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This paper is concerned with two related types of directed polymers in a random medium. The first one is a d-dimensional Brownian motion living in a random environment which is Brownian in time and homogeneous in space. The second is a continuous-time random walk on Z d , in a random environment with similar properties as in continuous space, albeit defined only on R + × Z d . The case of a space-time white noise environment can be acheived in this second setting. By means of some Gaussian tools, we estimate the free energy of these models at low temperature, and give some further information on the strong disorder regime of the objects under consideration.

Introduction 1.Background, models, and motivation

Models for directed polymers in a random environment have been introduced in the physical literature [START_REF] Derrida | Polymers on disordered trees, spin glasses, and traveling waves. New directions in statistical mechanics[END_REF][START_REF] Huse | Pinning and Roughening of Domain Walls in Ising Systems Due to Random Impurities[END_REF][START_REF] Imbrie | Diffusion of directed polymers in a random environment[END_REF][START_REF] Piza | Directed polymers in a random environment: some results on fluctuations[END_REF] for two main reasons. First, they provide a reasonably realistic model of a particle under the influence of a random medium, for which a number of natural questions can be posed, in terms of the asymptotic behavior for the path of the particle. The second point is that, in spite of the fact that polymers seem to be some more complicated objects than other disordered systems such as spin glasses, a lot more can be said about their behavior in the low temperature regime, as pointed out in [START_REF] Fisher | Directed paths in random potential[END_REF][START_REF] Huse | Pinning and Roughening of Domain Walls in Ising Systems Due to Random Impurities[END_REF]. At a mathematical level, after two decades of efforts, a substantial amount of information about different models of polymer is now available, either in discrete or continuous space settings (see [START_REF] Comets | Brownian directed polymers in random environment[END_REF][START_REF] Petermann | Superdiffusivity of polymers in random environment[END_REF][START_REF] Rovira | On the Brownian-directed polymer in a Gaussian random environment[END_REF] and [START_REF] Carmona | On the partition function of a directed polymer in a Gaussian random environment[END_REF][START_REF] Méjane | Upper bound of a volume exponent for directed polymers in a random environment[END_REF] respectively).

The current article can be seen as a part of this global project consisting in describing precisely the polymer's asymptotic behavior, beyond the spin glass case. Except for some toy models such as the REM or GREM [START_REF] Bovier | Statistical Mechanics of Disordered Systems[END_REF][START_REF] Talagrand | Spin Glasses: a Challenge for Mathematicians[END_REF], little is known about the low temperature behavior of the free energy for spin glasses systems, at least at a completely rigorous level. We shall see in this paper that polymer models are amenable to computations in this direction: we work to obtain some sharp estimates on the free energy of two different kind of polymers in continuous time, for which some scaling arguments seem to bring more information than in the discrete time setting. Here, in a strict polymer sense, time can also be interpreted as the length parameter of a directed polymer.

A word about random media appellations: we believe the term "random environment" normally implies that the underlying randomness is allowed to change over time; the appellation "random scenery" or "random landscape" is more specifically used for an environment that does not change over time; the models we consider herein fall under the time-varying "environment" umbrella. We now give some brief specifics about these models.

(1) We first consider a Brownian polymer in a Gaussian environment: the polymer itself is modeled by a Brownian motion b = {b t ; t ≥ 0}, defined on a complete filtered probability space (C, F , (F t ) t≥0 , (P x b ) x∈R d ), where P x b stands for the Wiener measure starting from the initial condition x. The corresponding expected value is denoted by E x b , or simply by E b when x = 0.

The random environment is represented by a centered Gaussian random field W indexed by R + × R d , defined on another independent complete probability space (Ω, G, P). Denoting by E the expected value with respect to P, the covariance structure of W is given by

E [W (t, x)W (s, y)] = (t ∧ s) • Q(x -y), (1) 
for a given homogeneous covariance function Q : R d → R satisfying some regularity conditions that will be specified later on. In particular, the function t → [Q(0)] -1/2 W (t, x) will be a standard Brownian motion for any fixed x ∈ R d ; for every fixed t ∈ R + , the process x → t -1/2 W (t, x) is a homogeneous Gaussian field on R d with covariance function Q. Notice that the homogeneity assumption is made here for sake of readability, but could be weakened for almost all the results we will show. The interested reader can consult [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF] for the types of tools needed for such generalizations.

Once b and W are defined, the polymer measure itself can be described as follows: for any t > 0, the energy of a given path (or configuration) b on [0, t] is given by the Hamiltonian

-H t (b) = t 0 W (ds, b s ). (2) 
A completely rigorous meaning for this integral will be given in the next section, but for the moment, observe that for any fixed path b, H t (b) is a centered Gaussian random variable with variance tQ(0). Based on this Hamiltonian, for any x ∈ R d , and a given constant β (interpreted as the inverse of the temperature of the system), we define our (random) polymer measure G x t (with G t := G 0 t ) as follows:

dG x t (b) = e -βHt(b) Z x t dP x b (b), with Z x t = E x b e -βHt(b) . (3) 
(2) The second model we consider in this article is the continuous time random walk on Z d in a white noise potential, which can be defined similarly to the Brownian polymer above: the polymer is modeled by a continuous time random walk b = { bt ; t ≥ 0} on Z d , defined on a complete filtered probability space ( Ĉ, F , ( Ft ) t≥0 , ( P x b ) x∈Z d ). The corresponding expected value will be denoted by Êx b , or simply by Êb when x = 0. Notice that b can be represented in terms of its jump times {τ i ; i ≥ 0} and its positions {x i ; i ≥ 0} between the jumps, as bt = i≥0 x i 1 [τ i ,τ i+1 ) (t). Then, under Pb , τ 0 = x 0 = 0, the sequence {τ i+1 -τ i ; i ≥ 0} is i.i.d with common exponential law E(2d), and the sequence {x i ; i ≥ 0} is a nearest neighbor symmetric random walk on Z d .

In this context, the random environment Ŵ will be defined as a sequence { Ŵ (., z); z ∈ Z d } of Brownian motions, defined on another independent complete probability space ( Ω, Ĝ, P). Just like in the Brownian case described above, the covariance structure we assume on Ŵ is of the following type:

Ê Ŵ (t, x) Ŵ (s, y) = [t ∧ s] Q(x -y), (4) 
for a covariance function Q defined on Z d . Note that the case where Q (z) = 0 for all z except Q (0) > 0, is the case where Brownian motions in the family { Ŵ (•, z) ; z ∈ Z d } are independent, i.e. the case of space-time white noise. The Hamiltonian of our system can be defined formally similarly to the continuous case, as

-Ĥt ( b) = t 0 Ŵ (ds, bs ).
Notice however that, since b is a piecewise constant function, the Hamiltonian Ĥt ( b) can also be written as

-Ĥt ( b) = Nt i=0 Ŵ (τ i+1 , x i ) -Ŵ (τ i , x i ), (5) 
where N t designates the number of jumps of b before time t, and τ Nt+1 = t by convention.

Once the Hamiltonian Ĥt is defined, a Gibbs-type measure Ĝt can be introduced similarly to (3) in the Brownian case.

As mentioned before, our aim in this article is to give some sharp estimates on the free energies p(β) and p(β) of the two systems described above, for large β. The quantities of interest are defined asymptotically as

p(β) = lim t→∞ 1 t E [log(Z t )] , and p(β) = lim t→∞ 1 t E log( Ẑt ) ;
it is well-known (see e.g. [START_REF] Rovira | On the Brownian-directed polymer in a Gaussian random environment[END_REF] for the Brownian case) that the limits above exist, are typically positive, and are both bounded from above by Q(0)β 2 /2. It is then possible to separate a region of weak disorder from a region of strong disorder according to the value of p(β): we will say that the polymer is in the weak disorder regime if p(β) = Q(0)β 2 /2, while the strong disorder regime is defined by the strict inequality p(β) < Q(0)β 2 /2. These two notions have some nice interpretations in terms of the behavior of the particle under the Gibbs measure (see e.g. [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF][START_REF] Comets | Directed polymers in random environment are diffusive at weak disorder[END_REF]), and it is expected, for any model of polymer in a random environment, that the strong disorder regime is attained whenever β is large enough. It is then natural to ask if one can obtain a sharper information than p(β) < Q(0)β 2 /2 in the low temperature phase. Indeed, on the one hand, this may quantify in a sense how far we are from the weak disorder regime, and how much localization there is on our measures G t , Ĝt . On the other hand, the penalization method explained in [START_REF] Roynette | Penalising Brownian Paths: Rigorous Results and Meta-Theorems[END_REF] can be roughly summarized in the following way: if one can get a sharp equivalent for the quantity E b [e -βHt(b) ], then this will also allow a detailed description of the limit lim t→∞ G t . This latter program is of course beyond the scope of the current article, but is a good motivation for getting some precise information about the function p(β).

Summary of results

We now describe our main results. Our principal result in continuous space will be obtained in terms of the regularity of Q in a neighborhood of 0. In particular, we shall assume some upper and lower bounds on Q of the form

c 0 |x| 2H ≤ Q(0) -Q(x) ≤ c 1 |x| 2H , for all x such that |x| ∈ [0, r 0 ], (6) 
for a given exponent H ∈ (0, 1] and r 0 > 0. It should be noticed that condition ( 6) is equivalent to assuming that W has a specific almost-sure modulus of continuity in space, of order |x| H log 1/2 (1/ |x|), i.e. barely failing to be H-Hölder continuous (see [START_REF] Tindel | Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat equation[END_REF] for details). Then, under these conditions, we will get the following conclusions.

Theorem 1.1. Assume that the function Q satisfies condition [START_REF] Carmona | Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem[END_REF]. Then the following hold true:

1. If H ∈ [1/2, 1],
we have for some constants C 0,d and C 1,d depending only on Q and d,

for all β ≥ 1, C 0,d β 4/3 ≤ p(β) ≤ C 1,d β 2-2H/(3H+1) .
2. If H ∈ (0, 1/2], we have for some constants β Q , C ′ 0,d , and

C ′ 1,d depending only on Q and d, for all β ≥ β Q , C ′ 0,d β 2/(1+H) ≤ p(β) ≤ C ′ 1,d β 2-2H/(3H+1) .
Corresponding almost sure results on t -1 E [log(Z t )] also hold, as seen in Corollary 1.3 and Proposition 2.1 below. Let us make a few elementary comments about the above theorem's bounds, which are also summarized in Figure 1.2. First of all, the exponent of β in those estimates is decreasing with H, which seems to indicate a stronger disorder when the Gaussian field W is smoother in space. Furthermore, in the case H ∈ [1/2, 1], the gap between the two estimates decreases as H increases to 1; for H = 1/2, we get bounds with the powers of β equal to 4/3 and 8/5; and for H = 1, the bounds are 4/3 and 3/2. It should be noted that the case H = 1/2 is our least sharp result, while the case H = 1 yields the lowest power of β; one should not expect lower powers for any potential W even if W is so smooth that it is C ∞ in space: indeed, unless W is highly degenerate, the lower bound in [START_REF] Carmona | Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem[END_REF] should hold with H = 1, while the upper bound will automatically be satisfied with H = 1. The case of small H is more interesting. Indeed, we can rewrite the lower and upper bounds above as

C ′ 0,d β 2-2H+F (H) ≤ p(β) ≤ C ′ 1,d β 2-2H+G(H)
where the functions F and G satisfy F (x) = 2x 2 + O (x 3 ) and G (x) = 6x 2 + O (x 3 ) for x near 0. We therefore see that the asymptotic β 2-2H is quite sharp for small H, but that the second order term in the expansion of the power of β for small H, while bounded, is always positive.

Using ideas introduced in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF] to deal with spatially non-homogeneous media, it is possible to extend Theorem 1.1. The reader will check that the first of the following two corollaries is trivial to prove using the tools in this article. The second corollary requires techniques in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF], and can also be proved directly by using sub-Gaussian concentration results (see [START_REF] Viens | Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes[END_REF]). We do not give any details of its proof, for the sake of conciseness. Neither corollary assumes that W is spatially homogeneous. One will note that no assertion on the existence of p (β) is 

-1 E [log(Z t )] < β 2 Q (0) /2.
[13] can be consulted for conditions under which p (β) exists even if W is not spatially homogeneous.

Corollary 1.2. In the non homogeneous case, the following bounds are satisfied:

• [Upper bound] Assume that for some r 0 , c 1 > 0, for all x, y ∈ R d such that |x -y| ≤ r 1 , the spatial canonical metric of W is bounded above as

δ 2 (x, y) := E (W (1, x) -W (1, y)) 2 ≤ c 1 |x -y| 2H .
Then, replacing p (β) by lim sup β→∞ t -1 E [log(Z t )], the two upper bound results in Theorem 1.1 hold.

• [Lower bound] Assume that for some r 0 , c 0 > 0, for all x, y ∈ R d such that |x -y| ≤ r 0 , we have

δ 2 (x, y) := E (W (1, x) -W (1, y)) 2 ≥ c 0 |x -y| 2H .
Then, replacing p (β) by lim inf β→∞ t -1 E [log(Z t )], the two lower bound results in Theorem 1.1 hold.

Corollary 1.3. Under the hypotheses of Corollary 1.2, its conclusions also hold P-almost surely with lim sup β→∞ t -1 E [log(Z t )] replaced by lim sup β→∞ t -1 log(Z t ), and similarly for the lim inf 's.

Since our estimates become sharper as H → 0, and also due to the fact that the behavior of p(β) is nearly quadratic in β for small H (i.e. approaching the weak disorder regime), we decided to explore further the region of logarithmic spatial regularity for W , in order to determine whether one ever leaves the strong disorder regime. Namely, we also examine the situation of a covariance function Q for which there exist positive constants c 0 , c 1 , and r 1 such that for all x with |x| ≤ r 1 ,

c 0 log -2γ (1/ |x|) ≤ Q(0) -Q(x) ≤ c 1 log -2γ (1/ |x|) , (7) 
where γ is a given positive exponent. Assumption [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] implies that W is not spatially Höldercontinuous for any exponent H ∈ (0, 1]. Moreover, the theory of Gaussian regularity implies that, if γ > 1/2, W is almost-surely continuous in space, with modulus of continuity proportional to log -γ+1/2 (1/ |x|), while if γ ≤ 1/2, W is almost-surely not uniformly continuous on any interval in space, and in fact is unbounded on any interval. We will then establish the following result, which is optimal, up to multiplicative constants.

Theorem 1.4. Assume condition [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF] where γ > 0. We have for some constants D 0,d and D 1,d depending only on Q and d, for all β large enough,

D 0,d β 2 log -2γ (β) ≤ p(β) ≤ D 1,d β 2 log -2γ (β) .
Besides giving a sharp result up to constants for the free energy p(β), the last result will allow us to make a link between our Brownian model and the random walk polymer described by the Hamiltonian [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF]. Indeed, the following result will also be proved in the sequel.

Theorem 1.5. Assume that Q(0) -Q(2) > 0, where Q has been defined at [START_REF] Carmona | On the partition function of a directed polymer in a Gaussian random environment[END_REF]. Then the free energy p(β) of the random walk polymer b satisfies, for β large enough:

D ′ 0,d β 2 log -1 (β) ≤ p(β) ≤ D ′ 1,d β 2 log -1 (β) , (8) 
for two constants D 0,d and D 1,d depending only on Q and d.

Relation (8) will be obtained here thanks to some simple arguments, which allow the extension to spatially inhomogeneous media. In the special homogeneous case of spacetime white noise (Q (x) = 0 for all x = 0), more can be said: the exact value of the limit lim β→∞ p(β) log (β) /β 2 can be computed in this situation; this result has been established by the authors of the work in preparation [START_REF] Cadel | A model of continuous time polymer on the lattice[END_REF].

In relation with the continuous space model considered at Theorem 1.4, we see that to obtain the same behavior as with space-time white noise in discrete space, we need to use precisely the environment W in R d with the logarithmic regularity corresponding to γ = 1/2 in [START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF]. As mentioned before, this behavior of W happens to be exactly at the threshold in which W becomes almost-surely discontinuous and unbounded on every interval.

Nevertheless such a W is still function-valued. Hence, for the purpose of understanding the polymer partition function, there is no need to study the space-time white noise in continuous space, for which W (t, •) is not a bonafide function (only a distribution), and for which the meaning of Z t itself is difficult to even define. Another way to interpret the coincidence of behaviors for "space-time white noise in R + × Z d " and for "γ = 1/2" is to say that both models for W are function-valued and exhibit spatial discontinuity: indeed, in discrete space, one extends W (t, •) to R d by making it piecewise constant, in order to preserve independence. The fact that the limit in Theorem 1.4 depends on γ does prove, however, that the continuous-space polymer model under logarithmic regularity is richer than the discrete-space one.

As in the Hölder-scale continuous space setting, we have the following corollaries, in which W is allowed to be spatially inhomogeneous. Again, we do not include proofs of these results for the sake of conciseness.

Corollary 1.6. Assume the lower and upper bound hypotheses in Corollary 1.2 hold with |x -y| 2H replaced by log -2γ (1/ |x -y|). Then the conclusions of Theorem 1.4 hold with p (β) replaced by lim inf β→∞ t -1 E [log(Z t )] for the lower bound, and by lim sup β→∞ t -1 E [log(Z t )] for the upper bound. Almost-sure results as in Corollary 1.3 also hold.

Corollary 1.7. For the discrete space polymer in Theorem 1.5, assume, instead of

Q (0) > Q (2), that E (W (1, -1) -W (1, 1)) 2 > 0.
Then the conclusions of Theorem 1.5 hold with p (β) replaced by lim inf β→∞ t -1 Ê[log( Ẑt )] for the lower bound, and with p (β) replaced by lim sup β→∞ t -1 Ê[log( Ẑt )] for the upper bound. Almost-sure results as in Corollary 1.3 also hold.

Let us say a few words now about the methodology we have used in order to get our results. It is inspired by the literature on Lyapounov exponents for stochastic PDEs [START_REF] Carmona | Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem[END_REF][START_REF] Carmona | Parabolic Anderson problem and intermittency[END_REF][START_REF] Carmona | Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter[END_REF][START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF][START_REF] Tindel | Almost sure exponential behaviour for a parabolic SPDE on a manifold[END_REF][START_REF] Tindel | Relating the almost-sure Lyapunov exponent of a parabolic SPDE and its coefficients' spatial regularity[END_REF]; our upper bound results rely heavily on the estimation of the supremum of some well-chosen Gaussian fields, using such results as Dudley's so-called entropy upper bound, and the Borell-Sudakov inequality (see [START_REF] Adler | An introduction to continuity, extrema and related topics for general Gaussian processes[END_REF] or [START_REF] Viens | Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes[END_REF]); our lower bound results are obtained more "by hand", by isolating very simple polymer configurations b or b which maximize the random medium's increments in the Hamiltonian H t (b) or Ĥt ( b), and showing that these configurations contain enough weight to provide lower bounds. It turns out that these estimation procedures works better when the configuration b is simple enough, such as a piecewise constant or linear function. For the upper bound in the continuous case, a careful discretization of our Brownian path will thus have to be performed in order to get our main results; the resulting proof cannot exploit the discrete case itself because of the different nature of the discrete and continuous environments.

The structure of the article is as follows: Section 2 contains preliminary information on the partition function. Section 3 deals with the Brownian polymer. Section 4 covers the random walk polymer. In order to simplify the notation, throughout the paper we will use C to represent the constants, but acknowledge that the value it represents will change, even from line to line.

Preliminaries; the partition function

In this section, we will first recall some basic facts about the definition and the simplest properties of the partition functions Z t and Ẑt which have been already considered in the introduction. We will also give briefly some notions of Gaussian analysis which will be used later on.

We begin with basic information about the partition function of the Brownian polymer. Recall that W is a centered Gaussian field on R + × R d , defined by its covariance structure [START_REF] Adler | An introduction to continuity, extrema and related topics for general Gaussian processes[END_REF]. The Hamiltonian H t (b) given by ( 2) can be defined more rigorously through a Fourier transform procedure: there exists (see e.g. [START_REF] Carmona | Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter[END_REF] for further details) a centered Gaussian independently scattered C-valued measure ν on R + × R d such that

W (t, x) = R + ×R d 1 [0,t] (s)e ıux ν(ds, du), (9) 
where the simple notation ux stands for the inner product u • x in R d . For every test function

f : R + × R d → C, set now ν(f ) ≡ R + ×R d f (s, u)ν(ds, du). ( 10 
)
While the random variable ν (f ) may be complex-valued, to ensure that it is real valued, it is sufficient to assume that f is of the form f (s, u) = f 1 (s) e ıuf 2 (s) for real valued functions f 1 and f 2 . Then the law of ν is defined by the following covariance structure: for any such test functions f, g : R + × R d → C, we have

E [ν(f )ν(g)] = R + ×R d f (s, u)g(s, u) Q(du)ds, (11) 
where the finite positive measure Q is the Fourier transform of Q (see [START_REF] Tindel | On space-time regularity for the stochastic heat equations on Lie groups[END_REF] for details). From ( 9), we see that the Itô-stochastic differential of W in time can be understood as W (ds, x) := u∈R d e ıux ν(ds, du), or even, if the measure Q (du) has a density f (u) with respect to the Lebesgue measure, which is typical, as

W (ds, x) := u∈R d e ıux f (u)M(ds, du)
where M is a white-noise measure on R + × R d , i.e. a centered independently scattered Gaussian measure with covariance given by E

[M (A) M (B)] = m Leb (A ∩ B) where m Leb is Lebesgue's measure on R + × R d .
We can go back now to the definition of H t (b): invoking the representation (9), we can write

-H t (b) := t 0 W (ds, b s ) = t 0 R d e ıubs ν(ds, du), (12) 
taking this expression as a definition of H t (b) for each fixed path b; it can be shown (see [START_REF] Carmona | Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter[END_REF]) that the right hand side of the above relation is well defined for any Hölder continuous path b, by a L 2 -limit procedure. Such a limiting procedure can be adapted to the specific case of constructing H t (b), using the natural time evolution structure; we will not comment on this further. However, the reader will surmise that the following remark, given for the sake of illustration, can be useful: when Q has a density f , we obtain

-H t (b) = [0,t]×R d e ıubs f (u)M (ds, du) .
We use as the definition of the partition function Z x t , its expression in (3), and set its expectation under P as

p t (β) := 1 t E [log (Z x t )] , (13) 
usually called the free energy of the system. It is easily seen that p t (β) is independent of the initial condition x ∈ R d , thanks to the spatial homogeneity of W . Thus, in the remainder of the paper, x will be understood as 0 when not specified, and E b , Z t will stand for E 0 b , Z 0 t , etc... We summarize some basic results on p t (β) and Z t established in [START_REF] Rovira | On the Brownian-directed polymer in a Gaussian random environment[END_REF].

Proposition 2.1. For all β > 0 there exists a constant p(β) > 0 such that

p(β) := lim t→∞ p t (β) = sup t≥0 p t (β). ( 14 
)
Furthermore, the function p satisfies:

1. The map β → p(β) is a convex nondecreasing function on R + .

2. The following upper bound holds true:

p(β) ≤ β 2 2 Q(0). (15) 
3. P-almost surely, we have

lim t→∞ 1 t log Z t = p(β). (16) 
For the random walk polymer on Z d , the Hamiltonian Ĥt ( b) is easier to define, and can be expressed in a simple way by [START_REF] Carmona | Strong disorder implies strong localization for directed polymers in a random environment[END_REF]. Recall then that Ẑt , pt (β) are defined as: Ẑt = Êb e -Ĥt( b) , and pt (β) = Ê log( Ẑt ) .

Then, using the same kind of arguments as in [START_REF] Rovira | On the Brownian-directed polymer in a Gaussian random environment[END_REF] (see also [START_REF] Cadel | A model of continuous time polymer on the lattice[END_REF]), we get the following: Proposition 2.2. The same conclusions as in Proposition 2.1 hold true for the random walk polymer b.

Estimates of the free energy: continuous space

In this section, we will proceed to the proof of Theorems 1.1 and, 1.4, by means of some estimates for some well-chosen Gaussian random fields.

The hypothesis we use guarantees that there is some H ∈ (0, 1) such that W is no more than H-Hölder continuous in space. Accordingly, we define the homogeneous spatial canonical metric δ of W by

δ 2 (x -y) := E (W (1, x) -W (1, y)) 2 = 2 (Q(0) -Q(x -y)) , (17) 
for all x, y ∈ R d . Our hypotheses on δ translate immediately into statements about Q via this formula.

In our results below, we have also tried to specify the dependence of our constants on the dimension of the space variable. An interesting point in that respect is given in the lower bound of Subsection 3.2 below, which has to do with weak versus strong disorder in very high-dimensional cases.

Upper bound in the Brownian case

The upper bound in Theorem 1.1 follows immediately from the following proposition, which proves in particular that strong disorder holds for all H ∈ (0, 1]. Proposition 3.1. Assume that there exist a number H ∈ (0, 1] and numbers c 1 , r 1 such that for all x, y ∈ R d with |x -y| ≤ r 1 we have

δ(x -y) < c 1 |x -y| H . ( 18 
)
Then there exists a constant C depending only on Q and a constant β 0 depending only on r 1 and d, such that for all β ≥ β 0 ,

p(β) ≤ Cd 7H 1+3H β 2+4H 1+3H .
Proof. Let us divide the proof in several steps:

Step 1: Strategy. From relation ( 14), we have

p(β) ≤ lim sup t→∞ p t (β).
Our strategy is then to give an estimation of p t (β) for a discretized path b ∈ εZ d that stays close to b and proceeds only by jumps. Thanks to this substitution, and using Hölder's and Jensen's inequalities, we shall obtain

E [log(Z t )] = E log E b exp -β H t (b) -H t ( b) exp -βH t ( b) (19) ≤ 1 2 E log E b exp -2β[H t (b) -H t ( b)] + 1 2 E log E b exp -2βH t ( b) ≤ 1 2 log E b exp 2β 2 t 0 δ(b s -bs ) 2 ds + 1 2 E log E b exp -2βH t ( b) .
Notice that the first term on the right-hand side represents the error made by considering the discretized path b instead of b, but thanks to hypothesis [START_REF] Petermann | Superdiffusivity of polymers in random environment[END_REF] and the definition of b we will easily control it.

Step 2: The discretized path. Let us describe now the discretized process we shall use in the sequel: we will approximate the Brownian path b with a path that stays in εZ d , where ε is a small positive number. Let b j be the j-th component of the d-dimensional path b. Let T j 1 be the first time that b j exits the interval (-ε, ε) and T j i+1 be the first time after T j i that b j exits (b

T j i -ε, b T j i + ε).
So, for a fixed component j, the times (T j i+1 -T j i ) ∞ i=0 are i.i.d. and the successive positions

x j m = b j T j m
, which are independent of the jump times, form a one-dimensional symmetric random walk on εZ in discrete time.

Now let (T n ) ∞ n=0 be the increasing sequence of all the (T j m ) j,m and let (x n ) ∞ n=0 be the nearest neighbor path in εZ d with x 0 = 0 whose j-th component takes the same step as x j m at time T j m . We define the discretized path b as the path that jumps to site x n at time T n and it is constant between jumps. Remark 3.2. At any time s, each coordinate of bs is within ε of the corresponding one of b s . So the distance separating the two paths is never more than ε √ d. Thus we have, for all s ≥ 0, |b s -bs | ≤ εd 1/2 . Remark 3.3. Thanks to Remark 3.2 we can now control the error term we have defined at relation [START_REF] Piza | Directed polymers in a random environment: some results on fluctuations[END_REF]. In fact, owing to Hypothesis (18), we have

1 2t log E b exp 2β 2 t 0 δ(b s -bs ) 2 ds ≤ 1 2t log E b exp 2β 2 C 2 t 0 |b s -bs | 2H dt ≤ Cβ 2 ε 2H d H ,
where we recall that C is a constant depending on Q that can change from line to line.

Plugging this last inequality into [START_REF] Piza | Directed polymers in a random environment: some results on fluctuations[END_REF], and defining

p ε t (β) = 1 t E log E b exp -2βH t ( b) ,
we have thus obtained the following estimate for p t (β):

p t (β) ≤ Cβ 2 ε 2H d H + 1 2 p ε t (β). ( 20 
)
We shall try now to get some suitable bounds on p ε t (β).

Step 3: Study of p ε t (β). Let N j t be the number of jumps of the j-th component of b up to time t. For a multi-index k

= (k 1 , • • • , k d ) let |k| = k 1 + • • • + k d , so the total number of jumps of b up to time t is |N t | = N 1 t + • • • + N d t .
Denote by S(t, n) the simplex of all possible sequences of n jump times up to time t, namely

S(t, n) = {t = (t 0 , • • • , t n ) : 0 = t 0 ≤ • • • ≤ t n ≤ t} . ( 21 
)
The set of the first k j jump times of the j-th component of b is a point (t j i )

k j i=1 in S(t, k j ). Given the set of all jump times t j i : j ∈ [1, • • • , d] ; i ∈ [1, • • • , k j ]
, let tl : l ∈ [0, |k| + 1] be the same set but ordered and with the convention t0 = 0, t|k|+1 = t. And finally let xl be the value of b between the two jump times tl and tl+1 . Denote by P n the set of all such x, i.e. the set of all nearest-neighbor random walk paths of length k starting at the origin.

Then if we fix |N t | = |k|, we can write

H t ( b) = X |k|, ( tl ) |k| l=1 , (x l ) |k| l=1 ,
where

X |k|, ( tl ) |k| l=1 , (x l ) |k| l=1 = |k| i=0 W ( ti+1 , xi ) -W ( ti , xi ) .
Thanks to these notations, we have

tp ε t (β) = E log E b exp(-2βH t ( b)) = E log E b exp -2βX |N t |, ( tl ) |Nt| l=1 , (x l ) |Nt| l=1
.

So we can write the expectation with respect to b as:

E b exp(-2βH t ( b)) = n≥1 E b exp(-2βH t ( b)) |N t | ∈ [tα(n -1), tαn] × P b [|N t | ∈ [tα(n -1), tαn]] .
The number of jumps of the discretized path b in a given interval [0, t] will play a crucial role in our optimization procedure. For a parameter α > 0 which will be fixed later on, let us thus define

T nα = k, t, x : k ≤ tnα, t ∈ S(t, k), x ∈ P k .
Then the following estimates will be essential for our future computations:

P b N j t > nαt ≤ exp - t 2 (αnε) 2 + tαn (22) E sup Tnα X(k, t, x) ≤ Ktd √ nα, (23) 
where K is a constant that depends on the covariance of the environment Q. Inequality ( 22) can be found textually in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF]. Inequality ( 23) is established identically to equation (30) in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF], with the minor difference that the total number of paths in P m is not 2 m but (2d) m , which, in the inequality above (30) near the bottom of page 33 in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF], accounts for a factor e 1+log(6d) = 6ed instead of e c 1 therein, hence the factor d in [START_REF] Tindel | Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat equation[END_REF].

Defining Y nα = sup Tnα X(k, t, x), we can now bound p ε t (β) as follows:

tp ε t (β) ≤ E [log(A + B)] ≤ E (log A) + + E (log B) + + log 2
, where

A = P b [|N t | ≤ αt] exp (2βY α ) , and B = n≥1 P b [|N t | ∈ [nαt, (n + 1)αt]] exp 2βY α(n+1) .
We will now bound the terms A and B separately.

Step 4: The factor A. We can bound P b [|N t | ≤ αt] by 1 and we easily get, invoking [START_REF] Tindel | Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat equation[END_REF],

E (log A) + ≤ 2βE [Y α ] ≤ 2βKdt √ α. ( 24 
)
Step 5: The factor B. Let µ = E Y α(n+1) . Since X is a Gaussian field and since it is easy to show that σ 2 := sup

(m, t,x)
Var(X(k, t, x)) ≤ tQ(0), the so called Borell-Sudakov inequality (see [START_REF] Adler | An introduction to continuity, extrema and related topics for general Gaussian processes[END_REF] or [START_REF] Viens | Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes[END_REF]) implies that, for a constant a > 0,

E [exp (a |Y αn -µ|)] ≤ 2 exp a 2 σ 2 2 = 2 exp a 2 tQ(0) 2 . ( 25 
)
Fix now a number γ ∈ (1/2, 1) and let us denote log + (B) = (log B) + . We have

1 t γ E log + B = E   log + n≥1 P b [|N t | ∈ [ntα, (n + 1)tα]] exp 2βY α(n+1) t -γ   ≤ E   log + n≥1 P b [|N t | > ntα] exp 2β(Y α(n+1) -µ) exp 2βKtd α(n + 1) t -γ   ,
where we used that (23) implies µ ≤ Kdt (n + 1)α. We also know that for any sequence of non-negative reals (x n ) n the following holds:

( n x n ) t -γ ≤ n x t -γ n . Thus we have 1 t γ E log + B ≤ E log + n≥1 (P b [|N t | > ntα]) t -γ exp 2β t γ (Y α(n+1) -µ) exp 2t 1-γ βKd α(n + 1) ≤ E log + d t -γ n≥1 exp 2β t γ (Y α(n+1) -µ) exp - t 1-γ 2 y n ,
where we used estimate [START_REF] Talagrand | Spin Glasses: a Challenge for Mathematicians[END_REF] in the following way:

P b [|N t | > ntα] ≤ d j=1 P b N j t > ntα d = dP b N 1 t > ntα d ≤ d exp - t 2 αnε d 2 + tαn d ,
and where we have obtained:

y n = εαn d 2 - 2αn d -4βKd α(n + 1).
Now, bounding log + (x) from above by log(1 + x), for x ≥ 1, and using Jensen's inequality, we have:

1 t γ E log + B ≤ log 1 + n≥1 E exp 2β t γ (Y α(n+1) -µ) exp -t 1-γ 2 y n ,
so, using [START_REF] Tindel | Almost sure exponential behaviour for a parabolic SPDE on a manifold[END_REF], it is readily checked that

1 t γ E log + B ≤ log 1 + 2 exp 2β 2 Q(0) t 2γ-1 n≥1 exp -t 1-γ 2 y n .
In order for the series above to converge, we must choose α so as to compensate the negative terms in y n . Specifically, we choose

αε d 2 = 16βKd √ α, i.e. α = (16βKd 3 ε -2 ) 2/3 . ( 26 
)
With this choice, we end up with:

y n = αε d 2 n 2 - 2dn αε 2 - 1 4 √ n + 1 .
Now we note that:

If we choose ε, β such that βε ≥ d -3/2 ⇒ αε 2 d = (16Kβε) 2/3 d ≥ 4, (27) 
so that

y n ≥ αε d 2 n 2 - n 2 - 1 4 √ n + 1 ,
and since n 2 -n 2 - √ n+1 4 
≥ n 8 , we get

n≥1 exp - t 1-γ 2 αε d 2 n 2 - 2dn αε 2 - 1 4 √ n + 1 ≤ n≥1 exp - t 1-γ 2 αε d 2 n 8 = 1 1 -exp -1 16 t 1-γ αε d 2 -1.
Notice that this last term can be made smaller than 1 if t is large enough. Hence we can write a final estimate on E log + B as follows: for large t we have

1 t γ E log + B ≤ log 1 + 2d t -γ exp 2β 2 Q(0) t 2γ-1 ≤ log(1 + 2d t -γ ) + 2β 2 Q(0) t 2γ-1 . ( 28 
)
Final step. Using inequalities ( 24) and ( 28) and the value of α, we can estimate p ε t (β) in the following way:

p ε t (β) ≤ 2βKd √ α + log 2 t + log(1 + 2d t -γ ) t 1-γ + 2β 2 Q(0) t γ ≤ 2βKd √ α + o(1).
So using the value of α given in [START_REF] Tindel | Relating the almost-sure Lyapunov exponent of a parabolic SPDE and its coefficients' spatial regularity[END_REF] we have

p ε t (β) ≤ C β 4/3 d 2 ε 2/3 + o(1), ( 29 
)
where C is a constant that depends on Q and that can change from line to line. Putting this result in (20) and taking the limit for t → ∞ we get lim sup

t→∞ p t (β) ≤ C β 2 d H ε 2H + d 2 β 4/3 ε -2/3 .
In order to make this upper bound as small as possible we can choose ε such that

β 2 d H ε 2H = d 2 β 4/3 ε -2/3 , i.e. ε = d 6-3H 2+6H β -1 1+3H , so that lim sup t→∞ p t (β) ≤ Cβ 2+4H 1+3H d 7H 1+3H ,
which is the announced result. We then only need to check for what values of β we are allowed to make this choice of ε. Condition [START_REF] Petermann | Superdiffusivity of polymers in random environment[END_REF] states that we must use ε ≤ r 1 . This is equivalent to β ≥ β 0 =: (r 1 ) -1-3H d 3-3H/2 . One can check in this case that the restriction on ε, β in ( 27) is trivially satisfied.

Lower bound in the Brownian case

In the following proposition, which implies the lower bound in Theorem 1.1, we shall also try to specify the dependence of the constants with respect to the dimension d. Let us state an interesting feature of this dependence. The proof of the proposition below shows that the results it states hold only for β ≥ β 0 = cd 1-H/2 . One may ask the question of what happens to the behavior of the partition function when the dimension is linked to the inverse temperature via the relation β = β 0 , and one allows the dimension to be very large.

The lower bounds on the value p (β) in the proposition below will then increase, and while they must still not exceed the global bound β 2 Q (0) /2, the behavior for large β turns out to be quadratic in many cases. The reader will check that, when H > 1/2, this translates as p (β) ≥ cβ 2/(2-H) which is quadratic when H = 1, and p (β) ≥ cβ 2 for all H ≤ 1/2. This is an indication that for extremely high dimensions and inverse temperatures, for H ≤ 1/2 or H = 1, strong disorder may not hold. Strong disorder for Brownian polymers may break down for complex, infinite-dimensional polymers. This is only tangential to our presentation, however.

Proposition 3.4. Recall that δ has been defined at [START_REF] Méjane | Upper bound of a volume exponent for directed polymers in a random environment[END_REF] and assume that there exist a number H ∈ (0, 1] and some positive constants c 2 , r 2 such that for all x, y ∈ R d with |x -y| ≤ r 2 , we have

δ(x -y) > c 2 |x -y| H . ( 30 
)
Then if H ≤ 1/2, there exists a constant C depending only on Q, and a constant β 0 depending only on Q and d, such that, for all β > β 0 ,

p(β) ≥ Cd 2H-1 H+1 β 2 H+1 .
On the other hand if H > 1/2, there exists a constant C ′ depending only on Q, and a constant β ′ 0 depending only on Q and d, such that for all

β > β ′ 0 p(β) ≥ C ′ d 2H-1 3 β 4 3 .
Proof. Here again, we divide the proof in several steps.

Step 1: Strategy. From relation ( 14), we have

p(β) = sup t≥0 p t (β),
where p t (β) is defined by equation [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF]. So a lower bound for p(β) will be obtained by evaluating p t (β) for any fixed value t. Additionally, by the positivity of the exponential factor in the definition of Z t , one may include as a factor inside the expectation E b the sum of the indicator functions of any disjoint family of events of Ω b . In fact, we will need only two events, which will give the main contribution to Z t at a logarithmic scale.

Step 2: Setup. Let A + (b) and A -(b) be two disjoints events defined on the probability space Ω b under P b , which will be specified later on. Set

X b = -βH 2t = β 2t 0 W (ds, b s ).
Conditioning by the two events A + (b) and A -(b) and using Jensen's inequality we have

E(log Z t ) ≥ log (min {P b (A + ); P b (A -)}) + E max Z+ ; Z-, (31) 
where

Z+ := E b [X b | A + ] and Z-:= E b [X b | A -] .
These two random variables form a pair of centered jointly Gaussian random variables: indeed they are both limits of linear combinations of values of a single centered Gaussian field. Thus this implies

E max Z+ ; Z-= 1 √ 2π E Z+ -Z- 2 1/2 
.

Therefore we only have to choose sets A + and A -not too small, but still decorrelated enough so that condition (30) guarantees a certain amount of positivity in the variance of Z+ -Z-.

Step 3: Choice of A + and A -. Let f be a positive increasing function. We take

A + = f (t) ≤ b i s ≤ 2f (t), ∀i = 1, . . . , d, ∀s ∈ [t, 2t] , A -= -2f (t) ≤ b i s ≤ -f (t), ∀i = 1, . . . , d, ∀s ∈ [t, 2t] .
In other words, we force each component of our trajectory b to be, during the entire time interval [t, 2t], in one of two boxes of edge size f (t) which are at a distance of 2f (t) from each other. Because these two boxes are symmetric about the starting point of b, the corresponding events have the same probability. While this probability can be calculated in an arguably explicit way, we give here a simple lower bound argument for it. Using time scaling, the Markov property of Brownian motion, the notation a = f (t) / √ t, we have

P b (A + ) = d i=1 P b ∀s ∈ [1, 2] : b i s ∈ [a, 2a] = d i=1 1 2π 2a a P b ∀s ∈ [0, 1] : b i s + y ∈ [a, 2a] e -y 2 /2 dy ≥ d i=1 1 2π 7a/4 5a/4 P b ∀s ∈ [0, 1] : b i s + y ∈ y - a 4 , y + a 4 e -y 2 /2 dy = P b b 1 1 ∈ [5a/4, 7a/4] P b ∀s ∈ [0, 1] : |b 1 s | ≤ a/4 d . (32) 
Step 4: Estimation of Z+ and Z-. It was established in [START_REF] Florescu | Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space[END_REF] that in dimension d = 1

E Z+ -Z- 2 ≥ β 2 2t t E δ(x * s,+ -x * s,-) 2 ds
where the quantities x * s,+ and x * s,-are random variables such that for all s ∈ [t, 2t]:

x * s,+ ∈ [f (t), 2f (t)] and x * s,-∈ [-2f (t), -f (t)].
In dimension d ≥ 1 the result still holds. In fact in this case we have x * s,+ , x * s,-∈ R d , so it is sufficient to take each component of the x * s,+ in the interval [f (t), 2f (t)] and each component of x * s,-in [-2f (t), -f (t)], so their distance is greater than d 1/2 f (t). Thus, using condition (30), we have

E Z+ -Z- 2 ≥ β 2 2t t C x * s,+ -x * s,- 2H ds ≥ Ctβ 2 d H (f (t)) 2H , (33) 
where as usual C is a constant that can change from line to line. Hence, we obtain:

E max Z+ ; Z-= 1 √ 2π E Z+ -Z- 2 1/2 ≥ Cβ √ t (f (t)) H d H/2 , (34) 
Observe that in order to use condition (30) we have to impose f (t) ≤ r 2 .

Step 5: The case H ≤ 1/2. It is possible to prove that in this case the optimal choice for f is f (t) = √ t, which corresponds to a = 1, so that P b (A + ) is a universal constant that does not depend on t. Thus we have, from (31), ( 32) and (34), for any t > 0,

p 2t (β) = E [log Z 2t ] 2t ≥ d log C 2t + Cβd H/2 t H-1 2 . ( 35 
)
Now we may maximize the above function over all possible values of t > 0. To make things simple, we choose t so that the second term equals twice the first, yielding t of the form t = Cd This result holds as long as the use of condition (30) can be justified, namely as long as f (t) ≤ r 2 . This is achieved as soon as β > β 0 where β 0 = Cr -H-1

2 d 1-H/2
, and since H ≤ 1/2, β 0 ≥ Cd 3/4 .

Step 6: The case H > 1/2. In this case we consider f (t) = ct α , for a given α ∈ [0, 1/2) and some constant c chosen below. Thus we have a = ct α-1/2 . In this case, if a is larger than a universal constant K u , the result (32) yields that, for some constant C, we have

P b (A + ) ≥ d i=1 exp(-Ca 2 ) = exp(-Cc 2 dt 2α-1 ).
So, using again condition (30) and relation (34) we obtain

p 2t (β) ≥ -Cdt 2α-2 + Cβd H/2 t αH-1/2 ,
where the constant C may also include the factor c 2 . Again, choosing t so that the second term equals twice the first, we have

t = Cd 1-H/2 α(H-2)+3/2 β - 1 α(H-2)+3/2 , (36) 
and so

sup t>0 p 2t (β) ≥ Cd H-1/2 α(H-2)+3/2 β -2α-2 α(H-2)+3/2 .
In order to maximize the power of β in the lower bound for sup t>0 p t (β) we should find the maximum of the function g(α) = 2 -2α α(H -2) + 3/2 for 0 ≤ α < 1/2. Since this function is monotone decreasing when H > 1/2, the maximum is reached for α = 0, so g(0) = 4/3.

Recall once again that, in order to apply condition (30) in the computations above, we had to assume f (t) ≤ r 2 ; since now f (t) is the constant c, we only need to choose c = r 2 . We also had to impose a = r 2 t -1/2 > K u , which translates as β > β ′ 0 := (K u /r 2 ) 4/3 d 1-H/2 .

Logarithmic regularity scale

As mentioned in the introduction, the special shape of our Figure 1.2 induces us to explore the regions of low spatial regularity for W , in order to investigate some new possible scaling in the strong disorder regime. In other words, we shall work in this section under the assumptions that there exist positive constants c 0 , c 1 , and r 1 , and β ∈ (0, ∞), such that for all x, y with |x -y| ≤ r 1 ,

c 0 log -γ (1/ |x -y|) ≤ δ (x -y) ≤ c 1 log -γ (1/ |x -y|) , (37) 
where γ > 0. Assumption (37) implies that W is not spatially Hölder-continuous for any exponent H ∈ (0, 1]. Moreover, the theory of Gaussian regularity implies that, if γ > 1/2, W is almost-surely continuous in space, with modulus of continuity proportional to log -γ+1/2 (1/ |x -y|), while if γ ≤ 1/2, W is almost-surely not uniformly continuous on any interval in space. The case γ = 1/2, which is the threshold between continuous and discontinuous W , is of special interest, since it can be related to the discrete space polymer which will be studied in the next section. The main result which will be proved here is the following:

Theorem 3.5. Assume condition (37). We have for some constants C 0 and C 1 depending only on Q, for all β large enough,

C 0 β 2 d log -2γ β √ d ≤ p(β) ≤ C 1 β 2 log -2γ β √ d .
Proof.

Step 1: Setup. Nearly all the calculations in the proof of Propositions 3.1 and 3.4 are still valid in our situation.

Step 2: Lower bound. For the lower bound, reworking the argument in Step 2 in the proof of Proposition 3.4, using the function log -γ (x -1 ) instead of the function x H , we obtain the following instead of (33):

E (Z + -Z -) 2 ≥ t (βc 0 ) 2 log 1 √ df (t) -2γ
, which implies, instead of (35) in Step 5 of that proof, the following:

p 2t (β) ≥ d log C 2t + Cβt -1/2 log 1 √ df (t) -γ
.

In other words, now choosing f (t) = t 1/2 as we did in the case H < 1/2 (recall that we are in the case of small H, as stated in the introduction),

p 2t (β) ≥ d log C 2t + Cβt -1/2 log 1 √ dt -γ
. Now choose t such that the second term in the right-hand side above equals twice the first, i.e.

t 1/2 log -γ 1 √ dt = Cdβ -1 .
For small t, the function on the left-hand side is increasing, so that the above t is uniquely defined when β is large. We see in particular that when β is large, t is small, and we have t -1 ≤ β 2 . This fact is then used to imply

1 t = Cβ d 2 log 1 √ dt -2γ ≥ 2 (Cβ) 2 log -2γ (β) .
Therefore, for some constants β 2 and c depending only on Q, for the t chosen above with β ≥ β 2 ,

p 2t (β) ≥ Cβ 2 d log β √ d -2γ
.

Step 3: Upper bound. Here, returning to the proof of Proposition 3.1, the upper bound (29) in the final step of that proof holds regardless of δ, and therefore, using the result of Remark 3.3 with δ (r) = log -γ (1/r), we immediately get that there exists c depending only on Q such that for all ε < r 1 and all β > β 3 , lim sup

t→∞ p t (β) ≤ Cβ 2 log 1 ε √ d -2γ + Cd 2 β 4/3 ε -2/3 ,
as long as one is able to choose ε so that βε ≥ 1. By equating the two terms in the right-hand side of the last inequality above, we get

ε log 1 ε √ d -3γ = Cd 3 β -1 .
Since the function ε → ε log -3γ 1/(ε √ d) is increasing for small ε, the above equation defines ε uniquely when β is large, and in that case ε is small. We also see that for any θ > 0, for large β, 1/ε ≥ β 1-θ . Therefore we can write, for β ≥ β 3 , almost surely, lim sup

t→∞ p t (β) ≤ C (1 -θ) -2γ β 2 log β √ d -2γ
.

This finishes the proof of the theorem.

4 Estimates of the free energy: discrete space

Recall that, up to now, we have obtained our bounds on the free energy in the following manner: the upper bound has been computed by evaluation of the supremum of a wellchosen random Gaussian field, while the lower bound has been obtained by introducing two different events, depending on the Brownian configuration, which capture most of the logarithmic weight of our polymer distribution. This strategy also works in the case of the random walk polymer whose Hamiltonian is described by ( 5), without many additional efforts, but a separate proof is still necessary. This section shows how this procedure works, resulting in the proof of Theorem 1.5.

Quantities referring to the random walk polymer have been denoted by b, Ŵ , Êb , Ê, etc... In this section, for notational sake, we will omit the hats in the expressions above, and write instead b, W, E b , E like in the Brownian case. Recall our simple non-degeneracy condition on Q in this case:

c Q := sup 1≤i≤d (Q(0) -Q(2e i )) 1/2 > 0, (38) 
where e i , i = 1, • • • , d are the unit vectors in Z d . Condition (38), which is used only in the lower bound result, is extremely weak. It essentially covers all possible homogeneous covariance functions, except the trivial one Q (x) ≡ Q (0) for all x, which is the case where W does not depend on x, in which case the Hamiltonian has no effect. Indeed, assume that there exists an x 0 ∈ Z d such that W (t, 0) and W (t, x 0 ) are not (a.s.) equal. Then Q (x 0 ) < Q (0). Our lower bound proof below can then be adapted to use this condition instead of Condition (38). We do not comment on this point further.

Lower bound for the random walk polymer

The lower bound announced in Theorem 1.5 is contained in the following. Proof. Invoking Proposition 2.2, we have p (β) = lim t→∞ p t (β) = sup t≥0 p t (β). Therefore, any chosen fixed value t yields p t (β) as a lower bound for p (β). We express Z t by using the fact that each component of b is constant between its jump times, which are uniformly distributed on the simplex, given N t the total number of jumps before time t, which is a Poisson r.v. with parameter 2dt. Moreover the visited sites (x k ) Nt k=1 are uniformly distributed on the set of all nearest-neighbor paths of length N t started at 0, given N t . For a lower bound on p t (β), we throw out, in the expectation defining Z t , all the paths b that do not jump exactly once before time t. We also throw out all jump positions that are not ±e i , where

c Q = (Q(0) -Q(2e i )) 1/2 > 0. Therefore, Z t ≥ P b [N t = 1] 1 2d t 0
ds t e βW (s,0)+βW ([s,t],e i ) + e βW (s,0)+βW ([s,t],-e i ) ,

where W ([s, t], x) := W (t, x) -W (s, x). Here, given N t = 1, 1/(2d) is the weight of the path that jumps to ±e i , and 

))] = 1 2 E [|W ([s, t], e i ) -W ([s, t], -e i )|] = 1 √ 2π (Var [W ([s, t], e i ) -W ([s, t], -e i )]) 1/2 = 1 √ π √ t -s Q (0) -Q (2e i ). (39) 
Thus, recalling condition (38), and chosing t = C log 2 β/β 2 , we obtain

1 t E(log Z t ) ≥ log t t -2d + 2β 3 √ πt c Q ≥ β 2 log β - 2 C + 2c Q 3 √ cπ + β 2 C log 2 β (log C + 2 log log β) -2d. ( 40 
)
The proof is completed by choosing C such that -

2 C + 2c Q 3 √ Cπ > 0, i.e. C > 9π Q(0)-Q(2)
, and β large enough so that the second and third terms in (40) contribute nonnegatively.

Upper bound for the random walk polymer

The upper bound result in Theorem 1.5 can be summarized in the following proposition. Proposition 4.2. Under the assumption that Q (0) < ∞, there exists a constant β ′ 0 > 0, which depends on Q and on d, and a constant C > 0, which depend only on Q, such that if β > β ′ 0 then almost surely lim Let α be a fixed positive number which will be chosen later. Let I α = ∪ m≤αt J m , where J m := {m} × S m,t × P m , and set also Y α = sup Iα X. As in the Brownian case, we can bound E [log Z t ] above as follows:

E [log Z t ] ≤ E [log (A + B)] ≤ E log + A + E log + B + log 2, ( 41 
)
where log + A = (log A) + = max(log A, 0) and

A := P b [N t ≤ αt] exp (βY α ) (42) 
B := m>αt P b [N t = m] E b exp βX m, t, x N t = m .
Step 1: The term A. As in the continuous case, we have that

E sup Tnα X(k, t, x) ≤ Ktd √ nα, (43) 
where K depends only on Q. So, bounding P b [N t ≤ αt] by 1, we have

E log + A ≤ βE [Y α ] ≤ βKdt √ α. (44) 
Step 2: The term B. The term B defined in (42) can be bounded as follows: So, using the fact that for t > 1, the power t -1 of a sum is less than the sum of the terms raised to the power t -1 , followed by Jensen's inequality, we have, similarly to what we did in the proof of Proposition 3.1,

E [log B + ] = E log + m>αt P b [N t = m]
1 t E log + B ≤ log 1 + n≥1 (P b [N t > αnt]) t -1 E exp βY (n+1)α t .
Using once again Gaussian supremum analysis results (see [START_REF] Adler | An introduction to continuity, extrema and related topics for general Gaussian processes[END_REF] or [START_REF] Viens | Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes[END_REF]), for any α, x > 0, If we choose t such that t > (2βK u Q(0))/(dKα 1/2 ), the estimate on B becomes

E
1 t E log + B ≤ log 1 + n≥1 (P b [N t > αnt]) t -1 exp βdK u √ α √ n + 1 + 1 2 . (45) 
Step 3: The tail of N t . Using the presumably well-known tail estimate P b [N t > αt] ≤ exp -αt log α 2d -t(α -2d) , valid for all α ≥ 1 (see e.g. [16, pages 16-19]), if we set α ′ = α/2d and we assume α ′ ≥ exp (1 -1/2d) we have P b [N t > αt] ≤ exp (-tα ′ log α ′ ) .

(46)

Step 4: Grouping our estimates and choosing α. From (45) and (46) we have

1 t E log + B ≤ log 1 + n≥1 exp -α ′ n log α ′ n + dβK u √ α √ n + 1 + 1 2 .
To exploit the negativity of the exponential term, we simply require

α ′ log α ′ = 4dK u β √ α. (47) 
Indeed, since n ≥ 1, we then have that the term inside the exponential is

α ′ n log α ′ n -βdK u √ α √ n + 1 + 1 2 = α ′ n log α ′ n - 1 4 α ′ log α ′ √ n + 1 + 1 2 ≥ α ′ n log α ′ - 1 4 α ′ log α ′ √ n + 1 + 1 2 = 1 2 α ′ n log α ′ n + 1 2 n - 1 4 √ n + 1 + 1 2 α ′ log α ′ ≥ 1 2 α ′ n log α ′ , which implies 1 t E log + B ≤ log 1 + n≥1 exp - 1 2 α ′ n log α ′ = log 1 + 1 exp 1 2 α ′ log α ′ -1 := c d .
The restriction α ′ ≥ exp(1-1/2d) implies that c d is a constant that depends on the dimension d only. Combining this with (41) and (44), we get

1 t E [log Z t ] ≤ log 2 t + c d + dK u β √ α. ( 48 
)
Step 5: Conclusion. It is easy enough to see that, with

x := 4d √ 2dβK u 2 , (49) 
the equation (47), which is α ′ = x/ log 2 α ′ , has a unique solution α ′ when x exceeds e, and that α ′ also exceeds e in that case: indeed α ′ = e when x = e and dα ′ /dx = log 2 α ′ + 2 log α ′ -1 > 0 for all α ′ ≥ e. Therefore, since log 2 α ′ > 1, we can write α ′ ≤ x, and thus we also have:

α ′ = x log 2 α ′ ≥ x log 2 x . (50) 
This lower bound on α ′ implies the following upper bound on α ′ :

α ′ = x log 2 α ′ ≤
x log 2 x/ log 2 x = x (log x -2 log(log x)) 2 .

(51)

Since there exists x 0 such that, for any x > x 0 , we have log x > 4 log(log x),

and we can recast expression (51) into:

α ′ ≤ 4x log 2 x = (4d √ 2dβK u ) 2 (log β + log 4d √ 2dK u ) 2 ≤ (4d √ 2dK u ) 2 β 2 log 2 β ,
from which we obtain α ≤ (8d 2 K u ) 2 β 2 log -2 β (recall α =: 2dα ′ ). Thus for t large enough:

E[log(Z t )] t ≤ log 2 t + c d + 8d 3 K 2 u β 2 log β .
Taking limits as t tends to ∞ and choosing β so that

β 2 > c d log β 8d 3 K 2 u , ( 53 
)
the theorem is proved with C = 16K 2 u .
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 41 Assume condition (38) holds true. Then there exists a constant β 0 > 0, which depends on d and on c Q and a constant C > 0, which depend only on c Q , such that if β > β 0 then almost surely lim t→∞ 1 t log Z t ≥ C β 2 log β .

t→∞ 1 t

 1 log Z t ≤ Cd 3 β 2 log β . Proof. Define S(t, n), k j , t j i , tl , N t , P n and xl like in Step 3 of the proof of Proposition 3.1. Then if we fix N t = m, we can define X m, t, x := m i=0 W ti+1 , xi -W ti , xi .

  exp βX m, t, x d t  ≤ E log + n≥1 P b [N t > αnt] exp βY (n+1)α .

  1 [0,t] (s) ds/t is the law of the single jump time. Using this and Jensen's inequality, we get

	Z t ≥ dte -2td e βW (s,0)+βW ([s,t],e 1 t 0 ds t t E(log Z t ) ≥ log t t -2d + β

i

) + e βW (s,0)+βW ([s,t],-e i ) ,

t 0 ds t 2 E [max (W ([s, t], e i ); W ([s, t], -e i ))

] . Now we evaluate the expected maximum above. The vector (W ([s, t], e i ) , W ([s, t], -e i )) is jointly Gaussian with common variances √ t -sQ(0) and covariance √ t -sQ(2). Therefore E [max (W ([s, t], e i ) , W ([s, t], -e i

  [exp (xY α )] ≤ exp (xE [Y α ]) exp x 2 K u max (m, t,x)∈Iα Var X m, t, x ≤ exp xdKt √ α exp x 2 K u tQ(0) ,where K u designate a universal constant, and where we used (43) and the trivial fact E[X m, t, x 2 ] = Q (0) t. Hence

	E exp	βY (n+1)α t	≤ exp βdK α(n + 1) +	β 2 K u Q(0) t	.
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Finally, we show that the theorem holds for β large enough. Analyzing the conditions we used above, we only have to take β ≥ β ′ 0 := max(K d , β * , β * ),where K d , β * , β * are now specified. This is due to the fact that we assumed α ′ ≥ exp(1 -1/2d) and this implies, via (50), that x ≥ 2d exp(1 -1/2d) (log 2d + 1 -1/ (2d)), and therefore, from (49), we have to take β ≥ K d , where K d is a constant that depends only on the dimension d. In addition, according to (52) and (53), β * and β * are the solutions to the following equations:

and log(4d √ 2dK u β) = 4 log(log(4d √ 2dK u β)).