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Introduction

Triangulations of strictly convex polygons are classical combinatorial objects studied almost ever since the sad moment when mankind made his biggest mistake and left his favourite tree. Out of remorse and longing for the lost paradise, mankind (in fact, only a small part of it, those successful with girls had more urgent and important matters to attend to) started the study of trees and discovered that plane rooted trees and triangulated convex polygons share many combinatorial properties. This caused some fellows to investigate triangles thus giving birth to geometry and eventually analysis and real numbers. Other chaps, tempted by enumeration, discovered the natural numbers which led later to arithmetics and algebra. They tried successfully to enumerate plane rooted trees (or, equivalently, triangulations of convex polygons) by introducing the now famous sequence of the ubiquituous Catalan numbers, namely 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, . . . , see sequence A108 in [START_REF] Sloane | The On-Line Encyclopedia of Integer Sequences[END_REF]. Exercice 6.19 in [START_REF] Stanley | Enumerative Combinatorics[END_REF] lists 66 sequences of sets enumerated by them. [START_REF] Stanley | Enumerative Combinatorics[END_REF] contains also some historical information which is obviously rather less reliable than the translation of the Holy Scriptures presented above.

The generating series of the Catalan sequence is the algebraic function

g(x) = 1 - √ 1 -4x 2x = ∞ n=0
2n n

x n n + 1 .

It satisfies the equation g(x) = 1 + xg(x) 2 .

This paper is devoted to the study of triangulations which are coloured like a chessboard: every triangle is either black or white and edge-adjacent triangles have different colours. Such a colouring is unique, up to permutation of the colours. Call a triangulation τ fair if its two colourings involve the same number of black and white triangles. The choice of a marked edge e * on the boundary ∂P of a polygon P having at least 3 vertices selects in any triangulation of P a marked triangle ∆ * , which contains the marked edge e * . The imposition of the colour black for the marked triangle ∆ * removes the colour-ambiguity. We get in this way a bijection between triangulations and "checkerboard triangulations" of convex polygons P ⊃ e * having a marked edge. Section 2 contains our main result, Theorem 2.5, which describes closed formulae for the the number of such checkerboard triangulations involving n b black and n w white triangles. Theorem 1.1 corresponds to the special case n b = n w . The proof of Theorem 2.5 uses probably well-known techniques usable for similar problems: algebraic generating series which can be expressed as finite sums of a kind of hypergeometric series in several variables.

We study also d-dissections, a generalisation of triangulations corresponding to the special case d = 2. (The choice of the notation can be motivated by higher dimensional analogues.) A d-dissection of a strictly convex polygon P is a decomposition of P into polygons with (d + 1)-vertices, all contained in the vertex-set of P . Defining fair d-dissections in the obvious way, we have the following conjecture: n+1 is the number of lattice paths consisting of 2n steps in {(±1, 0), (0, ±1)} starting at (0, 0) and ending on the diagonal x = y with the constraint of remaining in the tilted quarter plane -x ≤ y ≤ x. A short bijective proof by Callan ([1]) is as follows: The pair of orthogonal projections onto the lines y = -x and y = x induces a bijection between such paths and the product of Dyck paths of length 2n and of positive paths of length 2n. Dyck paths of length 2n, given by lattice walks of 2n steps ±1 on N, starting and ending at the origin, are enumerated by the Catalan number 2n n 1 n+1 . Positive paths of length 2n, given by lattice walks of 2n steps ±1 on N, starting at the origin, are enumerated by the central binomial coefficient 2n n .

Remark 1.4. A separate paper will deal with vertex-colourings of triangulations. The vertices of a τ -triangulated polygon P can be coloured with 3 colours such that every triangle of τ has vertices of all 3 colours. Such a 3-colouring is unique up to permutations of the three colours. One can show that a strictly convex polygon with 3n vertices has exactly 2n-2 n-1

3 3n-2 n 2
triangulations which involve each colour a common number n of times in every such 3-colouring of its vertices. Methods and techniques are completely analogous to those used in the present paper (although the formulae are simpler and the necessary symbolic computations heavier).

The next two sections contain definitions and our main results. The rest of the paper is devoted to proofs and a few complements.

Main results for checkerboard triangulations

Through the rest of this paper, P n denotes always some fixed strictly convex polygon with n + 2 vertices and edges. We write P n ⊃ e * if P n is decorated with a marked edge e * ⊂ ∂P n . A triangulation of P n is a decomposition of P n into n non-overlapping triangles. A triangulation will always be denoted by the greek letter τ . A triangulation τ of P n ⊃ e * selects a unique marked triangle ∆ * ∈ τ of τ such that ∆ * contains the marked edge e * . We will generally omit a separate discussion of the degenerate and trivial initial case n = 0 corresponding to a polygon reduced to a (double) edge having a unique triangulation involving no triangles.

Given a triangulation τ of P n ⊃ e * , the associated checkerboard colouring partitions the set of all n = n b (τ ) + n w (τ ) triangles of τ into a subset of n b = n b (τ ) black triangles containing the marked triangle ∆ * and a complementary subset of n w = n w (τ ) white triangles such that edge-adjacent triangles have different colours. A checkerboard triangulation is a triangulation τ of P n ⊃ e * whose n triangles are coloured by the unique checkerboard colouring associated to τ .

Endowing a checkerboard triangulation τ of P n ⊃ e * with the weight t n b (τ )-nw(τ ) and summing the monomials t n b (τ )-nw(τ ) over the set T n of all Figure 1: P 3 ⊃ e * with e * given by the fat edge and its C 3 = 5 checkerboard triangulations.

2n n 1 n+1 checkerboard triangulations of P n ⊃ e * we get Laurent-polynomials

w 0 (t) = 1 w 1 (t) = t w 2 (t) = 2 w 3 (t) = t -1 + 4t w 4 (t) = 12 + 2t 2 w 5 (t) = 12t -1 + 30t w 6 (t) = 4t -2 + 100 + 28t 2 w 7 (t) = 140t -1 + 280t + 9t 3 w 8 (t) = 90t -2 + 980 + 360t 2 w 9 (t) = 22t -3 + 1680t -1 + 2940t + 220t 3 w 10 (t) = 1540t -2 + 10584 + 4620t 2 + 52t 4 . . . w n (t) = τ ∈Tn t n b (τ )-nw(τ ) ∈ N[t, t -1 ]
recursively defined by the following easy result.

Theorem 2.1. (i) We have w 0 (t) = 1 and

w n+1 (t) = t n k=0 w k (t -1 )w n-k (t -1 ) . (ii) The generating series W = ∞ n=0 w n (t)x n ∈ N[[t, t -1 , x]] satisfies the algebraic equation t(1 + tx) -tW + 2tx 2 W 2 + x 3 W 4 = 0 .
Observe that we have W ∈ R with R denoting through the rest of the paper the algebra R = Q[t, t -1 ] [[x]] of formal power series in x with coefficients given by Laurent-polynomials in t.

We have moreover the following result for the Laurent-polynomials w n = w n (t) and the associated generating series W = ∞ n=0 w n x n ∈ R.

Theorem 2.2. We have the identity

(n + 2 + 3j)(w n , t -j ) = (n + 2 -3j)(w n , t j )
where (w n , t j ) denotes the coefficient of t j in w n = j∈Z (w n , t j )t j ∈ N[t, t -1 ].

Setting W = ∞ n=0 w n (t -1 )x n ∈ R, Theorem 2.2 amounts to the equality

xW x + 2W + 3tW t = xW x + 2W -3tW t where W x = ∂ ∂x W, W t = ∂ ∂t W, W x = ∂ ∂x W , W t = ∂ ∂t W .
Corollary 2.3. The generating series W = ∞ n=0 w n x n satisfies the partial differential equation 

2t(1 -W ) + x(2xW -t)W x + 3t(t + 2xW )W t = 0 . Remark 2.
(-x, x) = 1 and W (-x -1 , x) = 0 of W = W (t, x).
Section 5 contains the proof of our main Theorem giving the following closed formula for the coefficients of w n (t).

Theorem 2.5. The Laurent-polynomials w n ∈ N[t, t -1 ] are given by the following formulae: For every n ≥ 0,

w 3n = n k=0 4n -2k n + k 2n + 2k 3k t n-2k 3k + 1 , w 3n+1 = n k=0 4n + 2 -2k n + k 2n + 2k 3k t n+1-2k 2n + 1 -k , w 3n+2 = n k=0 4n + 2 -2k n + 1 + k 2n + 2 + 2k 3k + 1 t n-2k 3k + 2 .
The outline of the proof for Theorem 2.5 is as follows: We display two partial differential equations which have at most a unique common solution. We show then that the series defined by the formulae of Theorem 2.5 and the algebraic function defined by assertion (ii) of Theorem 2.1 are both common solutions of the differential equations mentionned above. This implies that they coincide. Remark 2.6. Checkerboard triangulations of P n ⊃ e * can be considered as the 2n n 1 n+1 states of a spin model for the "energy" given by t n b -nw . Theorem 2.5 shows that this spin model is exactly solvable or integrable.

Main results for d-dissections

Dissections of polygons, also called cell-growth problems, generalise triangulations coinciding with 2-dissections.

Let n ≥ 0 and d ≥ 2 be two natural integers. We denote by t d,n the number of dissections of P (d-1)n into n non-overlapping convex polygons such that every polygon of the dissection has (d + 1) vertices which are all contained in the set of vertices of P (d-1)n . We call such a decomposition a d-dissection of P (d-1)n . The generating function The coefficients

g d = ∞ n=0 t d,n x n ∈ N[[x]]
t d,n of g d = ∞ n=0 t d,n
x n are given by the following wellknown result (see for example Formula 2.3 in [START_REF] Harary | On the cell-growth problem for arbitrary polygons[END_REF] or formula [START_REF] Stanley | Enumerative Combinatorics[END_REF] in [START_REF] Takacs | Enumeration of rooted trees and forests[END_REF]).

Theorem 3.1. The coefficients t d,n of g d = 1 + x + dx 2 + • • • = ∞ n=0 t d,n
x n defined by the equation g d = 1 + xg d d are given by the formula

t d,n = dn n 1 (d -1)n + 1 .
For the sake of completeness, we include a short proof using Lagrange inversion at the beginning of Section 6.

The choice of a marked edge e * ⊂ ∂P (d-1)n turns a d-dissection τ of P (d-1)n into a checkerboard d-dissection by partitioning all n polygons involved in τ into two disjoint subsets of n b black and n w white polygons such that the unique polygon ∆ * ∈ τ containing the marked edge e * is black and such that edge-adjacent polygons of τ have different colours. Associating the monomial t n b -nw to a checkerboard d-dissection involving n b black and n w white polygons and summing the monomials

t n b -nw over all t d,n checkerboard d-dissections of P (d-1)n ⊃ e * yields again Laurent- polynomials w d,n ∈ N[t, t -1 ].
Figure 2: A hexagon with a marked edge and its t 3,2 = 3 contributions to w 3,2 = 3.

The proof of assertion (ii) in Theorem 2.1, modified suitably, shows the following result.

Theorem 3.2. The generating series W = ∞ n=0 w d,n x n ∈ R satisfies the algebraic equation

W = 1 + tx 1 + t -1 xW d d .
Theorem 2.2 and Corollary 2.3 have the following easy and straightforward generalisations.

Theorem 3.3. We have the identity

((d -1)n + 2 + (d + 1)j)(w d,n , t -j ) = ((d -1)n + 2 -(d + 1)j)(w d,n , t j ) where (w d,n , t j ) denotes the coefficient of t j in w d,n = j∈Z (w d,n , t j )t j ∈ N[t, t -1 ]. Theorem 3.3 is of course equivalent to (d -1)xW x + 2W + (d + 1)tW t = (d -1)xW x + 2W -(d + 1)tW t where W = ∞ n=0 w d,n (t)x n and W = ∞ n=0 w d,n (t -1 )x n . Corollary 3.4. The generating series W = ∞ n=0 w d,n x n ∈ R satisfies the partial differential equation 2t(1 -W ) + (d -1)x(dxW d-1 -t)W x + (d + 1)t(t + dxW d-1 )W t .
Experimental observations suggest the following conjecture for the coefficients of the Laurent-polynomials w d,n .

Conjecture 3.5. The Laurent-polynomials w d,n ∈ N[t, t -1 ] are given by the following formulae: For every n ≥ 0,

w d,(d+1)n = (d-1)n k=0 d 2 n -dk n + k d(n + k) (d + 1)k t (d-1)n-2k ((d + 1)k + 1) w d,(d+1)n+1 = (d-1)n k=0 d 2 n + d -dk n + k d(n + k) (d + 1)k t (d-1)n+1-2k (dn + 1 -k) and w d,(d+1)n+j = (d-1)n+j-2 k=0 d 2 n + d(j -1) -dk n + 1 + k dn + d + dk (d + 1)k + d -j + 1 • • t (d-1)n+j-2-2k (d + 1)k + d -j + 2 for j such that 2 ≤ j ≤ d.
Most steps in the proof of Theorem 2.5 work in the context of Conjecture 3.5. Only a necessary computation involving larger and larger polynomials for increasing d fails. Maple was however able to complete it for a few small values of d and we have: A checkerboard triangulation τ of P n ⊃ e * with n ≥ 1 has a unique decomposition into the marked black triangle ∆ * ∈ τ containing e * and into a pair τ 1 , τ 2 of checkerboard triangulations with transposed colours of polygons P k , P n-1-k obtained by cutting τ along ∆ * with a knife marking all cuts. This construction is reversible and shows assertion (i).

Setting W = ∞ n=0 w n (t -1 )x n , assertion (i) boils down to the equations

W = 1 + txW 2 and W = 1 + x t W 2 .
This shows that W = 1 + tx(1 + x/tW 2 ) 2 and implies assertion (ii). ✷

Trees

Triangulations of P n ⊃ e * are well-known to be in bijection with rooted plane 2-regular trees, also called full binary trees, having n interior vertices of outdegree 2 and n + 1 leaves, see for example the equivalence between the sets (i) and (vi) of Corollary 6.2.3 in [START_REF] Stanley | Enumerative Combinatorics[END_REF]. The degenerate case n = 0 corresponds to a rooted leaf by convention. For n ≥ 1, the rooted tree T * (τ ) associated to a triangulation τ of P n ⊃ e * has interior vertices given by the n triangles of τ , the root-vertex v * corresponding to the triangle ∆ * ⊃ e * , and leaves given by the n+1 unmarked edges of ∂P n . Adjacency is given by pairs of vertices corresponding to subsets in τ which intersect in a common edge. More precisely, two interior vertices of T * are adjacent if they correspond to edge-adjacent triangles of τ . An interior vertex v of T * is adjacent to a leaf l if the triangle corresponding to v contains the unmarked edge of ∂P n corresponding to l. The tree T * has n b interior vertices at even distance from its root vertex v * and n w interior vertices at odd distance from v * . Otherwise stated, every tree is a bipartite graph and the numbers n b , n w count the interior vertices in the bipartite class of the root vertex v * and in its complementary class.

A homological interpretation for the coefficients of w n

Let τ be a checkerboard triangulation of P n ⊃ e * where n ≥ 1. We denote as always by ∆ * ∈ τ the unique black triangle containing the marked edge e * ⊂ ∂P n . An easy induction on n shows that there exists a unique continuous piecewise affine map ψ τ : P n -→ ∆ * which induces the identity-map on ∆ * and whose restriction to every triangle ∆ ∈ τ is an affine bijection. We call ψ τ the folding map since it maps, up to piecewise affine transformations, the polygon P n onto ∆ * by folding P n along all (n -1) interior edges of the triangulation τ (where an edge e ⊂ ∆ ∈ τ is interior if e ⊂ ∂P n ). It is easy to check that ψ τ preserves the orientation on all black triangles and reverses the orientation on all white triangles of τ .

Orienting the boundaries ∂P n ⊂ P n and ∂∆ * ⊂ ∆ * in the trigonometric counterclockwise sense yields canonical isomorphisms between the first homology groups H 1 (∂P n , Z) ∼ H 1 (∂∆ * , Z) and the cyclic group Z. The elements of H 1 (∂P n , Z) or of H 1 (∂∆ * , Z) can be interpreted as "winding coefficients" of closed loops contained in the boundary ∂P n or ∂∆ * with respect to interior points of the polygon P n or of the triangle ∆ * .

The image ψ τ (∂∆) ⊂ ∂∆ * corresponds to the generator 1 of H 1 (∂∆ * , Z) if ∆ is a black triangle and to -1 if ∆ is white. This shows that the homomorphism (ψ τ ) * :

H 1 (∂P n , Z) -→ H 1 (∂∆ * , Z)
induced by the folding map is given by (ψ τ )

* (1) = n b -n w ∈ H 1 (∂∆ * , Z)
where n b and n w are the numbers of black and white triangles in the checkerboard triangulation τ . Since every boundary edge e ⊂ ∂P n is contained in a unique triangle (we assume n ≥ 1) of a checkerboard triangulation, it inherits a well-defined colour according to its inclusion in the subset of black or white triangles. In particular, the marked edge e * of ∂P n is always black. The degenerate case n = 0 corresponds by convention to a double edge consisting of a marked black edge and an unmarked white edge. The following result gives the asymptotic mean value n bn w of a uniform random triangulation for P n ⊃ e * .

Proposition 4.2. We have the equivalence

w ′ n (1) ∼ 3 8 2n n 1 n + 1 for n → ∞.
In particular, uniform random triangulations have the asymptotic mean value n bn w = 3 8 .

Proof Derivating the polynomial equation

t(1 + tx) -tW + 2tx 2 W 2 + x 3 W 4 = 0
for W with respect to t, we get

1 + 2tx -W -tW t + 2x 2 W 2 + 4tx 2 W W t + 4x 3 W 3 W t = 0 .
Eliminating W yields the equation

0 = x(t + x)(8tx 2 (2tx + 1) -t + x) -t(8x 3 (t 2 + 1) + 12tx 2 -t)W t + +2t 2 x 2 (64tx 3 (t + x) + 60tx 2 -6t + 48x 3 + x)W 2 t + +t 3 x 3 (256x 3 (t 2 + tx + 1) + 288tx 2 -27t)W 4 t
for the partial derivation W t = ∂ ∂t W . The specialisation t = 1 of the minimal polynomial for W t factorises and yields the minimal polynomial given by Proposition 4.1 shows the bound |n bn w | ≤ n+2 3 . Positivity of all coefficients in w n yields the majorations

x -W + x(4x + 3) W 2 = 0 for W = ∞ n=0 w ′ n (1)x n = 1 -(1 + 2x) (1 -4x) 2x(4x + 3) = x + 3x 3 + 4x 4 + 18x 5 + . . . .
|w n (t)| ≤ w n (1)M n = 2n n 1 n + 1 M n ≤ 4 n M n where M n = M n (t) = max(|t| (n+2)/3 , |t -1 | (n+2)/3
). This implies the result easily. ✷ Remark 4.4. Analyticity of W (t, x) in an open neighbourhood of C * × {0} follows also from assertion (ii) in Theorem 2.1. For fixed t ∈ C * , the algebraic equation for W (t, x) defines a unique analytic extension x -→ W (t, x) of the evaluation W (t, 0) = 1 (the three remaining branches are singular at x = 0).

Remark 4.5. Theorem 2.5. gives the exact bounds on the degrees of monomials involved in w n : The Laurent polynomials w 3n , w 3n+2 contain no monomial of degree > n or < -n and w 3n+1 contains no monomial of degree > n + 1 or < 1n.

Proof of Theorem 2.2 and Corollary 2.3

A direct automorphism of a triangulation τ for P n is a piecewise affine map inducing an orientation-preserving homeomorphism of P n which restricts to affine bijections between triangles of τ . The group of all such automorphisms is cyclic of order α + (τ ) ≤ 3. A checkerboard triangulation τ of P n ⊃ e * yields, after unmarking the edge e * , a contribution of 1 α + (τ ) e b to the coefficient t n b -nw of w n and a contribution of 1 α + (τ ) e w to the coefficient t -n b +nw of w n . Theorem 2.2. follows now easily from Proposition 4.1 for the numbers e b = n+2+3(n b -nw) 2 and e w = n+2-3(n b -nw) 2 of black and white edges in the checkerboard triangulation τ of P n ⊃ e * . ✷ Corollary 2.3 follows from the equation xW x +2W +3tW t = xW x +2W -3tW t , equivalent to Theorem 2.2, after elimination of W , W t , W x using the identity W = 1 + x t W 2 occuring in the proof of Theorem 2.1 and its partial derivations

W - t = -x t 2 W 2 + 2 x t W W t and W - x = 1 t W 2 + 2 x t W W x .

Non-commutative edge polynomials

Labelling black and white edges in the boundary ∂P n of a checkerboard triangulation by U and V , starting at the marked edge e * and reading counterclockwise the labels of all n+2 edges in ∂P n , we get a word of length n+2, starting with U , in the alphabet {U, V }. The sum over n ∈ N and over all checkerboard triangulations of P n ⊃ e * of these words defines thus a unique non-commutative power-series N ∈ N U, V in two free non-commuting variables. The first few terms of N are

U V + U 3 + U V 2 U + U 2 V 2 + U V 4 + U V U 3 + U 2 V U 2 + U 3 V U + U 4 V + +2U 6 + 2(U 3 V 3 + U 2 V 3 U + U V 3 U 2 ) + U 2 V U V 2 + U V 2 U V U + +U 2 V 2 U V + U V 2 U 2 V + U V U 2 V 2 + U V U V 2 U + . . . .
Denoting by N = N (V, U ) the series obtained by transposing the variables U, V of N = N (U, V ) we have the identities

N = U V + U 1 V N 2 N = V U + V 1 U N 2 which imply N = U V + U U + 1 U N 2 2
.

4.8 The specialisations t = ±x and t = ±x -1

Proposition 4.6. The specialisations W (-x, x) and W (-

x -1 , x) of W (t, x) = ∞ n=0 w n (t)
x n are well defined and yield constant functions W (-x, x) = 1 and W (-x -1 , x) = 0. This proposition amounts to annullation of all alternate row-sums except the first one and of all alternate column sums in the array A given by 3 on the degrees of monomials with non-zero coefficient in w n implies that only a finite number of non-zero coefficients of W contribute to the monomial x m of W (-x ±1 , x). They imply also W (-

x ±1 , x) ∈ Z[[x]]. The factorisations x(W -1)(1 -x 2 -x 2 W + x 2 W 2 + x 2 W 3 )
corresponding to the specialisation t = -x in assertion (ii) of Theorem 2.1 and

1 x W (1 -2x 2 W + x 4 W 3 )
corresponding to the specialisation t = -x -1 in assertion (ii) of Theorem 2.1, integrality of the ring Z[[x]] and a few easy verifications imply the result. ✷

The generating functions R(x) and C(x) of row and column sums of the array A considered above are given by

R(x) = W ( √ x, √ x) = 1 + 4x + 32x 2 + 384x 3 + 5376x 4 + 82176x 5 + . . . satisfying the equation 1 + x -R + 2xR 2 + xR 4 = 0 and C(x) = W ( 1 √ x , √ x) = 2 + 8x + 80x 2 + 1024x 3 + 14848x 4 + 231936x 5 + . . . satisfying 2 -C + 2xC 2 + x 2 C 4 = 0.
The evaluations W (-x, x) = 1 and W (-x -1 , x) = 0 show thus that row-sums or columns sums restricted to even elements of A (with indices starting at 0) are given by the coefficients of 1 2 (R(x) + 1) and 1 2 C(x). Remark 4.7. The equation

1 + x -R + 2xR 2 + xR 4 = 0 for R = R(x) is equivalent to x = R-1 (1+R 2 ) 2 .
The formal power series R -1 is thus the reciprocal series of the power series of the rational function y -→ y (1+(1+y) 2 ) 2 . Lagrange inversion (see for example Satz 2.4 in [START_REF] Henrici | Die Lagrange-Bürmannsche Formel bei formalen Potenzreihen[END_REF] or Theorem 5.4.2 in [START_REF] Stanley | Enumerative Combinatorics[END_REF]) gives thus the formula

R = 1 + ∞ n=1   ⌊(n-1)/2⌋ k=0 2n k 2n -k n -1 -2k 1 2 k   (4x) n n .

Conjectural positivity properties

The coefficient of u α v β involved in the homogeneous polynomial

Q n (u, v) = √ uv n w n u v ∈ N[u, v]
of degree n counts the number of checkerboard triangulations of P n ⊃ e * involving α black and β white triangles. Experimental observations suggest the following conjectural properties of the polynomials Q

0 , Q 1 , . . . . Conjecture 4.8. (i) The polynomials Q 0 (u, 1), Q 1 (u, 1), • • • ∈ N[u]
have only real roots (which are ≤ 0 since all coefficients are positive) and the non-zero roots of Q n (u, 1) interleave the non-zero roots of Q n+3 (u, 1).

(ii) The symmetric polynomial

Q n (u, v)+Q n (v, u) is of the form R n (u+ v, uv) where R n (e 1 , e 2 ) ∈ Z[e 1 , e 2 
] involves only positive coefficients.

Eulerian triangulations

Theorem 2.5 or fairly elementary generating series manipulations show that P 3n+1 ⊃ e * has exactly 4n+2 n 1 2n+1 checkerboard triangulations such that the boundary ∂P 3n+1 of P 3n+1 is contained in the subset of all black triangles. Such a triangulation τ could be called "Eulerian" since all vertices of P 3n+1 have even degree in the planar graph defined by τ . Equivalently, a triangulation τ of P n is Eulerian if every vertex of P n belongs to an odd number of triangles in τ .

Remark 4.9. The boundary ∂P (d+1)n+1 of P (d+1)n+1 seems to be contained in the subset of black polygons for exactly d 2 n+d n 1 dn+1 checkerboard d-dissections. Such dissections define again Eulerian graphs and have the equivalent property that every vertex of P (d+1)n+1 is contained in an odd number of dissecting polygons.

Proof of Theorem 2.5

The idea for proving Theorem 2.5 is as follows:

We exhibit two partial differential operators D = D L -D R and D = DL -DR such that the two associated partial differential equations DF = 0 and DF = 0 have at most a unique common formal solution satisfying the initial condition

F ≡ 1 + tx (mod x 2 ) in the algebra R = Q[t, t -1 ] [[x]] of formal power series in x with coefficients in Q[t, t -1 ].
We show then that we have D W = D W = 0 for the formal series W ≡ 1 + tx (mod x 2 ) defined by the formulae of Theorem 2.5.

Finally, we consider the algebraic equation

t(1 + tx) -tW + 2tx 2 W 2 + x 3 W 4 = 0
for the generating series W = ∞ n=0 w n x n enumerating checkerboard triangulations. We show that this equation has a unique solution in R which is thus given by W satisfying the initial condition W ≡ 1 + tx (mod x 2 ). We show then that W satisfies the equations DW = DW = 0. This implies W = W and establishes Theorem 2.5.

Consider the four linear partial differential operators

D L = 4tx 1 + t ∂ ∂t + x ∂ ∂x 2 -3t ∂ ∂t + x ∂ ∂x = 4tx 2 -4t ∂ ∂t + 4x ∂ ∂x -3t 2 ∂ 2 ∂t 2 -2tx ∂ 2 ∂t∂x + x 2 ∂ 2 ∂x 2 D R = 3t ∂ ∂t + x ∂ ∂x -2 + 3t ∂ ∂t + x ∂ ∂x = 3t ∂ ∂t -x ∂ ∂x + 9t 2 ∂ 2 ∂t 2 + 6tx ∂ ∂t∂x + x 2 ∂ 2 ∂x 2 DL = 4x 1 -t ∂ ∂t + x ∂ ∂x 3t ∂ ∂t + x ∂ ∂x = 4x 2x ∂ ∂x -3t 2 ∂ 2 ∂t 2 + 2tx ∂ 2 ∂t∂x + x 2 ∂ 2 ∂x 2 DR = t 2 -3t ∂ ∂t + x ∂ ∂x -3t ∂ ∂t + x ∂ ∂x = t 3t ∂ ∂t + 3x ∂ ∂x + 9t 2 ∂ 2 ∂t 2 -6tx ∂ 2 ∂t∂x + x 2 ∂ 2 ∂x 2
Proposition 5.1. The two partial differential equations

D L F = D R F and DL F = DR F have at most a unique common solution F ∈ R = (Q[t, t -1 ])[[x]] which satisfies the initial condition F ≡ 1 + tx (mod x 2 ).
Proof The formulae

D L (t j x m ) = 4(1 + j + m)(2 -3j + m)t j+1 x m+1 D R (t j x m ) = (3j + m)(-2 + 3j + m)t j x m DL (t j x m ) = 4(1 -j + m)(3j + m)t j x m+1 DR (t j x m ) = (2 -3j + m)(-3j + m)t j+1 x m
show that a coefficient (F, t j x m ) of a common solution F is determined by the coefficients (F, t j-1 x m-1 ) and (F, t j+1 x m-1 ) except if (j, m) ∈ Z×N is among the four common roots (0, 0), (

, 0) of the two polynomials

(3j + m)(-2 + 3j + m) , ( 2 
-3j + m)(-3j + m) .
This shows (j, m) = (0, 0) and implies that such a solution F is either nonexistent or uniquely defined by the initial condition F ≡ 1 + tx (mod x 2 ). ✷ Proposition 5.2. We have

D L W = D R W and DL W = DR W
for the series W = ∞ n=0 wn x n ≡ 1 + tx (mod x 2 ) defined by the formulae

w3n = n k=0 4n -2k n + k 2n + 2k 3k t n-2k 3k + 1 , w3n+1 = n k=0 4n + 2 -2k n + k 2n + 2k 3k t n+1-2k 2n + 1 -k , w3n+2 = n k=0 4n + 2 -2k n + 1 + k 2n + 2 + 2k 3k + 1 t n-2k 3k + 2 . Lemma 5.3. (i) We have D L (x 3n w3n (t)) = 8x 3n+1 n k=0 (4n+1-2k)! (2n+2k)! t n+1-2k (n+k)! (3n-3k)! (3k)! (2n-k)! D L (x 3n+1 w3n+1 (t)) = 8x 3n+2 n k=1 (4n+1-2(k-1))! (2n+2+2(k-1))! t n-2(k-1) (n+1+(k-1))! (3n-1-3(k-1))! (3(k-1)+2)! (2n-(k-1))! D L (x 3n+2 w3n+2 (t)) = 4x 3(n+1) n k=0 (4(n+1)-2k)! (2(n+1)+2k)! t n+1-2k (n+1+k)! (3(n+1)-3k-2)! (3k+1)! (2(n+1)-k)! and D R (x 3n w3n ) = 4x 3n n-1 k=0 (4n-2k)! (2n+2k)! t n-2k (n+k)! (3n-3k-2)! (3k+1)! (2n-k)! D R (x 3n+1 w3n+1 (t)) = 8x 3n+1 n k=0 (4n+1-2k)! (2n+2k)! t n+1-2k (n+k)! (3n-3k)! (3k)! (2n-k)! D R (x 3n+2 w3n+2 (t)) = 8x 3n+2 n-1 k=0 (4n+1-2k)! (2n+2+2k)! t n-2k (n+1+k)! (3n-1-3k)! (3k+2)! (2n-k)! (ii) We have DL (x 3n w3n (t)) = 8x 3n+1 n-1 k=0 (4n-2k)! (2n+1+2k)! t n-2k (n+k)! (3n-3k-1)! (3k+1)! (2n-k)! DL (x 3n+1 w3n+1 (t)) = 8x 3n+2 n k=0 (4n+2-2k)! (2n+1+2k)! t n+1-2k (n+k)! (3n+1-3k)! (3k)! (2n+1-k)! DL (x 3n+2 w3n+2 (t)) = 8x 3(n+1) (n+1)-1 k=0 (4(n+1)-2-2k)! (2(n+1)+1+2k)! t (n+1)-1-2k ((n+1)+k)! (3(n+1)-3k-3)! (3k+2)! (2(n+1)-1-k)! and DR (x 3n w3n ) = 8x 3n n k=1 (4n-2-2(k-1))! (2n+1+2(k-1))! t n-1-2(k-1) (n+(k-1))! (3n-3(k-1)-3)! (3(k-1)+2)! (2n-1-(k-1))! DR (x 3n+1 w3n+1 (t)) = 8x 3n+1 n k=1 (4n-2(k-1))! (2n+1+2(k-1))! t n-2(k-1) (n+(k-1))! (3n-3(k-1)-1)! (3(k-1)+1)! (2n-(k-1))! DR (x 3n+2 w3n+2 (t)) = 8x 3n+2 n k=0 (4n+2-2k)! (2n+1+2k)! t n+1-2k (n+k)! (3n+1-3k)! (3k)! (2n+1-k)!
Proof Elementary and tedious verifications left to the reader. ✷ Proof of Proposition 5.2 Follows easily from Lemma 5.3. ✷ Consider the ideal I = (P, P t , P x , P tt , P tx P xx ) generated by

P = t(1 + tx) -tF + 2tx 2 F 2 + x 3 F 4 , P t = 1 + 2tx -F -tF t + 2x 2 F 2 + 4tx 2 F F t + 4x 3 F 3 F t , P x = t 2 -tF x + 4txF 2 + 4tx 2 F F x + 3x 2 F 4 + 4x 3 F 3 F x , P tt = 2x -2F t -tF tt + 8x 2 F F t + 4tx 2 F 2 t + 4tx 2 F F tt + +12x 3 F 2 F 2 t + 4x 3 F 3 F tt , P tx = 2t -F x -tF tx + 4xF 2 + 4x 2 F F x + 8txF F t + 4tx 2 F t F x + +4tx 2 F F tx + 12x 2 F 3 F t + 12x 3 F 2 F t F x + 4x 3 F 3 F tx , P xx = -tF xx + 4tF 2 + 16txF F x + 4tx 2 F 2 x + 4tx 2 F F xx + 6xF 4 + +24x 2 F 3 F x + 12x 3 F 2 F 2 x + 4x 3 F 3 F xx of the free polynomial algebra Q[t, x, F, F t , F x , F tt , F tx , F xx ] in eight variables t, x, F, F t , F x , F tt , F tx , F xx .
We introduce moreover the polynomials

Q = 4tx 2F -4tF t + 4xF x -3t 2 F tt -2txF tx + x 2 F xx -(3tF t -xF x + 9t 2 F tt + 6txF tx + x 2 F xx ) Q = 4x 2xF x -3t 2 F tt + 2txF tx + x 2 F xx -t 3tF t + 3xF x + 9t 2 F tt -6txF tx + x 2 F xx and K = ∂P ∂F = -t + 4tx 2 F + 4x 3 F 3 .
Lemma 5.4. We have 

K 3 Q ∈ I and K 3 Q ∈ I. Proof Set Q 1 = KQ -((Q, F tt )P tt + (Q, F tx )P tx + (Q, F xx )P xx ) ≡ KQ (mod I) and Q1 = K Q -(( Q, F tt )P tt + ( Q, F tx )P tx + ( Q, F xx )P xx ) ≡ K Q (mod I) where (R, F tt ), (R, F tx ), (R, F xx ) ∈ Q[t, x, F, F t , F x ] are the coefficients of F tt , F tx , F xx of R = Q or R = Q. Since
F x -1 K P x in K 2 Q 1 , K 2 Q1 yields polynomials Q 0 ≡ K 2 Q 1 ≡ K 3 Q (mod I) and Q0 ≡ K 2 Q1 ≡ K 3 Q such that Q 0 , Q0 ∈ Q[t, x, F ].
A computation (using for example Maple) shows that P divides Q 0 and Q0 which ends the proof.

✷.

Proposition 5.5. The algebraic equation

t(1 + tx) -tW + 2tx 2 W 2 + x 3 W 4 = 0 has a unique solution W in R = (Q[t, t -1 ])[[x]].
This solution is a common solution of the two partial differential equations

D L W = D R W DL W = DR W
and satisfies the initial condition W = 1 + tx (mod x 2 ).

Proof of Theorem 2.5 Follows from Propositions 5.1, 5.2 and 5.5. ✷ Proof of Proposition 5.5 The solution of

t(1 + tx) -tW + 2tx 2 W 2 + x 3 W 4 = 0 is the unique fixpoint in R = C[t, t -1 ] [[x]] of the attracting map Z -→ 1 + tx(1 + x/tZ 2 ) 2 .
Since the algebra R containing the solution W considered above is a differential algebra for both partial derivations ∂ ∂t and ∂ ∂x , we can consider the homomorphism of algebras

ϕ : Q[t, x, F, F t , F x , F tt , F tx , F xx ] -→ R defined by ϕ(t) = t, ϕ(x) = x, ϕ(F t α x β ) = ∂ |α+β| ∂t α ∂x β W, α + β ≤ 2 .
Since the polynomials P t α x β are formally given by ∂ α+β ∂t α ∂x β P , we have ϕ(P t α x β ) = 0 for all α, β ∈ N. This implies the inclusion I ⊂ ker(ϕ) for the ideal I = (P, P t , P x , P tt , P tx , P xx ).

The identities ϕ(Q) = (D L -D R )W and ϕ( Q) = ( DL -DR )W and Lemma 5.4 imply thus the equalities ϕ(K) 3 (D L -D R )W = 0 and ϕ(K) 3 ( DL -DR )W = 0. Since the algebra R has no zero divisors, and since ϕ(K) ≡ -t (mod x 2 ), we have (D L -D R )W = 0 and ( DL -DR )W = 0 with W ≡ 1 + tx (mod x 2 ). ✷ Remark 5.6. Lemma 5.4 can be replaced by the inclusions Q 2 , Q ∈ I which can be checked by computing a Gröbner basis for I. I thank Bernard Parisse who did the necessary computations using Xcas and CoCoa. The computation of a Gröbner basis is however typically quite long (several minutes in the above case) while the computations used for the previous proof of Lemma 5.4 are immediate.

Remark 5.7. Corollary 2.3 results also from the following computation which is analogous to the proof of Lemma 5.4: Replacing F t by F t -1 K P t and F x by F

x -1 K P x in K 2t(1 -F ) + x(2xF -t)F x + 3t(t + 2xF )F t
(with K = -t+4tx 2 F +4x 3 F 3 as above) we get -(5t+6xF )P which implies Corollary 2.3.

(Partial) proofs for d-dissections

Proof of Theorem 3.

1 Setting G = G(x) = xg d (x d-1 ), the computation G -G d = x g d (x d-1 ) -x d-1 g d (x d-1 ) d-1 = x shows that G(x) = x + . . . is the reciprocal function of y -→ y -y d . Since the coefficient γ n of g d (x) = ∞ n=0 γ n x n equals the coefficient of x n(d-1)+1 in G(x) = xg d (x d-1
), Lagrange inversion (which states that nσ n ∈ C is given by the coefficient of y n-1 in (y/r(y)

) n ∈ C[[y]] if ∞ n=1 σ n (r(y)) n = y for r(y) = ∞ n=1 ρ n y n ∈ C[[y]
], see eg. Satz 2.4 in [START_REF] Henrici | Die Lagrange-Bürmannsche Formel bei formalen Potenzreihen[END_REF] or Theorem 5.4.2 in [START_REF] Stanley | Enumerative Combinatorics[END_REF]), shows that (n(d -1) + 1)γ n is given by the coefficient of y

n(d-1) in y y -y d n(d-1)+1 = ∞ j=0 -n(d -1) -1 j (-1) j y j(d-1) = ∞ j=0 n(d -1) + j j y j(d-1)
and we have thus 

γ n = nd n 1 n(d -1) + 1 as required. ✷ Proof of Theorem 3.2 Introducing W = W (t, x) = W (t -1 , x) ∈ R
W d = 1 + tx W d d Wd = 1 + t -1 xW d d .
Eliminating W yields the algebraic equation

W d = 1 + tx 1 + t -1 xW d d d
of Theorem 3.2 for W . ✷ 6.1 A partial "proof" for Conjecture 3.5

All steps but one in the proof of Theorem 2.5 work for arbitrary d ≥ 2 and yield thus almost a proof of Conjecture 3.5. Failure occurs in the necessary machine computations which get more and more complicated for increasing values of d. We were however able to complete them for a few small values of d and thus to establish Theorem 3.6. Given a constant d ≥ 2, we consider the four following partial differential operators Proof As in the proof of the special case d = 2 (see Proposition 5.1), a coefficient (F, t j x m ) of a common solution F is determined by the coefficients (F, t j±1 x m-1 ) except if D R (t j x m ) = DR (t j x m ) = 0. Such a pair of integers (j, m) satisfies the two linear equations A factorisation P = P 1 P 2 of P implies the equality N (P ) = N (P 1 )+ N (P 2 ). where N (P i ) is the Newton polytope of the factor P i . Since N (P ) is a simplex, the polytope N (P i ) is a of the form λ i N (P )+τ i with λ i ∈ [0, 1] and τ i ∈ Q 3 . Since the simplex N (P ) has edges without interior integral vertices and since N (P i ) are polytopes with integral vertices, we have {λ 1 , λ 2 } = {0, 1}. Suppose λ 1 = 0. The polynomial P 1 is thus of the form µt k x l W m for some µ ∈ C * and (k, l, m) ∈ N 3 which implies P Proof Set Q d = Q. For h such that 1 ≤ h ≤ d, define Q h-1 by the substitutions

D L = dtx 1 - (d + 1) 2 t ∂ ∂t + (d -1) 2 x ∂ ∂x d-1 j=1 j + d 2 t ∂ ∂t + d 2 x ∂ ∂x D R = d-1 j=0 -j + (d + 1) 2 t ∂ ∂t + (d -1) 2 x ∂ ∂x DL = dx (d + 1) 2 t ∂ ∂t + (d -1) 2 x ∂ ∂x d-1 j=1 j - d 2 t ∂ ∂t + d 2 x ∂ ∂x DR = t d-1 j=0 1 -j - (d + 1) 2 t ∂ ∂t + (d - 
-a + d + 1 2 j + d -1 2 m = 1 -b - d + 1 2 j + d - 1 
F t α x h-α -→ F t α x h-α - 1 K P t α x h-α , 0 ≤ α ≤ h in K d h Q h where d h = ⌊d/
h⌋ is the degree of Q h with respect to the variables F t α x h-α , 0 ≤ α ≤ h. One shows by descending induction on h that Q h-1 ≡ K d h Q h (mod I) is an element of the algebra A h-1 . Since P is irreducible by Lemma 6.3, we have Q 0 ∈ I if and only if Q 0 is divisible by P which shows that K N Q ∈ I for N = d j=1 d j . The proof proceeds then as in the case d = 2. The inclusion K N Q ∈ I (and K ≡ -t d-1 (mod x 2 )) implies ϕ(Q) = (D L -D R )W = 0 where ϕ :

A d -→ R = Q[t, t -1 ] [[x]
] is the homomorphism of algebras defined by ϕ(t) = t, ϕ(x) = x and ϕ(F t α x β ) = ∂ α+β ∂t α ∂x β W for W = ∞ n=0 w d,n (t)x n . It contains I in its kernel. Repeating the above arguments with Q ends the proof. ✷ Proof of Theorem 3.6 Using Maple 8, we checked the inclusions K N Q, K N Q ∈ I of Theorem 6.4 up to d = 6. ✷ Remark 6.5. The following trick avoids the use of rational fractions in the substitutions

F t α x h-α -→ F t α x h-α -1 K P t α x h-α , 0 ≤ α ≤ h: Write Q h = d h
j=0 q h,j where q h,j is homogeneous of degree j with respect to the variables F t α x h-α . We have then Q h-1 = d h j=0 K d h -j qh,j where qh,j is obtained from q h,j by the substitutions

F t α x h-α -→ KF t α x h-α -P t α x h-α , 0 ≤ α ≤ d h .
This reduces the computations for proving Theorem 3.6 to elementary operations on polynomials, a domain of excellence for symbolic computer algebra systems.

Theorem 1 . 1 . 2 1 n+1

 1121 Every strictly convex polygon with 2n+2 vertices has exactly 2n n fair triangulations.

Conjecture 1 . 2 . 1 (d- 1 )Remark 1 . 3 . 2 1 n+1

 12111321 A strictly convex polygon with 2(d -1)n + 2 vertices has exactly dn n 2 n+1 fair d-dissections. Conjecture 1.2 holds of course for d = 2 by Theorem 1.1. For general d it is again a special case: Conjecture 3.5 of Section 3 gives the number of all d-dissections of a convex polygon P involving exactly n b black and n w white polygons such that a prescribed marked edge e * ⊂ P belongs to a black triangle. Obvious modifications of the proof of Theorem 2.5 establish Conjecture 3.5 for a few small values of d and show the truth of Conjecture 1.2 for d ≤ 6. The sequence 1, 2, 12, 100, 980, 10584, . . . , 2n n , . . . enumerating fair triangulations appears as A888 in [2], together with the following description, due to D. Callan: 2n n 2 1

  encoding the numbers of all d-dissections satisfies the identity g d = 1 + xg d d , as shown by arguments similar to those used in the proof of Theorem 2.1. The polynomial identity for g d follows also from the equivalence between d-dissections and rooted plane d-regular trees. Section 4.2 explains this bijection in the case d = 2. The generalisation to arbitrary values of d is straightforward.

Theorem 3 . 6 .

 36 Conjecture 3.5 holds for 2 ≤ d ≤ 6.

4 A

 4 few complements and some easy proofs 4.1 Proof of Theorem 2.1

Proposition 4 . 1 . 4 . 4

 4144 The numbers e b and e w of black and white edges in a checkerboard triangulation τ of P n ⊃ e * are given by the formulaee b = n + 2 + 3(n bn w ) 2 = 2n bn w + 1 e w = n + 2 -3(n bn w ) 2 = -n b + 2n w + 1with n b and n w denoting the number of black and white triangles in τ .Proof The homological interpretation of the coefficients in w n shows the identity 3(e be w ) = n bn w . This, together with the trivial equalities e b + e w = n + 2 and n b + n w = n, implies the result.✷ The asymptotic mean-value of n b (τ )n w (τ )

A 1 n+1 ends the proof. ✷ 4 . 5 Proposition 4 . 3 . 4 .

 145434 straightforward computation using for example lim n→∞ C n+1 /C n = 4 for the Catalan numbers C n = 2n n Analytical properties of W The series W = W (t, x) is absolutely convergent for (t, x) ∈ C * × C such that max(|t 1/3 x|, |t -1/3 x|) < 1 Proof Non-negativity of the integers e b = n+2+3(n b -nw) 2 and e w = n+2-3(n b -nw) 2

2 ,

 2 writing the coefficients of w n suitably along antidiagonals. Diagonal coefficients 1, 2, 12, 100, 980, . . . of A are constant terms in the Laurent polynomials w 2n (t). Their generating series is the hypergeometric function ∞ n=0 (w 2n , t 0 )x n = ∞ n=0 2n n 2 x n n + 1 enumerating fair triangulations, see Theorem 1.1 of the introduction. The generating functions of the extremal sequences 1, 1, 4, 22, 140, 969, 7084, . . . and 1, 2, 9, 52, 340, 2394, 17710, . . . of the array A are given by the algebraic hypergeometric functions cf. Section 4.10 below. Proof of Proposition 4.6 The upper bound |n bn w | ≤ n+2

  and decomposing for n ≥ 1 a d-dissection τ of D (d-1)n ⊃ e * along the distinguished polygon ∆ * ∈ τ containing e * , we get the equations

Proposition 6 . 1 .

 61 The two partial differential equationsD L F = D R F and DL F = DR Fdefined by the previous partial differential operators have at most a unique common solution F ∈ R satisfying the initial condition F ≡ 1+tx (mod x 2 ).

2 m = 0 forLemma 6 . 3 .

 063 some a, b ∈ {0, . . . , d -1}. Adding these two linear equations we have (d -1)m = a + b -1 ≤ 2d -3which shows m ∈ {0, 1}. A coefficient of t j or of t j x in a solution F is however prescribed by the initial condition F ≡ 1 + tx (mod x 2 ). ✷ Proposition 6.2. We haveD L W = D R W and DL W = DR W for the series W = ∞ n=0 wd,n x n ≡ 1 + tx (mod x 2) defined by the formulae given in Conjecture 3.5.Proof Follows from the formulaeD L (x (d+1)n+1 w(d+1)n+1 ) = dx (d+1)n+2 (d-1)n k=1 (d 2 n+d-d(k-1)-1)! (dn+d+d(k-1))! t (d-1)n-2(k-1) (n+(k-1)+1)! ((d 2 -1)n-(d+1)(k-1)-1)! (d(k-1)+d+(k-1))! (dn-(k-1))! The polynomial P = -t d-1 F +t d-1 +x(t+xF d ) d is irreducible over C[[t, x, F ]] for every integer d ≥ 1.Proof For d ≥ 1 fixed, consider the Newton-polytopeN (P ) = Conv({(a, b, c) ∈ N 3 |(P, t a x b F c ) = 0})of P defined as the convex hull of all exponents associated to monomials involved in P . A straightforward computation shows that N (P ) is the 3-dimensional simplex with vertices (d -1, 0, 1), (d -1, 0, 0), (d, 1, 0), (0, 1 + d, d 2 ) ∈ N 3 .

1 of A d . Theorem 6 . 4 .

 164 1 ∈ C * by inspection of P .✷ We consider now the three elementsQ = (D L -D R )F, Q = ( DL -DR )F and K = ∂P ∂F = -t d-1 + d 2 x 2 (t + xF d ) d-1 F d-Conjecture 3.5 holds if and only if we have the two inclusionsK N Q ∈ I and K N Q ∈ I for N = d j=1 ⌊ d j ⌋.

  4. Partial derivations of W and W are formal. Proposition 4.3 (or a little work using assertion (ii) of Theorem 2.1) shows however that W and W define analytic functions in suitable open subsets containing (1, 0) of C * × C.

	Section 4 contains proofs for Theorem 2.1, 2.2, Corollary 2.3 and a few
	complements such as a homological interpretation for the coefficients of the
	Laurent polynomials w n and features of the specialisations W

  the three polynomials KF tt -P tt , KF tx -P tx , KF xx -P xx are elements of Q[t, x, F, F t , F x ] and since Q and Q are of degree 1 with respect to the variables F tt , F tx , F xx we have the inclusionsQ 1 , Q1 ∈ Q[t, x, F, F t , F x ].Similarly, we have KF t -P t , KF x -P x ∈ Q[t, x, F ]. Since Q 1 , Q1 are of degree 2 with respect to the variables F t , F x , substituting F t by F t -1 K P t and F x by

Math. Class: 05A15, Keywords: Catalan number, checkerboard triangulation, dissections of polygons
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D L (x (d+1)n+j w(d+1)n+j ) = dx (d+1)n+(j+1) (d-1)n+j-2 k=0 (d 2 n+dj-dk-1)! (dn+d(k+1))! t (d-1)n+(j+1)-2(k+1) (n+(k+1))! ((d 2 -1)n+dj-(d+1)(k+1))! ((d+1)(k+1)-j)! (dn+(j+1)-

where ω d (j) = (d -1)n + j -2 for j ∈ {2, 3, . . . , d} and

where α d (2) = 0 and α d (j) = 1 for j ∈ {3, . . . , d + 1}, corresponding to Lemma 5.3 and from the observation that the formula of Conjecture 3.5 for wd,(d+1)n+j with j = d + 1 coincides with the formula for wd,(d+1)(n+1) . ✷

An algebraic reformulation

The integer d ≥ 2 is again fixed in this Section. We denote by A h = Q[t, x, (F t α x β ) α+β≤h ] the free algebra generated by t, x and all partial derivations F t α x β = ∂ α+β ∂t α ∂x β F of order α + β ≤ h of an unknown analytic function F = F (t, x). We suppose that there are no algebraic relations among partial derivations of F .

We set P = -t