroth order operator with smooth coefficients up to the

boundary, using (3.2) for instance. Therefore one obtains, using (4.4),

|∇∗∇w|g1
≤ C(|w|g1

+ |∇w|g1
)

for some C depending on ḡ1, ḡ2. It then suffices to apply Corollary 11 of [18], this
proves that w = 0 and we are done. �

4.2. Proof of Theorem 1.2. The proof is similar to that of Theorem 1.1. Let
(X1, g1) and (X2, g2) be conformally compact Einstein manifolds and let ρi, i = 1, 2
be geodesic boundary defining functions in X̄i such that the Dirichlet-to-Neumann
maps Ni for ḡi = ρ2

i gi coincide on Γ. We first show the

Lemma 4.3. For i = 1, 2, there exist p ∈ Γ, exist neighbouroods Ui of p in X̄i with

Ui ∩Xi 6= ∅ and a diffeomorphism F : U1 → U2, F |U1∩Γ = Id, such that F ∗ḡ2 = ḡ1.

Proof : we choose harmonic coordinates xi := (xi
0, . . . , x

i
n) for ḡi in a neighbour-

hood Ui of a fixed point p ∈ Γ exactly like in the proof of Lemma 3.4. In particular
xi

0 defines Γ near p. Then the diffeomorphism F : U1 → U2 defined by x1 → x2

is such that F ∗ḡ2 and ḡ1 satisfy in U1 the system (4.3) by Lemma 4.1. Moreover
F ∗ḡ2 = ḡ1 + O((x1

0)
∞) in U1 by [17]. It then suffices to apply Proposition 4.2 to

conclude. �

Then the same result than Corollary 3.5 holds with gi replaced by ḡi and we can
conclude that there exists J : X̄1 → X̄2 such that J∗ḡ2 = ḡ1 just like in Subsection
3.4. It remains to remark that J∗ρ2 = ρ1 near ∂X̄1: indeed ρi is the unique solution,
near ∂X̄i, of the first order non-linear PDE |dρi|2ḡi

= 1 with boundary condition

ρ2
i gi|T∂X̄i

= ḡi|∂X̄i
by [9, Lemma 2.1], but |d(J∗ρ2)|2ḡ1

= 1 since J is an isometry
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and (J∗ρ2)
2g1 = J∗(ρ2

2g2) = ḡ1. Therefore J∗g2 = g1 near ∂X̄1 and since g1 and
g2 are Einstein manifold, they are real analytic in X1 and thus J∗g2 = g1 in X1 by
the unique continuation result [14, Lem. 3’, p.256].

5. Inverse scattering for conformally compact Einstein manifolds

Consider an n+1 dimensional conformally compact Einstein manifold (X̄, g) with
n+1 even, and let ρ be a geodesic boundary defining function and ḡ := ρ2g. Using

the flow φt(y) of the gradient ∇ρ2gρ, one has a diffeomorphism φ : [0, ǫ)t × ∂X̄ →
φ([0, ǫ) × ∂X̄) ⊂ X̄ defined by φ(t, y) := φt(y), and the metric pulls back to

(5.1) φ∗g =
dt2 + h(t)

t2

for some smooth one-parameter family of metrics h(t) on the boundary ∂X̄. Note
that here φ∗ρ = t.

5.1. The scattering map. The scattering map S defined in the Introduction is
really S = S(n), where S(λ) for λ ∈ C is defined in [13, 11]. Let us construct S

by solving the boundary value problem ∆gu = 0 with u ∈ C∞(X̄) and u|∂X̄ = f
where f ∈ C∞(∂X̄) is given. This follows the construction in section 4.1 of [11].
Writing ∆g in the collar [0, ǫ)t × ∂X̄ through the diffeomorphism φ, we have

∆g = −t2∂2
t + (n− 1 −

t

2
Trh(t)(∂th(t)))t∂t + t2∆h(t)

and for any fj ∈ C∞(∂X̄) and j ∈ N0

(5.2) ∆g(fj(y)t
j) = j(n− j)fj(y)t

j + tj(H(n− j)fj)(t, y),

(H(z)fj)(t, y) := t2∆h(t)fj(y) −
(n− z)t

2
Trh(t)(∂th(t))fj(y).

Now recall that since g is Einstein and even dimensional, we have ∂2j+1
t h(0) = 0

for j ∈ N0 such that 2j + 1 < n, see for instance Section 2 of [9]. Consequently,
H(n − j)fj is an even function of t modulo O(tn) for j 6= 0, and modulo O(tn+2)
when j = 0. Since H(n− j)fj also vanishes at t = 0, we can construct by induction
a Taylor series using (5.2)

(5.3) Fj =

j∑

k=0

tkfk(y), F0 = f0 = f, Fj = Fj−1 + tj
[t−j(∆gFj−1)]|t=0

j(j − n)

for j < n such that ∆gF = O(tj+1). Note that, since H(n− j)fj has even powers
of t modulo O(tn), we get f2j+1 = 0 for 2j + 1 < n. For j = n, the construction
of Fn seems to fail but actually we can remark that ∆gFn−1 = O(tn+1) instead of
O(tn) thanks to the fact that t2jH(n− 2j)f2j has even Taylor expansion at t = 0
modulo O(t2j+n+2) by the discussion above. So we can set Fn := Fn−1 and then
continue to define Fj for j > n using (5.3). Using Borel’s Lemma, one can construct
F∞ ∈ C∞(X̄) such that φ∗F∞ − Fj = O(tj+1) for all j ∈ N and ∆gF∞ = O(ρ∞).
Now we finally set u = F∞−G∆gF∞ where G : L2(X, dvolg) → L2(X, dvolg) is the
Green operator, i.e. such that ∆gG = Id, recalling that kerL2 ∆g = 0 by [21]. From

the analysis of G in [21], one has that G maps Ċ∞(X̄) = {v ∈ C∞(X̄), v = O(ρ∞)}
to ρnC∞(X̄). This proves that u ∈ C∞(X̄) and has an asymptotic

(5.4) φ∗u(t, y) = f(y) +
∑

0<2j<n

t2jf2j(y) − φ∗(G∆gF∞) +O(tn+1).

In particular the first odd power is of order tn and with coefficient the smooth
function [t−nφ∗(G∆gF∞)]t=0 of C∞(∂X̄). Notice that the f2j in the construction
are local with respect to f , more precisely f2j = p2jf for some differential operator
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p2j on the boundary. Note that we used strongly that X is Einstein and has
even dimensions, indeed for a general asymptotically hyperbolic manifold u has
logarithmic singularities, see [12, 11].

Since φ∗∇ρ2gρ = ∂t, the definition of Sf in the Introduction is equivalent to
Sf = 1

n!∂
n
t φ

∗u|t=0, i.e. the n-th Taylor coefficient of the expansion of φ∗u at t = 0,
in other words

Sf = −[t−nφ∗(G∆gF∞)]t=0 = −[ρ−nG∆gF∞]|∂X̄ .

From the analysis of Mazzeo-Melrose [21], one can describe the behaviour of the
Green kernel G(z, z′) near the boundary and, say outside the diagonal diagX̄×X̄ :

(5.5) ρ(z)−nρ(z′)−nG(z, z′) ∈ C∞(X̄ × X̄ \ diagX̄×X̄).

We can show easily that the kernel of S is the boundary value of (5.5) at the corner
∂X̄ × ∂X̄:

Lemma 5.1. The Schwartz kernel S(y, y′) of the scattering map S is, for y 6= y′,

S(y, y′) = n[ρ(z)−nρ(z′)−nG(z, z′)]z=y,z′=y′

where G(z, z′) is the Green kernel for ∆g.

Proof : Consider (G∆gF∞)(z) for z ∈ X fixed and use Green formula on the
compact Uǫ := {z′ ∈ X ; ρ(z) ≥ ǫ, dist(z′, z) ≥ ǫ}
∫

Uǫ

G(z, z′)∆gF∞(z′)dvg(z
′) =

∫

∂Uǫ

(G(z, z′)∂n′F∞(z′)−∂n′G(z, z′)F∞(z′))dνǫ(z
′)

where ∂n′ is the unit normal interior pointing vector field of ∂Uǫ (in the right
variable z′) and dνǫ the measure induced by g there. Consider the part ρ(z′) = ǫ
in the variables as in (5.1) using the diffeomorphism φ, i.e. φ(t′, y′) = z′, then
φ∗∂n′ = t′∂′t and φ∗(dνt′) = t′−ndvolh(t′). Using (5.5) and F∞ = f + O(ρ2) by the
construction of F∞ above the Lemma, we see that the integral on ρ′ = ǫ converges
to

n

∫

∂X̄

[ρ(z′)−nG(z, z′)]z′=y′f(y′)dvh(0)(y
′).

as ǫ→ 0. As for the part on dist(z′, z) = ǫ, by another application of Green formula
and ∆g(z

′)G(z, z′) = δ(z − z′), this converges to F∞(z) as ǫ → 0. We deduce that
the solution u of ∆gu with u|∂X̄ = f is given by

(5.6) u(z) = n

∫

∂X̄

[ρ(z′)−nG(z, z′)]z′=y′f(y′)dvh(0)(y
′).

Let us write dy for dvh0
(y). So take ψ ∈ C∞(∂X̄) with ψf = 0, and consider the

pairing ∫

∂X̄

φ∗u(t, y)ψ(y)dy,

a Taylor expansion at t = 0 and the structure of G(z, z′) given by (5.5) show that
∫

∂X̄

ψ(y)Sf(y)dy = n

∫

∂X̄

[ρ(z)−nρ(z′)−nG(z, z′)]|z=y,z′=y′ψ(y)f(y′)dy′dy,

this ends the proof. �

Remark: A more general relation between the kernel of the resolvent of ∆g,
(∆g − λ(n− λ))−1, and the kernel of the scattering operator S(λ) holds, as proved
in [13], but since the proof of Lemma 5.1 is rather elementary, we included it to
make the paper essentially self-contained.
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5.2. Einstein equation for g. We shall analyze Einstein equation in a good sys-
tem of coordinates, actually constructed from harmonic coordinates for ∆g. First
choose coordinates (y1, . . . , yn) in a neighbourhood V ⊂ ∂X̄ of p ∈ ∂X̄. Take an
open set W ⊂ ∂X̄ which contains V , we may assume that yi ∈ C∞

0 (W ). From
the resolution of the ∆gu = 0 as in Subsection 5.1 (which follows Graham-Zworski
[11]), there exists n smooth functions (x1, . . . , xn) on X̄ such that

∆gxi = 0, xi = yi +
∑

0<2k<n

ρ2kp2kyi + ρnSyi +O(ρn+1)

where pk are differential operators on ∂X̄ determined by the (∂k
t h(0))k=0,...,n−1

at the boundary (using the form (5.1)). Similarly let y0 ∈ C∞
0 (W ) be a non

zero smooth function such that y0 = 0 in V , then by Subsection 5.1 there exists
v ∈ C∞(X̄) such that

∆gv = 0, v = y0 +
∑

0<2k<n

ρ2kp2ky0 + ρnSy0 +O(ρn+1).

Thus in particular v vanishes near p of order ρn since pky0 = 0 in V for k = 1, . . . , n,
thus one can write

v = ρn(w +O(ρ))

where w is a smooth function on ∂X̄ near p. The set {m ∈ V ;w(m) 6= 0} is an
open dense set of V . Indeed, otherwise w would vanish in an open set of V but an
easy computation shows that if U ∈ ρjC∞(X̄) then ∆gU = −j(j − n)U +O(ρj+1)
so v would vanish to infinite order at an open set of V and by Mazzeo’s unique
continuation result [18], it would vanish identically in X̄ . Thus, possibly by chang-
ing p to another point (still denoted p for convenience), there exists v ∈ C∞(X̄)
such that v is harmonic for ∆g and v = ρn(w + O(ρ)) with w > 0 near p, the

function x0 := u1/n then defines a boundary defining function of ∂X̄ near p, it can
be written as v = ρef for some smooth f . Then (x0, x1, . . . , xn) defines a system
of coordinates near p.

Let us now consider Einstein equations in these coordinates. Again like (3.3),
the principal part of Ric(g) is given by

−
1

2

∑

µ,ν

gµν∂xµ
∂xν

gij −
1

2

∑

r

(gri∂xj
(∆gxr) + grj∂xi

(∆gxr)).

But all functions xr are harmonics except v which satisfies

0 = ∆gx
n
0 = −ndivg(x

n−1
0 ∇gx0) = −nxn−1

0 ∆gx0 − n(n− 1)xn−2
0 |dx0|

2
g

or equivalently ∆gx0 = (1−n)x0|dx0|2ρ2ge
−2f . But this involves only terms of order

0 in the metric g or ḡ := ρ2g so the principal part of Ric(g) in these coordinates is

−
1

2

∑

µ,ν

gµν∂xµ
∂xν

gij

which is elliptic in the interior X . We multiply the equation Ric(g) = −ng by ρ2

and using (3.1) and (3.2), with the commutations relations [x0∂x0
, xα

0 ] = α for all
α ∈ C, it is straightforward to obtain

Lemma 5.2. Let x = (x0, x1, . . . , xn) be the coordinates defined above near a point

p ∈ {x0 = 0}, then Einstein equation for g can be written under the system

(5.7)
∑

µ,ν

x2
0ḡ

µν∂xµ
∂xν

ḡij +Qij(x, ḡ, x0∂ḡ) = 0, i, j = 0, . . . , n

where ḡ = ρ2g with ρ geodesic boundary defining function in X̄, Qij(x,A,B) are

smooth and polynomial of order 2 in B, and x0∂ḡ := (x0∂xm
ḡij)m,i,j ∈ R(n+1)3 .
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5.3. Reconstruction near the boundary and proof of Theorem 1.3. The
proof of Theorem 1.3 is again fairly close to that of Theorem 1.1. Let (X̄1, g1)
and (X̄2, g2) be conformally compact Einstein manifolds with geodesic boundary
defining functions ρ1 and ρ2. Let Si be the scattering map for gi defined by (1.3)
using the boundary defining function ρi, assume that ∂X̄1 and ∂X̄2 contain a
common open set Γ such that S1f |Γ = S2f |Γ for all f ∈ C∞

0 (Γ). Using the geodesic
boundary defining function ρi for gi,i = 1, 2, there is a diffeomorphism φi : [0, ǫ)t ×
∂X̄i → φi([0, ǫ) × ∂X̄i) ⊂ X̄i as in (5.1) so that

(5.8) (φi)∗gi =
dt2 + hi(t)

t2

where hi(t) is a family of metric on ∂X̄i. We first show the

Lemma 5.3. The metrics h1(t) and h2(t) satisfy ∂j
th1(0)|Γ = ∂j

t h2(0)|Γ for all

j ∈ N0.

Proof : For M compact manifold, let us denote Ψz(M) the set of classical pseudo-
differential operators of order z ∈ R on M . Since Si is the scattering operator Si(λ)
at energy λ = n for ∆gi

as defined in [13], we can use [13, Th.1.1], then we have that
Si ∈ Ψn(∂X̄i) for i = 1, 2, with principal symbol σi

n(y, ξ) = 2−nΓ(−n
2 )/Γ(n

2 )|ξ|hi(0),

thus h1(0) = h2(0) on Γ and χ(S1 − S2)χ ∈ Ψn+1(Γ) for all χ ∈ C∞
0 (Γ). Now we

use Einstein equation, for instance the results of [7, 8] (see also [9, Sec. 2]) show,
using only Taylor expansion of Ric(g) = −ng at the boundary, that

∂j
t h1(0)|Γ = ∂j

t h2(0)|Γ, j = 0, . . . , n− 1.

Then we use Theorem 1.2 of [13] which computes the principal symbol of S1 − S2.
Since this result is entirely local, we can rephrase it on the piece Γ of the boundary:
if there exists a symmetric 2-tensor L on Γ such that h1(t) = h2(t)+t

kL+O(tk+1) on
[0, ǫ)t ×Γ for some k ∈ N, then for any χ ∈ C∞

0 (Γ) we have χ(S1 −S2)χ ∈ Ψn−k(Γ)
and the principal symbol of this operator at (y, ξ) ∈ T ∗Γ is 1

(5.9) A1(k, n)L(ξ∗, ξ∗)|ξ|n−k−2
h0

+A2(k, n)
k(k − n)Trh0

(L)

4
|ξ|n−k

h0

where h0 := h1(0)|Γ = h2(0)|Γ, ξ∗ := h−1
0 ξ ∈ TyΓ is the dual of ξ through h0, and

Ai(k, λ) are the meromorphic functions of λ ∈ C defined by

A1(k, λ) := −π−n
2 2k−2λ+n Γ(n

2 − λ+ k
2 + 1)

Γ(λ − k
2 − 1)

Γ(λ)2

Γ(λ− n
2 + 1)2

T1(k, λ)

M(λ)

A2(k, λ) := π− n
2 2k−2λ+n−2 Γ(n

2 − λ+ k
2 )

Γ(λ− k
2 )

Γ(λ)2

Γ(λ− n
2 + 1)2

T2(k, λ)

M(λ)

where Tl(k, λ) is defined, when the integral converges, by

Tl(k, λ) :=

∫ ∞

0

∫

Rn

u2λ−n+k+3−2l

(u2 + |v|2)λ(u2 + |e1 − v|2)λ
dvRndu, e1 = (1, 0, . . . , 0),

and M(λ) ∈ C is a constant not explicitly computed in [13]. However at λ = n
the constant M(n) is defined in [13, Sec. 4] such that u(z)/n = M(n)f + O(ρ(z))
where u(z) is the function of (5.6), so M(n) = n by (5.4). Since we are interested

1It is important to notice that the coefficient of |ξ|n−k in (5.9) is not exactly that of Theorem
1.2 of [13], indeed there is a typo in equation (3.5) in [13, Prop 3.1]: the coefficient in front of
T = Trh0

(L) there should be k(k − n)/4 instead of k(k + 1)/4, this comes from the fact that, in
the proof of [13, Prop 3.1], the term

1

16
x2f∂x log(δ2/δ1)∂x log(δ2δ1) = −

k(n + 1)

4
fxkT + O(xk+1)

while it has been considered as a O(xk+1) there.
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in the case k = n, only the term with A1(n, n) appears, and setting λ = n in
A1(n, λ), with the explicit formulae above and the fact that T1(n, n) > 0 converges
by Lemma 5.2 of [13], we see easily that A1(n, n) 6= 0 if n > 2. Since we assumed
χS1χ = χS2χ, this implies that L = 0 and h1 − h2 = O(tn+1) near Γ. We finally
use again [7, 8], where it is proved that if g1 = g2 +O(ρn−1) with g1, g2 conformally
compact Einstein and n odd, then g1 = g2 + O(ρ∞). Notice that their arguments
are entirely local near any point of the boundary, so we can apply it near the piece
Γ of the boundary. �

Lemma 5.4. For i = 1, 2, there exist p ∈ Γ, some neighbourhoods Ui of p in X̄i

with Ui ∩ Xi 6= ∅ and a diffeomorphism F : U1 → U2, F |U1∩Γ = Id, such that

F ∗H2 = H1.

Proof : It is very similar to the proof of Lemma 3.4, we will thus be more concise.
We may work in the collar [0, ǫ)t×Γ through the diffeomorphism φi as in (5.8). In a
neighbourhood U ⊂ [0, ǫ)×Γ of p ∈ Γ, we use coordinates xi := (xi

0, . . . , x
i
n) defined

in Subsection 5.2 for gi with boundary values x1
j |t=0 = x2

j |t=0 ∈ C∞
0 (Γ) for all j,

and set ψ : U → ψ(U) ⊂ [0, ǫ)× Γ such that x1
j = ψ∗x2

j , which is a diffeomorphism
near p. Then Einstein equation is of the form (5.7) by Lemma 5.2. Moreover g1
and g2 coincide to infinite order at t = 0 by Lemma 5.3, so the coordinates x1 and
x2 satisfy ∆g1

(x1
j − x2

j ) = O(t∞) for all j. Since x1, x2 have the same boundary

values, they agree to order O(tn) using the construction of Fn−1 in (5.3). But since
S1(x

1
j |Γ) = S2(x

2
j |Γ), one has x1

j = x2
j + O(tn+1), which again by induction and

(5.2) shows that x1
j = x2

j + O(t∞). In particular, if Hi := φi∗(ρ2
i gi), this implies

that H1|U∩{t=0} = ψ∗H2|U∩{t=0} and ∂x1

0

H1|U∩{t=0} = ∂x1

0

ψ∗H2|U∩{t=0}. Thus

ḡ := H1 and ḡ := ψ∗H2 both satisfy the system (5.7) with same Cauchy data at
the boundary {t = 0} near p, so by Proposition 4.2, we deduce that H1 = ψ∗H2

and this ends the proof by setting F := φ2 ◦ ψ ◦ (φ1)−1. �

We finish by the following Corollary, similar to Corollary 3.5.

Corollary 5.5. Let Gi(z, z
′) be the Green kernel for gi, i = 1, 2. Then S1|Γ = S2|Γ

implies that there exists an open set U1 such that G1(z, z
′) = G2(F (z), F (z′)) for

all (z, z′) ∈ (U1 × U1) \ {z = z′}.

Proof : Again the proof is very close to that of Corollary 3.5, we do not repeat it
in full detail then. To prove it, we first take y′ ∈ U1 ∩ Γ, and consider T1(z) :=
[ρ1(z

′)−nG1(z, z
′)]z′=y′ and T2(z) := [F ∗ρ2(z

′)−nG2(F (z), F (z′))]|z′=y′ . They both
satsify ∆g1

Ti(z) = 0 for z ∈ U1 and by Lemma 5.1 and the assumption S1|Γ = S2|Γ,

we have that T1 − T2 = O(ρn+1
1 ) near Γ \ {y′}, so by induction on (5.2), T1 =

T2 + O(ρ1
∞) in U1 \ {y′}, and then by the unique continuation result of Mazzeo

[18], T1 = T2 in the same set. Now this means that for z′ ∈ U1, z → G1(z
′, z) and

z → G2(F (z′), F (z)) are harmonic for ∆g1
in U1 \ {z′}, and they coincide to order

ρn+1
1 at Γ, so again by unique continuation they are equal. �

5.4. Proof of Theorem 1.3. Using Corollary 5.5 and the fact that (X1, g1) and
(X2, g2) are analytic since Einstein, it suffices to apply Theorem 4.1 of [16], which
is essentially the same as Proposition 3.6 but for complete manifold.
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