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Abstract

This paper is concerned with two related types of directed polymers in a random

medium. The first one is a d-dimensional Brownian motion living in a random en-

vironment which is Brownian in time and homogeneous in space. The second is a

continuous-time random walk on Zd, in a random environment with similar properties

as in continuous space, albeit defined only on R+ ×Z
d. The case of a space-time white

noise environment can be acheived in this second setting. By means of some Gaussian

tools, we estimate the free energy of these models at low temperature, and give some

further information on the strong disorder regime of the objects under consideration.
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1 Introduction

1.1 Background, models, and motivation

Models for directed polymers in a random environment have been introduced in the physical

literature [11, 14, 15, 19] for two main reasons. First, they provide a reasonably realistic

model of a particle under the influence of a random medium, for which a number of natural

questions can be posed, in terms of the asymptotic behavior for the path of the particle. The

second point is that, in spite of the fact that polymers seem to be some more complicated

objects than other disordered systems such as spin glasses, a lot more can be said about their

behavior in the low temperature regime, as pointed out in [12, 14]. At a mathematical level,

after two decades of efforts, a substantial amount of information about different models of

polymer is now available, either in discrete or continuous space settings (see [9, 18, 20] and

[4, 17] respectively).

The current article can be seen as a part of this global project consisting in describing

precisely the polymer’s asymptotic behavior, beyond the spin glass case. Except for some toy

models such as the REM or GREM [2, 22], little is known about the low temperature behavior

of the free energy for spin glasses systems, at least at a completely rigorous level. We shall

see in this paper that polymer models are amenable to computations in this direction: we

work to obtain some sharp estimates on the free energy of two different kind of polymers in

continuous time, for which some scaling arguments seem to bring more information than in

the discrete time setting. Here, in a strict polymer sense, time can also be interpreted as the

length parameter of a directed polymer.

A word about random media appellations: we believe the term “random environment”

normally implies that the underlying randomness is allowed to change over time; the appel-

lation “random scenery” or “random landscape” is more specifically used for an environment

that does not change over time; the models we consider herein fall under the time-varying

“environment” umbrella. We now give some brief specifics about these models.

(1) We first consider a Brownian polymer in a Gaussian environment: the polymer itself is

modeled by a Brownian motion b = {bt; t ≥ 0}, defined on a complete filtered probability

space (C,F , (Ft)t≥0, (P
x
b )x∈Rd), where P x

b stands for the Wiener measure starting from the

initial condition x. The corresponding expected value is denoted by Ex
b , or simply by Eb

when x = 0.

The random environment is represented by a centered Gaussian random field W indexed

by R+ ×Rd, defined on another independent complete probability space (Ω,G,P). Denoting

by E the expected value with respect to P, the covariance structure of W is given by

E [W (t, x)W (s, y)] = (t ∧ s) · Q(x − y), (1)
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for a given homogeneous covariance function Q : Rd → R satisfying some regularity condi-

tions that will be specified later on. In particular, the function t 7→ [Q(0)]−1/2W (t, x) will

be a standard Brownian motion for any fixed x ∈ R
d; for every fixed t ∈ R+, the process

x 7→ t−1/2W (t, x) is a homogeneous Gaussian field on Rd with covariance function Q. Notice

that the homogeneity assumption is made here for sake of readability, but could be weakened

for almost all the results we will show. The interested reader can consult [13] for the types

of tools needed for such generalizations.

Once b and W are defined, the polymer measure itself can be described as follows: for

any t > 0, the energy of a given path (or configuration) b on [0, t] is given by the Hamiltonian

−Ht(b) =

∫ t

0

W (ds, bs). (2)

A completely rigorous meaning for this integral will be given in the next section, but for the

moment, observe that for any fixed path b, Ht(b) is a centered Gaussian random variable

with variance tQ(0). Based on this Hamiltonian, for any x ∈ Rd, and a given constant

β (interpreted as the inverse of the temperature of the system), we define our (random)

polymer measure Gx
t (with Gt := G0

t ) as follows:

dGx
t (b) =

e−βHt(b)

Zx
t

dP x
b (b), with Zx

t = Ex
b

[

e−βHt(b)
]

. (3)

(2) The second model we consider in this article is the continuous time random walk on Z
d

in a white noise potential, which can be defined similarly to the Brownian polymer above:

the polymer is modeled by a continuous time random walk b̂ = {b̂t; t ≥ 0} on Zd, defined on

a complete filtered probability space (Ĉ, F̂ , (F̂t)t≥0, (P̂
x
b̂
)x∈Zd). The corresponding expected

value will be denoted by Êx
b̂
, or simply by Êb̂ when x = 0. Notice that b̂ can be represented

in terms of its jump times {τi; i ≥ 0} and its positions {xi; i ≥ 0} between the jumps, as

b̂t =
∑

i≥0 xi1[τi,τi+1)(t). Then, under P̂b̂, τ0 = x0 = 0, the sequence {τi+1 − τi; i ≥ 0} is

i.i.d with common exponential law E(2d), and the sequence {xi; i ≥ 0} is a nearest neighbor

symmetric random walk on Zd.

In this context, the random environment Ŵ will be defined as a sequence {Ŵ (., z); z ∈
Zd} of Brownian motions, defined on another independent complete probability space (Ω̂, Ĝ,

P̂). Just like in the Brownian case described above, the covariance structure we assume on

Ŵ is of the following type:

Ê
[

Ŵ (t, x)Ŵ (s, y)
]

= [t ∧ s] Q̂(x − y), (4)

for a covariance function Q̂ defined on Zd. Note that the case where Q̂ (z) = 0 for all z

except Q̂ (0) > 0, is the case where Brownian motions in the family {Ŵ (·, z) ; z ∈ Zd} are

independent, i.e. the case of space-time white noise. The Hamiltonian of our system can be
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defined formally similarly to the continuous case, as

−Ĥt(b̂) =

∫ t

0

Ŵ (ds, b̂s).

Notice however that, since b is a piecewise constant function, the Hamiltonian Ĥt(b̂) can also

be written as

−Ĥt(b̂) =

Nt
∑

i=0

Ŵ (τi+1, xi) − Ŵ (τi, xi), (5)

where Nt designates the number of jumps of b̂ before time t, and τNt+1 = t by convention.

Once the Hamiltonian Ĥt is defined, a Gibbs-type measure Ĝt can be introduced similarly

to (3) in the Brownian case.

As mentioned before, our aim in this article is to give some sharp estimates on the free

energies p(β) and p̂(β) of the two systems described above, for large β. The quantities of

interest are defined asymptotically as

p(β) = lim
t→∞

1

t
E [log(Zt)] , and p̂(β) = lim

t→∞

1

t
E
[

log(Ẑt)
]

;

it is well-known (see e.g. [20] for the Brownian case) that the limits above exist, are typically

positive, and are both bounded from above by Q(0)β2/2. It is then possible to separate a

region of weak disorder from a region of strong disorder according to the value of p(β): we

will say that the polymer is in the weak disorder regime if p(β) = Q(0)β2/2, while the strong

disorder regime is defined by the strict inequality p(β) < Q(0)β2/2. These two notions have

some nice interpretations in terms of the behavior of the particle under the Gibbs measure

(see e.g. [5, 10]), and it is expected, for any model of polymer in a random environment,

that the strong disorder regime is attained whenever β is large enough. It is then natural to

ask if one can obtain a sharper information than p(β) < Q(0)β2/2 in the low temperature

phase. Indeed, on the one hand, this may quantify in a sense how far we are from the weak

disorder regime, and how much localization there is on our measures Gt, Ĝt. On the other

hand, the penalization method explained in [21] can be roughly summarized in the following

way: if one can get a sharp equivalent for the quantity Eb[e
−βHt(b)], then this will also allow

a detailed description of the limit limt→∞ Gt. This latter program is of course beyond the

scope of the current article, but is a good motivation for getting some precise information

about the function p(β).

1.2 Summary of results

We now describe our main results. Our principal result in continuous space will be obtained

in terms of the regularity of Q in a neighborhood of 0. In particular, we shall assume some

upper and lower bounds on Q of the form

c0|x|2H ≤ Q(0) − Q(x) ≤ c1|x|2H , for all x such that |x| ∈ [0, r0], (6)
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for a given exponent H ∈ (0, 1] and r0 > 0. It should be noticed that condition (6) is

equivalent to assuming that W has a specific almost-sure modulus of continuity in space, of

order |x|H log1/2 (1/ |x|), i.e. barely failing to be H-Hölder continuous (see [23] for details).

Then, under these conditions, we will get the following conclusions.

Theorem 1.1. Assume that the function Q satisfies condition (6). Then the following hold

true:

1. If H ∈ [1/2, 1], we have for some constants C0,d and C1,d depending only on Q and d,

for all β ≥ 1,

C0,dβ
4/3 ≤ p(β) ≤ C1,dβ

2−2H/(3H+1).

2. If H ∈ (0, 1/2], we have for some constants βQ, C ′
0,d, and C ′

1,d depending only on Q

and d, for all β ≥ βQ,

C ′
0,dβ

2/(1+H) ≤ p(β) ≤ C ′
1,dβ

2−2H/(3H+1).

Corresponding almost sure results on t−1E [log(Zt)] also hold, as seen in Corollary 1.3

and Proposition 2.1 below. Let us make a few elementary comments about the above the-

orem’s bounds, which are also summarized in Figure 1.2. First of all, the exponent of β

in those estimates is decreasing with H , which seems to indicate a stronger disorder when

the Gaussian field W is smoother in space. Furthermore, in the case H ∈ [1/2, 1], the gap

between the two estimates decreases as H increases to 1; for H = 1/2, we get bounds with

the powers of β equal to 4/3 and 8/5; and for H = 1, the bounds are 4/3 and 3/2. It should

be noted that the case H = 1/2 is our least sharp result, while the case H = 1 yields the

lowest power of β; one should not expect lower powers for any potential W even if W is so

smooth that it is C∞ in space: indeed, unless W is highly degenerate, the lower bound in (6)

should hold with H = 1, while the upper bound will automatically be satisfied with H = 1.

The case of small H is more interesting. Indeed, we can rewrite the lower and upper bounds

above as

C ′
0,dβ

2−2H+F (H) ≤ p(β) ≤ C ′
1,dβ

2−2H+G(H)

where the functions F and G satisfy F (x) = 2x2 + O (x3) and G (x) = 6x2 + O (x3) for x

near 0. We therefore see that the asymptotic β2−2H is quite sharp for small H , but that the

second order term in the expansion of the power of β for small H , while bounded, is always

positive.

Using ideas introduced in [13] to deal with spatially non-homogeneous media, it is possible

to extend Theorem 1.1. The reader will check that the first of the following two corollaries

is trivial to prove using the tools in this article. The second corollary requires techniques in

[13], and can also be proved directly by using sub-Gaussian concentration results (see [27]).

We do not give any details of its proof, for the sake of conciseness. Neither corollary assumes

that W is spatially homogeneous. One will note that no assertion on the existence of p (β) is
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Figure 1: Exponent of β in function of H

made in these corollaries, but that the first corollary already implies strong disorder for large

β in the sense that lim sup t−1E [log(Zt)] < β2Q (0) /2. [13] can be consulted for conditions

under which p (β) exists even if W is not spatially homogeneous.

Corollary 1.2. In the non homogeneous case, the following bounds are satisfied:

• [Upper bound] Assume that for some r0, c1 > 0, for all x, y ∈ R
d such that |x − y| ≤ r1,

the spatial canonical metric of W is bounded above as

δ2 (x, y) := E
[

(W (1, x) − W (1, y))2] ≤ c1 |x − y|2H .

Then, replacing p (β) by lim supβ→∞ t−1E [log(Zt)], the two upper bound results in The-

orem 1.1 hold.

• [Lower bound] Assume that for some r0, c0 > 0, for all x, y ∈ Rd such that |x − y| ≤ r0,

we have

δ2 (x, y) := E
[

(W (1, x) − W (1, y))2] ≥ c0 |x − y|2H .

Then, replacing p (β) by lim infβ→∞ t−1E [log(Zt)], the two lower bound results in The-

orem 1.1 hold.

Corollary 1.3. Under the hypotheses of Corollary 1.2, its conclusions also hold P-almost

surely with lim supβ→∞ t−1E [log(Zt)] replaced by lim supβ→∞ t−1 log(Zt), and similarly for

the lim inf ’s.
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Since our estimates become sharper as H → 0, and also due to the fact that the behavior

of p(β) is nearly quadratic in β for small H (i.e. approaching the weak disorder regime),

we decided to explore further the region of logarithmic spatial regularity for W , in order to

determine whether one ever leaves the strong disorder regime. Namely, we also examine the

situation of a covariance function Q for which there exist positive constants c0, c1, and r1

such that for all x with |x| ≤ r1,

c0 log−2γ (1/ |x|) ≤ Q(0) − Q(x) ≤ c1 log−2γ (1/ |x|) , (7)

where γ is a given positive exponent. Assumption (7) implies that W is not spatially Hölder-

continuous for any exponent H ∈ (0, 1]. Moreover, the theory of Gaussian regularity implies

that, if γ > 1/2, W is almost-surely continuous in space, with modulus of continuity propor-

tional to log−γ+1/2 (1/ |x|), while if γ ≤ 1/2, W is almost-surely not uniformly continuous on

any interval in space, and in fact is unbounded on any interval. We will then establish the

following result, which is optimal, up to multiplicative constants.

Theorem 1.4. Assume condition (7) where γ > 0. We have for some constants D0,d and

D1,d depending only on Q and d, for all β large enough,

D0,dβ
2 log−2γ (β) ≤ p(β) ≤ D1,dβ

2 log−2γ (β) .

Besides giving a sharp result up to constants for the free energy p(β), the last result

will allow us to make a link between our Brownian model and the random walk polymer

described by the Hamiltonian (5). Indeed, the following result will also be proved in the

sequel.

Theorem 1.5. Assume that Q̂(0) − Q̂(2) > 0, where Q̂ has been defined at (4). Then the

free energy p̂(β) of the random walk polymer b̂ satisfies, for β large enough:

D′
0,dβ

2 log−1 (β) ≤ p̂(β) ≤ D′
1,dβ

2 log−1 (β) , (8)

for two constants D0,d and D1,d depending only on Q and d.

Relation (8) will be obtained here thanks to some simple arguments, which allow the

extension to spatially inhomogeneous media. In the special homogeneous case of space-

time white noise (Q (x) = 0 for all x 6= 0), more can be said: the exact value of the limit

limβ→∞ p̂(β) log (β) /β2 can be computed in this situation; this result has been established

by the authors of the work in preparation [3].

In relation with the continuous space model considered at Theorem 1.4, we see that

to obtain the same behavior as with space-time white noise in discrete space, we need to

use precisely the environment W in Rd with the logarithmic regularity corresponding to

γ = 1/2 in (7). As mentioned before, this behavior of W happens to be exactly at the

threshold in which W becomes almost-surely discontinuous and unbounded on every interval.
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Nevertheless such a W is still function-valued. Hence, for the purpose of understanding the

polymer partition function, there is no need to study the space-time white noise in continuous

space, for which W (t, ·) is not a bonafide function (only a distribution), and for which the

meaning of Zt itself is difficult to even define. Another way to interpret the coincidence

of behaviors for “space-time white noise in R+ × Zd” and for “γ = 1/2” is to say that

both models for W are function-valued and exhibit spatial discontinuity: indeed, in discrete

space, one extends W (t, ·) to Rd by making it piecewise constant, in order to preserve

independence. The fact that the limit in Theorem 1.4 depends on γ does prove, however,

that the continuous-space polymer model under logarithmic regularity is richer than the

discrete-space one.

As in the Hölder-scale continuous space setting, we have the following corollaries, in

which W is allowed to be spatially inhomogeneous. Again, we do not include proofs of these

results for the sake of conciseness.

Corollary 1.6. Assume the lower and upper bound hypotheses in Corollary 1.2 hold with

|x − y|2H replaced by log−2γ (1/ |x − y|). Then the conclusions of Theorem 1.4 hold with p (β)

replaced by lim infβ→∞ t−1E [log(Zt)] for the lower bound, and by lim supβ→∞ t−1E [log(Zt)]

for the upper bound. Almost-sure results as in Corollary 1.3 also hold.

Corollary 1.7. For the discrete space polymer in Theorem 1.5, assume, instead of Q̂ (0) >

Q̂ (2), that E
[

(W (1,−1) − W (1, 1))2] > 0. Then the conclusions of Theorem 1.5 hold with

p̂ (β) replaced by lim infβ→∞ t−1Ê[log(Ẑt)] for the lower bound, and with p̂ (β) replaced by

lim supβ→∞ t−1Ê[log(Ẑt)] for the upper bound. Almost-sure results as in Corollary 1.3 also

hold.

Let us say a few words now about the methodology we have used in order to get our

results. It is inspired by the literature on Lyapounov exponents for stochastic PDEs [6, 7, 8,

13, 25, 26]; our upper bound results rely heavily on the estimation of the supremum of some

well-chosen Gaussian fields, using such results as Dudley’s so-called entropy upper bound,

and the Borell-Sudakov inequality (see [1] or [27]); our lower bound results are obtained

more “by hand”, by isolating very simple polymer configurations b or b̂ which maximize

the random medium’s increments in the Hamiltonian Ht (b) or Ĥt(b̂), and showing that

these configurations contain enough weight to provide lower bounds. It turns out that these

estimation procedures works better when the configuration b is simple enough, such as a

piecewise constant or linear function. For the upper bound in the continuous case, a careful

discretization of our Brownian path will thus have to be performed in order to get our main

results; the resulting proof cannot exploit the discrete case itself because of the different

nature of the discrete and continuous environments.

The structure of the article is as follows: Section 2 contains preliminary information on

the partition function. Section 3 deals with the Brownian polymer. Section 4 covers the
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random walk polymer. In order to simplify the notation, throughout the paper we will use

C to represent the constants, but acknowledge that the value it represents will change, even

from line to line.

2 Preliminaries; the partition function

In this section, we will first recall some basic facts about the definition and the simplest

properties of the partition functions Zt and Ẑt which have been already considered in the

introduction. We will also give briefly some notions of Gaussian analysis which will be used

later on.

We begin with basic information about the partition function of the Brownian polymer.

Recall that W is a centered Gaussian field on R+ × Rd, defined by its covariance structure

(1). The Hamiltonian Ht(b) given by (2) can be defined more rigorously through a Fourier

transform procedure: there exists (see e.g. [8] for further details) a centered Gaussian

independently scattered C-valued measure ν on R+ × Rd such that

W (t, x) =

∫

R+×Rd

1[0,t](s)e
ıuxν(ds, du), (9)

where the simple notation ux stands for the inner product u ·x in Rd. For every test function

f : R+ × Rd → C, set now

ν(f) ≡
∫

R+×Rd

f(s, u)ν(ds, du). (10)

While the random variable ν (f) may be complex-valued, to ensure that it is real valued, it

is sufficient to assume that f is of the form f (s, u) = f1 (s) eıuf2(s) for real valued functions

f1 and f2. Then the law of ν is defined by the following covariance structure: for any such

test functions f, g : R+ × Rd → C, we have

E [ν(f)ν(g)] =

∫

R+×Rd

f(s, u)g(s, u)Q̂(du)ds, (11)

where the finite positive measure Q̂ is the Fourier transform of Q (see [24] for details).

From (9), we see that the Itô-stochastic differential of W in time can be understood

as W (ds, x) :=
∫

u∈Rd eıuxν(ds, du), or even, if the measure Q̂ (du) has a density f (u) with

respect to the Lebesgue measure, which is typical, as

W (ds, x) :=

∫

u∈Rd

eıux
√

f (u)M(ds, du)

where M is a white-noise measure on R+ × Rd, i.e. a centered independently scattered

Gaussian measure with covariance given by E [M (A) M (B)] = mLeb (A ∩ B) where mLeb is

Lebesgue’s measure on R+ × Rd.

9



We can go back now to the definition of Ht(b): invoking the representation (9), we can

write

−Ht(b) :=

∫ t

0

W (ds, bs) =

∫ t

0

∫

Rd

eıubsν(ds, du), (12)

taking this expression as a definition of Ht (b) for each fixed path b; it can be shown (see

[8]) that the right hand side of the above relation is well defined for any Hölder contin-

uous path b, by a L2-limit procedure. Such a limiting procedure can be adapted to the

specific case of constructing Ht (b), using the natural time evolution structure; we will

not comment on this further. However, the reader will surmise that the following re-

mark, given for the sake of illustration, can be useful: when Q̂ has a density f , we obtain

−Ht(b) =
∫∫

[0,t]×Rd eıubs
√

f (u)M (ds, du) .

We use as the definition of the partition function Zx
t , its expression in (3), and set its

expectation under P as

pt(β) :=
1

t
E [log (Zx

t )] , (13)

usually called the free energy of the system. It is easily seen that pt(β) is independent of the

initial condition x ∈ R
d, thanks to the spatial homogeneity of W . Thus, in the remainder

of the paper, x will be understood as 0 when not specified, and Eb, Zt will stand for E0
b , Z

0
t ,

etc... We summarize some basic results on pt(β) and Zt established in [20].

Proposition 2.1. For all β > 0 there exists a constant p(β) > 0 such that

p(β) := lim
t→∞

pt(β) = sup
t≥0

pt(β). (14)

Furthermore, the function p satisfies:

1. The map β 7→ p(β) is a convex nondecreasing function on R+.

2. The following upper bound holds true:

p(β) ≤ β2

2
Q(0). (15)

3. P-almost surely, we have

lim
t→∞

1

t
log Zt = p(β). (16)

For the random walk polymer on Zd, the Hamiltonian Ĥt(b̂) is easier to define, and can

be expressed in a simple way by (5). Recall then that Ẑt, p̂t(β) are defined as:

Ẑt = Êb̂

[

e−Ĥt(b̂)
]

, and p̂t(β) = Ê
[

log(Ẑt)
]

.

Then, using the same kind of arguments as in [20] (see also [3]), we get the following:

Proposition 2.2. The same conclusions as in Proposition 2.1 hold true for the random walk

polymer b̂.
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3 Estimates of the free energy: continuous space

In this section, we will proceed to the proof of Theorems 1.1 and, 1.4, by means of some

estimates for some well-chosen Gaussian random fields.

The hypothesis we use guarantees that there is some H ∈ (0, 1) such that W is no

more than H-Hölder continuous in space. Accordingly, we define the homogeneous spatial

canonical metric δ of W by

δ2(x − y) := E
[

(W (1, x) − W (1, y))2
]

= 2 (Q(0) − Q(x − y)) , (17)

for all x, y ∈ Rd. Our hypotheses on δ translate immediately into statements about Q via

this formula.

In our results below, we have also tried to specify the dependence of our constants on the

dimension of the space variable. An interesting point in that respect is given in the lower

bound of Subsection 3.2 below, which has to do with weak versus strong disorder in very

high-dimensional cases.

3.1 Upper bound in the Brownian case

The upper bound in Theorem 1.1 follows immediately from the following proposition, which

proves in particular that strong disorder holds for all H ∈ (0, 1].

Proposition 3.1. Assume that there exist a number H ∈ (0, 1] and numbers c1, r1 such that

for all x, y ∈ R
d with |x − y| ≤ r1 we have

δ(x − y) < c1 |x − y|H . (18)

Then there exists a constant C depending only on Q and a constant β0 depending only on r1

and d, such that for all β ≥ β0,

p(β) ≤ Cd
7H

1+3H β
2+4H
1+3H .

Proof. Let us divide the proof in several steps:

Step 1: Strategy. From relation (14), we have

p(β) ≤ lim sup
t→∞

pt(β).

Our strategy is then to give an estimation of pt(β) for a discretized path b̃ ∈ εZd that stays

close to b and proceeds only by jumps. Thanks to this substitution, and using Hölder’s and

11



Jensen’s inequalities, we shall obtain

E [log(Zt)] = E
[

log Eb

[

exp
(

−β
[

Ht(b) − Ht(b̃)
])

exp−βHt(b̃)
]]

(19)

≤ 1

2
E
[

log Eb

[

exp
(

−2β[Ht(b) − Ht(b̃)]
)]]

+
1

2
E
[

log Eb

[

exp
(

−2βHt(b̃)
)]]

≤ 1

2
log Eb

[

exp 2β2

∫ t

0

(

δ(bs − b̃s)
)2

ds

]

+
1

2
E
[

log Eb

[

exp
(

−2βHt(b̃)
)]]

.

Notice that the first term on the right-hand side represents the error made by considering

the discretized path b̃ instead of b, but thanks to hypothesis (18) and the definition of b̃ we

will easily control it.

Step 2: The discretized path. Let us describe now the discretized process we shall use in the

sequel: we will approximate the Brownian path b with a path that stays in εZd, where ε is

a small positive number. Let bj be the j-th component of the d-dimensional path b. Let T j
1

be the first time that bj exits the interval (−ε, ε) and T j
i+1 be the first time after T j

i that

bj exits (bT j
i
− ε, bT j

i
+ ε). So, for a fixed component j, the times (T j

i+1 − T j
i )∞i=0 are i.i.d.

and the successive positions xj
m = bj

T j
m
, which are independent of the jump times, form a

one-dimensional symmetric random walk on εZ in discrete time.

Now let (Tn)∞n=0 be the increasing sequence of all the (T j
m)j,m and let (xn)∞n=0 be the

nearest neighbor path in εZd with x0 = 0 whose j-th component takes the same step as xj
m

at time T j
m. We define the discretized path b̃ as the path that jumps to site xn at time Tn

and it is constant between jumps.

Remark 3.2. At any time s, each coordinate of b̃s is within ε of the corresponding one of

bs. So the distance separating the two paths is never more than ε
√

d. Thus we have, for all

s ≥ 0, |bs − b̃s| ≤ εd1/2.

Remark 3.3. Thanks to Remark 3.2 we can now control the error term we have defined at

relation (19). In fact, owing to Hypothesis (18), we have

1

2t
log Eb

[

exp 2β2

∫ t

0

(

δ(bs − b̃s)
)2

ds

]

≤ 1

2t
log Eb

[

exp

(

2β2C2

∫ t

0

|bs − b̃s|2Hdt

)]

≤ Cβ2ε2HdH ,

where we recall that C is a constant depending on Q that can change from line to line.

Plugging this last inequality into (19), and defining

pε
t (β) =

1

t
E
[

log Eb

[

exp
(

−2βHt(b̃)
)]]

,

we have thus obtained the following estimate for pt(β):

pt(β) ≤ Cβ2ε2HdH +
1

2
pε

t (β). (20)

12



We shall try now to get some suitable bounds on pε
t (β).

Step 3: Study of pε
t (β). Let N j

t be the number of jumps of the j-th component of b̃ up to

time t. For a multi-index k = (k1, · · · , kd) let |k| = k1 + · · · + kd, so the total number of

jumps of b̃ up to time t is |Nt| = N1
t + · · ·+Nd

t . Denote by S(t, n) the simplex of all possible

sequences of n jump times up to time t, namely

S(t, n) = {t = (t0, · · · , tn) : 0 = t0 ≤ · · · ≤ tn ≤ t} . (21)

The set of the first kj jump times of the j-th component of b̃ is a point (tji )
kj

i=1 in S(t, kj).

Given the set of all jump times
{

tji : j ∈ [1, · · · , d] ; i ∈ [1, · · · , kj]
}

, let
{

t̃l : l ∈ [0, |k| + 1]
}

be the same set but ordered and with the convention t̃0 = 0, t̃|k|+1 = t. And finally let x̃l be

the value of b̃ between the two jump times t̃l and t̃l+1. Denote by Pn the set of all such x̃,

i.e. the set of all nearest-neighbor random walk paths of length k starting at the origin.

Then if we fix |Nt| = |k|, we can write

Ht(b̃) = X
(

|k|, (t̃l)|k|l=1, (x̃l)
|k|
l=1

)

,

where

X
(

|k|, (t̃l)|k|l=1, (x̃l)
|k|
l=1

)

=

|k|
∑

i=0

[

W (t̃i+1, x̃i) − W (t̃i, x̃i)
]

.

Thanks to these notations, we have

tpε
t (β) = E

[

log Eb

[

exp(−2βHt(b̃))
]]

= E
[

log Eb

[

exp
(

−2βX
(

|Nt|, (t̃l)|Nt|
l=1 , (x̃l)

|Nt|
l=1

))]]

.

So we can write the expectation with respect to b as:

Eb

[

exp(−2βHt(b̃))
]

=
∑

n≥1

Eb

[

exp(−2βHt(b̃))
∣

∣

∣
|Nt| ∈ [tα(n − 1), tαn]

]

× Pb [|Nt| ∈ [tα(n − 1), tαn]] .

The number of jumps of the discretized path b̃ in a given interval [0, t] will play a crucial

role in our optimization procedure. For a parameter α > 0 which will be fixed later on, let

us thus define

Tnα =
{(

k, t̃, x̃
)

: k ≤ tnα, t̃ ∈ S(t, k), x̃ ∈ Pk

}

.

Then the following estimates will be essential for our future computations:

Pb

[

N j
t > nαt

]

≤ exp

(

− t

2
(αnε)2 + tαn

)

(22)

E

[

sup
Tnα

X(k, t̃, x̃)

]

≤ Ktd
√

nα, (23)

13



where K is a constant that depends on the covariance of the environment Q. Inequality (22)

can be found textually in [13]. Inequality (23) is established identically to equation (30) in

[13], with the minor difference that the total number of paths in Pm is not 2m but (2d)m,

which, in the inequality above (30) near the bottom of page 33 in [13], accounts for a factor

e1+log(6d) = 6ed instead of ec1 therein, hence the factor d in (23).

Defining Ynα = supTnα
X(k, t̃, x̃), we can now bound pε

t (β) as follows:

tpε
t (β) ≤ E [log(A + B)] ≤ E

[

(log A)+

]

+ E
[

(log B)+

]

+ log 2,

where

A = Pb [|Nt| ≤ αt] exp (2βYα) , and B =
∑

n≥1

Pb [|Nt| ∈ [nαt, (n + 1)αt]] exp
(

2βYα(n+1)

)

.

We will now bound the terms A and B separately.

Step 4: The factor A. We can bound Pb [|Nt| ≤ αt] by 1 and we easily get, invoking (23),

E
[

(log A)+

]

≤ 2βE [Yα] ≤ 2βKdt
√

α. (24)

Step 5: The factor B. Let µ = E
[

Yα(n+1)

]

. Since X is a Gaussian field and since it is easy

to show that

σ2 := sup
(m,t̃,x̃)

Var(X(k, t̃, x̃)) ≤ tQ(0),

the so called Borell-Sudakov inequality (see [1] or [27]) implies that, for a constant a > 0,

E [exp (a |Yαn − µ|)] ≤ 2 exp

(

a2σ2

2

)

= 2 exp

(

a2tQ(0)

2

)

. (25)

Fix now a number γ ∈ (1/2, 1) and let us denote log+(B) = (log B)+ . We have

1

tγ
E
[

log+ B
]

= E



log+

(

∑

n≥1

Pb [|Nt| ∈ [ntα, (n + 1)tα]] exp
(

2βYα(n+1)

)

)t−γ




≤ E



log+

(

∑

n≥1

Pb [|Nt| > ntα] exp
(

2β(Yα(n+1) − µ)
)

exp
(

2βKtd
√

α(n + 1)
)

)t−γ


 ,

where we used that (23) implies µ ≤ Kdt
√

(n + 1)α. We also know that for any sequence

of non-negative reals (xn)n the following holds: (
∑

n xn)t−γ ≤
∑

n xt−γ

n . Thus we have

1

tγ
E
[

log+ B
]

≤ E

[

log+

(

∑

n≥1

(Pb [|Nt| > ntα])t−γ

exp

(

2β

tγ
(Yα(n+1) − µ)

)

exp
(

2t1−γβKd
√

α(n + 1)
)

)]

≤ E

[

log+

[

dt−γ
∑

n≥1

exp

(

2β

tγ
(Yα(n+1) − µ)

)

exp

(

−t1−γ

2
yn

)

]]

,
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where we used estimate (22) in the following way:

Pb [|Nt| > ntα] ≤
d
∑

j=1

Pb

[

N j
t >

ntα

d

]

= dPb

[

N1
t >

ntα

d

]

≤ d exp

(

− t

2

(αnε

d

)2

+
tαn

d

)

,

and where we have obtained:

yn =
(εαn

d

)2

− 2αn

d
− 4βKd

√

α(n + 1).

Now, bounding log+(x) from above by log(1 + x), for x ≥ 1, and using Jensen’s inequality,

we have:

1

tγ
E
[

log+ B
]

≤ log

[

1 +
∑

n≥1

E

[

exp

(

2β

tγ
(Yα(n+1) − µ)

)]

exp

(−t1−γ

2
yn

)

]

,

so, using (25), it is readily checked that

1

tγ
E
[

log+ B
]

≤ log

[

1 + 2 exp

(

2β2Q(0)

t2γ−1

)

∑

n≥1

exp

(−t1−γ

2
yn

)

]

.

In order for the series above to converge, we must choose α so as to compensate the negative

terms in yn. Specifically, we choose
(αε

d

)2

= 16βKd
√

α, i.e. α = (16βKd3ε−2)2/3. (26)

With this choice, we end up with:

yn =
(αε

d

)2
(

n2 − 2dn

αε2
− 1

4

√
n + 1

)

.

Now we note that:

If we choose ε, β such that βε ≥ d−3/2 ⇒ αε2

d
= (16Kβε)2/3 d ≥ 4, (27)

so that

yn ≥
(αε

d

)2
(

n2 − n

2
− 1

4

√
n + 1

)

,

and since n2 − n
2
−

√
n+1
4

≥ n
8
, we get

∑

n≥1

exp

(

−t1−γ

2

(αε

d

)2
(

n2 − 2dn

αε2
− 1

4

√
n + 1

))

≤
∑

n≥1

exp

(

−t1−γ

2

(αε

d

)2 n

8

)

=
1

1 − exp
(

− 1
16

t1−γ
(

αε
d

)2
) − 1.
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Notice that this last term can be made smaller than 1 if t is large enough. Hence we can

write a final estimate on E
[

log+ B
]

as follows: for large t we have

1

tγ
E
[

log+ B
]

≤ log

[

1 + 2dt−γ

exp

(

2β2Q(0)

t2γ−1

)]

≤ log(1 + 2dt−γ

) +
2β2Q(0)

t2γ−1
. (28)

Final step. Using inequalities (24) and (28) and the value of α, we can estimate pε
t (β) in the

following way:

pε
t(β) ≤ 2βKd

√
α +

log 2

t
+

log(1 + 2dt−γ
)

t1−γ
+

2β2Q(0)

tγ

≤ 2βKd
√

α + o(1).

So using the value of α given in (26) we have

pε
t (β) ≤ C

β4/3d2

ε2/3
+ o(1), (29)

where C is a constant that depends on Q and that can change from line to line. Putting

this result in (20) and taking the limit for t → ∞ we get

lim sup
t→∞

pt(β) ≤ C
(

β2dHε2H + d2β4/3ε−2/3
)

.

In order to make this upper bound as small as possible we can choose ε such that

β2dHε2H = d2β4/3ε−2/3, i.e. ε = d
6−3H
2+6H β− 1

1+3H ,

so that

lim sup
t→∞

pt(β) ≤ Cβ
2+4H
1+3H d

7H
1+3H ,

which is the announced result. We then only need to check for what values of β we are

allowed to make this choice of ε. Condition (18) states that we must use ε ≤ r1. This is

equivalent to β ≥ β0 =: (r1)
−1−3H d3−3H/2. One can check in this case that the restriction on

ε, β in (27) is trivially satisfied.

3.2 Lower bound in the Brownian case

In the following proposition, which implies the lower bound in Theorem 1.1, we shall also

try to specify the dependence of the constants with respect to the dimension d. Let us

state an interesting feature of this dependence. The proof of the proposition below shows

that the results it states hold only for β ≥ β0 = cd1−H/2. One may ask the question of

what happens to the behavior of the partition function when the dimension is linked to the
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inverse temperature via the relation β = β0, and one allows the dimension to be very large.

The lower bounds on the value p (β) in the proposition below will then increase, and while

they must still not exceed the global bound β2Q (0) /2, the behavior for large β turns out

to be quadratic in many cases. The reader will check that, when H > 1/2, this translates

as p (β) ≥ cβ2/(2−H) which is quadratic when H = 1, and p (β) ≥ cβ2 for all H ≤ 1/2. This

is an indication that for extremely high dimensions and inverse temperatures, for H ≤ 1/2

or H = 1, strong disorder may not hold. Strong disorder for Brownian polymers may break

down for complex, infinite-dimensional polymers. This is only tangential to our presentation,

however.

Proposition 3.4. Recall that δ has been defined at (17) and assume that there exist a number

H ∈ (0, 1] and some positive constants c2, r2 such that for all x, y ∈ Rd with |x − y| ≤ r2,

we have

δ(x − y) > c2 |x − y|H . (30)

Then if H ≤ 1/2, there exists a constant C depending only on Q, and a constant β0 depending

only on Q and d, such that, for all β > β0,

p(β) ≥ Cd
2H−1
H+1 β

2
H+1 .

On the other hand if H > 1/2, there exists a constant C ′ depending only on Q, and a constant

β ′
0 depending only on Q and d, such that for all β > β ′

0

p(β) ≥ C ′d
2H−1

3 β
4
3 .

Proof. Here again, we divide the proof in several steps.

Step 1: Strategy. From relation (14), we have

p(β) = sup
t≥0

pt(β),

where pt(β) is defined by equation (13). So a lower bound for p(β) will be obtained by

evaluating pt(β) for any fixed value t. Additionally, by the positivity of the exponential

factor in the definition of Zt, one may include as a factor inside the expectation Eb the sum

of the indicator functions of any disjoint family of events of Ωb. In fact, we will need only

two events, which will give the main contribution to Zt at a logarithmic scale.

Step 2: Setup. Let A+(b) and A−(b) be two disjoints events defined on the probability space

Ωb under Pb, which will be specified later on. Set

Xb = −βH2t = β

∫ 2t

0

W (ds, bs).

Conditioning by the two events A+(b) and A−(b) and using Jensen’s inequality we have

E(log Zt) ≥ log (min {Pb(A+); Pb(A−)}) + E
[

max
{

Z̃+; Z̃−

}]

, (31)
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where

Z̃+ := Eb [Xb | A+] and Z̃− := Eb [Xb | A−] .

These two random variables form a pair of centered jointly Gaussian random variables:

indeed they are both limits of linear combinations of values of a single centered Gaussian

field. Thus this implies

E
[

max
{

Z̃+; Z̃−

}]

=
1√
2π

(

E

[

(

Z̃+ − Z̃−

)2
])1/2

.

Therefore we only have to choose sets A+ and A− not too small, but still decorrelated enough

so that condition (30) guarantees a certain amount of positivity in the variance of Z̃+ − Z̃−.

Step 3: Choice of A+ and A−. Let f be a positive increasing function. We take

A+ =
{

f(t) ≤ bi
s ≤ 2f(t), ∀i = 1, . . . , d, ∀s ∈ [t, 2t]

}

,

A− =
{

−2f(t) ≤ bi
s ≤ −f(t), ∀i = 1, . . . , d, ∀s ∈ [t, 2t]

}

.

In other words, we force each component of our trajectory b to be, during the entire time

interval [t, 2t], in one of two boxes of edge size f (t) which are at a distance of 2f (t) from

each other. Because these two boxes are symmetric about the starting point of b, the cor-

responding events have the same probability. While this probability can be calculated in

an arguably explicit way, we give here a simple lower bound argument for it. Using time

scaling, the Markov property of Brownian motion, the notation a = f (t) /
√

t, we have

Pb(A+) =
d
∏

i=1

Pb

(

∀s ∈ [1, 2] : bi
s ∈ [a, 2a]

)

=
d
∏

i=1

1

2π

∫ 2a

a

Pb

(

∀s ∈ [0, 1] : bi
s + y ∈ [a, 2a]

)

e−y2/2dy

≥
d
∏

i=1

1

2π

∫ 7a/4

5a/4

Pb

(

∀s ∈ [0, 1] : bi
s + y ∈

[

y − a

4
, y +

a

4

])

e−y2/2dy

=
[

Pb

(

b1
1 ∈ [5a/4, 7a/4]

)

Pb

(

∀s ∈ [0, 1] : |b1
s| ≤ a/4

)]d
. (32)

Step 4: Estimation of Z̃+ and Z̃−. It was established in [13] that in dimension d = 1

E

[

(

Z̃+ − Z̃−

)2
]

≥ β2

∫ 2t

t

E
[

(

δ(x∗
s,+ − x∗

s,−)
)2
]

ds

where the quantities x∗
s,+ and x∗

s,− are random variables such that for all s ∈ [t, 2t]: x∗
s,+ ∈

[f(t), 2f(t)] and x∗
s,− ∈ [−2f(t),−f(t)]. In dimension d ≥ 1 the result still holds. In fact

in this case we have x∗
s,+, x∗

s,− ∈ R
d, so it is sufficient to take each component of the x∗

s,+ in

18



the interval [f(t), 2f(t)] and each component of x∗
s,− in [−2f(t),−f(t)], so their distance is

greater than d1/2f(t). Thus, using condition (30), we have

E

[

(

Z̃+ − Z̃−

)2
]

≥ β2

∫ 2t

t

C
∣

∣x∗
s,+ − x∗

s,−
∣

∣

2H
ds ≥ Ctβ2dH (f(t))2H , (33)

where as usual C is a constant that can change from line to line. Hence, we obtain:

E
[

max
{

Z̃+; Z̃−

}]

=
1√
2π

(

E

[

(

Z̃+ − Z̃−

)2
])1/2

≥ Cβ
√

t (f(t))H dH/2, (34)

Observe that in order to use condition (30) we have to impose f(t) ≤ r2.

Step 5: The case H ≤ 1/2. It is possible to prove that in this case the optimal choice for f

is f(t) =
√

t, which corresponds to a = 1, so that Pb(A+) is a universal constant that does

not depend on t. Thus we have, from (31), (32) and (34), for any t > 0,

p2t(β) =
E [log Z2t]

2t
≥ d log C

2t
+ CβdH/2t

H−1
2 . (35)

Now we may maximize the above function over all possible values of t > 0. To make things

simple, we choose t so that the second term equals twice the first, yielding t of the form

t = Cd
2−H
H+1 β− 2

H+1 , and therefore

sup
t>0

p2t(β) ≥ Cd
2H−1
H+1 β

2
H+1 .

This result holds as long as the use of condition (30) can be justified, namely as long as

f(t) ≤ r2. This is achieved as soon as β > β0 where β0 = Cr−H−1
2 d1−H/2, and since H ≤ 1/2,

β0 ≥ Cd3/4.

Step 6: The case H > 1/2. In this case we consider f(t) = ctα, for a given α ∈ [0, 1/2) and

some constant c chosen below. Thus we have a = ctα−1/2. In this case, if a is larger than a

universal constant Ku, the result (32) yields that, for some constant C, we have

Pb(A+) ≥
d
∏

i=1

exp(−Ca2) = exp(−Cc2dt2α−1).

So, using again condition (30) and relation (34) we obtain

p2t(β) ≥ −Cdt2α−2 + CβdH/2tαH−1/2,

where the constant C may also include the factor c2. Again, choosing t so that the second

term equals twice the first, we have

t = Cd
1−H/2

α(H−2)+3/2 β− 1
α(H−2)+3/2 , (36)
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and so

sup
t>0

p2t(β) ≥ Cd
H−1/2

α(H−2)+3/2 β− 2α−2
α(H−2)+3/2 .

In order to maximize the power of β in the lower bound for supt>0 pt(β) we should find the

maximum of the function

g(α) =
2 − 2α

α(H − 2) + 3/2

for 0 ≤ α < 1/2. Since this function is monotone decreasing when H > 1/2, the maximum

is reached for α = 0, so g(0) = 4/3.

Recall once again that, in order to apply condition (30) in the computations above, we

had to assume f(t) ≤ r2; since now f (t) is the constant c, we only need to choose c = r2. We

also had to impose a = r2t
−1/2 > Ku, which translates as β > β ′

0 := (Ku/r2)
4/3 d1−H/2.

3.3 Logarithmic regularity scale

As mentioned in the introduction, the special shape of our Figure 1.2 induces us to explore

the regions of low spatial regularity for W , in order to investigate some new possible scaling

in the strong disorder regime. In other words, we shall work in this section under the

assumptions that there exist positive constants c0, c1, and r1, and β ∈ (0,∞), such that for

all x, y with |x − y| ≤ r1,

c0 log−γ (1/ |x − y|) ≤ δ (x − y) ≤ c1 log−γ (1/ |x − y|) , (37)

where γ > 0. Assumption (37) implies that W is not spatially Hölder-continuous for any

exponent H ∈ (0, 1]. Moreover, the theory of Gaussian regularity implies that, if γ >

1/2, W is almost-surely continuous in space, with modulus of continuity proportional to

log−γ+1/2 (1/ |x − y|), while if γ ≤ 1/2, W is almost-surely not uniformly continuous on

any interval in space. The case γ = 1/2, which is the threshold between continuous and

discontinuous W , is of special interest, since it can be related to the discrete space polymer

which will be studied in the next section. The main result which will be proved here is the

following:

Theorem 3.5. Assume condition (37). We have for some constants C0 and C1 depending

only on Q, for all β large enough,

C0
β2

d
log−2γ

(

β√
d

)

≤ p(β) ≤ C1β
2 log−2γ

(

β√
d

)

.

Proof. Step 1: Setup. Nearly all the calculations in the proof of Propositions 3.1 and 3.4 are

still valid in our situation.

Step 2: Lower bound. For the lower bound, reworking the argument in Step 2 in the proof

of Proposition 3.4, using the function log−γ (x−1) instead of the function xH , we obtain the
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following instead of (33):

E
[

(Z+ − Z−)2] ≥ t (βc0)
2

(

log

(

1√
df(t)

))−2γ

,

which implies, instead of (35) in Step 5 of that proof, the following:

p2t(β) ≥ d log C

2t
+ Cβt−1/2

(

log

(

1√
df(t)

))−γ

.

In other words, now choosing f (t) = t1/2 as we did in the case H < 1/2 (recall that we are

in the case of small H , as stated in the introduction),

p2t(β) ≥ d log C

2t
+ Cβt−1/2

(

log

(

1√
dt

))−γ

.

Now choose t such that the second term in the right-hand side above equals twice the first,

i.e.

t1/2 log−γ

(

1√
dt

)

= Cdβ−1.

For small t, the function on the left-hand side is increasing, so that the above t is uniquely

defined when β is large. We see in particular that when β is large, t is small, and we have

t−1 ≤ β2. This fact is then used to imply

1

t
=

(

Cβ

d

)2(

log

(

1√
dt

))−2γ

≥ 2 (Cβ)2 log−2γ (β) .

Therefore, for some constants β2 and c depending only on Q, for the t chosen above with

β ≥ β2,

p2t(β) ≥ Cβ2

d

(

log

(

β√
d

))−2γ

.

Step 3: Upper bound. Here, returning to the proof of Proposition 3.1, the upper bound (29)

in the final step of that proof holds regardless of δ, and therefore, using the result of Remark

3.3 with δ (r) = log−γ (1/r), we immediately get that there exists c depending only on Q

such that for all ε < r1 and all β > β3,

lim sup
t→∞

pt(β) ≤ Cβ2

(

log

(

1

ε
√

d

))−2γ

+ Cd2β4/3ε−2/3,

as long as one is able to choose ε so that βε ≥ 1. By equating the two terms in the right-hand

side of the last inequality above, we get

ε

(

log

(

1

ε
√

d

))−3γ

= Cd3β−1.

21



Since the function ε 7→ ε log−3γ
(

1/(ε
√

d)
)

is increasing for small ε, the above equation

defines ε uniquely when β is large, and in that case ε is small. We also see that for any

θ > 0, for large β, 1/ε ≥ β1−θ. Therefore we can write, for β ≥ β3, almost surely,

lim sup
t→∞

pt(β) ≤ C (1 − θ)−2γ β2

(

log

(

β√
d

))−2γ

.

This finishes the proof of the theorem.

4 Estimates of the free energy: discrete space

Recall that, up to now, we have obtained our bounds on the free energy in the following

manner: the upper bound has been computed by evaluation of the supremum of a well-

chosen random Gaussian field, while the lower bound has been obtained by introducing

two different events, depending on the Brownian configuration, which capture most of the

logarithmic weight of our polymer distribution. This strategy also works in the case of

the random walk polymer whose Hamiltonian is described by (5), without many additional

efforts, but a separate proof is still necessary. This section shows how this procedure works,

resulting in the proof of Theorem 1.5.

Quantities referring to the random walk polymer have been denoted by b̂, Ŵ , Êb̂, Ê, etc...

In this section, for notational sake, we will omit the hats in the expressions above, and write

instead b, W, Eb,E like in the Brownian case. Recall our simple non-degeneracy condition on

Q in this case:

cQ := sup
1≤i≤d

(Q(0) − Q(2ei))
1/2 > 0, (38)

where ei, i = 1, · · · , d are the unit vectors in Zd. Condition (38), which is used only in

the lower bound result, is extremely weak. It essentially covers all possible homogeneous

covariance functions, except the trivial one Q (x) ≡ Q (0) for all x, which is the case where

W does not depend on x, in which case the Hamiltonian has no effect. Indeed, assume

that there exists an x0 ∈ Z
d such that W (t, 0) and W (t, x0) are not (a.s.) equal. Then

Q (x0) < Q (0). Our lower bound proof below can then be adapted to use this condition

instead of Condition (38). We do not comment on this point further.

4.1 Lower bound for the random walk polymer

The lower bound announced in Theorem 1.5 is contained in the following.

Proposition 4.1. Assume condition (38) holds true. Then there exists a constant β0 > 0,

which depends on d and on cQ and a constant C > 0, which depend only on cQ, such that if

β > β0 then almost surely

lim
t→∞

1

t
log Zt ≥ C

β2

log β
.
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Proof. Invoking Proposition 2.2, we have p (β) = limt→∞ pt(β) = supt≥0 pt(β). Therefore,

any chosen fixed value t yields pt(β) as a lower bound for p (β).

We express Zt by using the fact that each component of b is constant between its jump

times, which are uniformly distributed on the simplex, given Nt the total number of jumps

before time t, which is a Poisson r.v. with parameter 2dt. Moreover the visited sites (xk)
Nt

k=1

are uniformly distributed on the set of all nearest-neighbor paths of length Nt started at 0,

given Nt. For a lower bound on pt(β), we throw out, in the expectation defining Zt, all the

paths b that do not jump exactly once before time t. We also throw out all jump positions

that are not ±ei, where cQ = (Q(0) − Q(2ei))
1/2 > 0. Therefore,

Zt ≥ Pb [Nt = 1]
1

2d

∫ t

0

ds

t

(

eβW (s,0)+βW ([s,t],ei) + eβW (s,0)+βW ([s,t],−ei)
)

,

where W ([s, t], x) := W (t, x) − W (s, x). Here, given Nt = 1, 1/(2d) is the weight of the

path that jumps to ±ei, and 1[0,t] (s) ds/t is the law of the single jump time. Using this and

Jensen’s inequality, we get

Zt ≥ dte−2td

∫ t

0

ds

t

(

eβW (s,0)+βW ([s,t],ei) + eβW (s,0)+βW ([s,t],−ei)
)

,

1

t
E(log Zt) ≥

log t

t
− 2d + β

∫ t

0

ds

t2
E [max (W ([s, t], ei); W ([s, t],−ei))] .

Now we evaluate the expected maximum above. The vector (W ([s, t], ei) , W ([s, t],−ei))

is jointly Gaussian with common variances
√

t − sQ(0) and covariance
√

t − sQ(2). There-

fore

E [max (W ([s, t], ei) , W ([s, t],−ei))] =
1

2
E [|W ([s, t], ei) − W ([s, t],−ei)|]

=
1√
2π

(Var [W ([s, t], ei) − W ([s, t],−ei)])
1/2 =

1√
π

√
t − s

√

Q (0) − Q (2ei). (39)

Thus, recalling condition (38), and chosing t = C log2 β/β2, we obtain

1

t
E(log Zt) ≥

log t

t
− 2d +

2β

3
√

πt
cQ

≥ β2

log β

(

− 2

C
+

2cQ

3
√

cπ

)

+
β2

C log2 β
(log C + 2 log log β) − 2d. (40)

The proof is completed by choosing C such that − 2
C

+
2cQ

3
√

Cπ
> 0, i.e. C > 9π

Q(0)−Q(2)
, and β

large enough so that the second and third terms in (40) contribute nonnegatively.

4.2 Upper bound for the random walk polymer

The upper bound result in Theorem 1.5 can be summarized in the following proposition.
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Proposition 4.2. Under the assumption that Q (0) < ∞, there exists a constant β ′
0 > 0,

which depends on Q and on d, and a constant C > 0, which depend only on Q, such that if

β > β ′
0 then almost surely

lim
t→∞

1

t
log Zt ≤ Cd3 β2

log β
.

Proof. Define S(t, n), kj, tji , t̃l, Nt, Pn and x̃l like in Step 3 of the proof of Proposition 3.1.

Then if we fix Nt = m, we can define

X
(

m, t̃, x̃
)

:=
m
∑

i=0

{

W
(

t̃i+1, x̃i

)

− W
(

t̃i, x̃i

)}

.

Let α be a fixed positive number which will be chosen later. Let Iα = ∪m≤αtJm, where

Jm := {m} × Sm,t ×Pm, and set also Yα = supIα
X. As in the Brownian case, we can bound

E [log Zt] above as follows:

E [log Zt] ≤ E [log (A + B)] ≤ E
[

log+ A
]

+ E
[

log+ B
]

+ log 2, (41)

where log+ A = (log A)+ = max(log A, 0) and

A := Pb [Nt ≤ αt] exp (βYα) (42)

B :=
∑

m>αt

Pb [Nt = m] Eb

[

exp
(

βX
(

m, t̃, x̃
))

∣

∣

∣
Nt = m

]

.

Step 1: The term A. As in the continuous case, we have that

E

[

sup
Tnα

X(k, t̃, x̃)

]

≤ Ktd
√

nα, (43)

where K depends only on Q. So, bounding Pb [Nt ≤ αt] by 1, we have

E
[

log+ A
]

≤ βE [Yα] ≤ βKdt
√

α. (44)

Step 2: The term B. The term B defined in (42) can be bounded as follows:

E [log B+]

= E

[

log+

∑

m>αt

Pb [Nt = m]
∑

x̃∈Pm

1

(2d)m

∫

Sm,t

exp
(

βX
(

m, t̃, x̃
))

dt̃

]

= E



log+

∑

n≥1

∑

m∈[αnt,α(n+1)t]

Pb [Nt = m]
∑

x̃∈Pm

1

(2d)m

∫

Sm,t

exp
(

βX
(

m, t̃, x̃
))

dt̃





≤ E

[

log+

∑

n≥1

Pb [Nt > αnt] exp
(

βY(n+1)α

)

]

.
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So, using the fact that for t > 1, the power t−1 of a sum is less than the sum of the terms

raised to the power t−1, followed by Jensen’s inequality, we have, similarly to what we did

in the proof of Proposition 3.1,

1

t
E
[

log+ B
]

≤ log

(

1 +
∑

n≥1

(Pb [Nt > αnt])t−1

E

[

exp

(

βY(n+1)α

t

)]

)

.

Using once again Gaussian supremum analysis results (see [1] or [27]), for any α, x > 0,

E [exp (xYα)] ≤ exp (xE [Yα]) exp

(

x2Ku max
(m,t̃,x̃)∈Iα

Var
[

X
(

m, t̃, x̃
)]

)

≤ exp
(

xdKt
√

α
)

exp
(

x2KutQ(0)
)

,

where Ku designate a universal constant, and where we used (43) and the trivial fact

E[X
(

m, t̃, x̃
)2

] = Q (0) t. Hence

E

[

exp

(

βY(n+1)α

t

)]

≤ exp

(

βdK
√

α(n + 1) +
β2KuQ(0)

t

)

.

If we choose t such that t > (2βKuQ(0))/(dKα1/2), the estimate on B becomes

1

t
E
[

log+ B
]

≤ log

{

1 +
∑

n≥1

(Pb [Nt > αnt])t−1

exp

(

βdKu

√
α

(√
n + 1 +

1

2

))

}

. (45)

Step 3: The tail of Nt. Using the presumably well-known tail estimate Pb [Nt > αt] ≤
exp

(

−αt log
(

α
2d

)

− t(α − 2d)
)

, valid for all α ≥ 1 (see e.g. [16, pages 16-19]), if we set

α′ = α/2d and we assume α′ ≥ exp (1 − 1/2d) we have

Pb [Nt > αt] ≤ exp (−tα′ log α′) . (46)

Step 4: Grouping our estimates and choosing α. From (45) and (46) we have

1

t
E
[

log+ B
]

≤ log

{

1 +
∑

n≥1

exp

(

−α′n log α′n + dβKu

√
α

(√
n + 1 +

1

2

))

}

.

To exploit the negativity of the exponential term, we simply require

α′ log α′ = 4dKuβ
√

α. (47)

Indeed, since n ≥ 1, we then have that the term inside the exponential is

α′n log α′n − βdKu

√
α

(√
n + 1 +

1

2

)

= α′n log α′n − 1

4
α′ log α′

(√
n + 1 +

1

2

)

≥ α′n log α′ − 1

4
α′ log α′

(√
n + 1 +

1

2

)

=
1

2
α′n log α′n +

(

1

2
n − 1

4

(√
n + 1 +

1

2

))

α′ log α′

≥ 1

2
α′n log α′,
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which implies

1

t
E
[

log+ B
]

≤ log

{

1 +
∑

n≥1

exp

(

−1

2
α′n log α′

)

}

= log

{

1 +
1

exp
(

1
2
α′ log α′

)

− 1

}

:= cd.

The restriction α′ ≥ exp(1−1/2d) implies that cd is a constant that depends on the dimension

d only. Combining this with (41) and (44), we get

1

t
E [log Zt] ≤

log 2

t
+ cd + dKuβ

√
α. (48)

Step 5: Conclusion. It is easy enough to see that, with

x :=
(

4d
√

2dβKu

)2

, (49)

the equation (47), which is α′ = x/ log2 α′, has a unique solution α′ when x exceeds

e, and that α′ also exceeds e in that case: indeed α′ = e when x = e and dα′/dx =
(

log2 α′ + 2 log α′)−1
> 0 for all α′ ≥ e. Therefore, since log2 α′ > 1, we can write α′ ≤ x,

and thus we also have:

α′ =
x

log2 α′ ≥
x

log2 x
. (50)

This lower bound on α′ implies the following upper bound on α′:

α′ =
x

log2 α′ ≤
x

log2
(

x/ log2 x
) =

x

(log x − 2 log(log x))2 . (51)

Since there exists x0 such that, for any x > x0, we have

log x > 4 log(log x), (52)

and we can recast expression (51) into:

α′ ≤ 4x

log2 x
=

(4d
√

2dβKu)
2

(log β + log 4d
√

2dKu)2
≤ (4d

√
2dKu)

2 β2

log2 β
,

from which we obtain α ≤ (8d2Ku)
2β2 log−2 β (recall α =: 2dα′). Thus for t large enough:

E[log(Zt)]

t
≤ log 2

t
+ cd + 8d3K2

u

β2

log β
.

Taking limits as t tends to ∞ and choosing β so that

β2 >
cd log β

8d3K2
u

, (53)

the theorem is proved with C = 16K2
u.
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Finally, we show that the theorem holds for β large enough. Analyzing the conditions

we used above, we only have to take β ≥ β ′
0 := max(Kd, β

∗, β∗),where Kd, β
∗, β∗ are now

specified. This is due to the fact that we assumed α′ ≥ exp(1 − 1/2d) and this implies, via

(50), that x ≥ 2d exp(1 − 1/2d) (log 2d + 1 − 1/ (2d)), and therefore, from (49), we have to

take β ≥ Kd, where Kd is a constant that depends only on the dimension d. In addition,

according to (52) and (53), β∗ and β∗ are the solutions to the following equations:

β2 =
cd log β

8d3K2
u

and log(4d
√

2dKuβ) = 4 log(log(4d
√

2dKuβ)).
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