Projective Ring Line of an Arbitrary Single Qudit - Archive ouverte HAL Access content directly
Journal Articles Journal of Physics A: Mathematical and Theoretical Year : 2008

Projective Ring Line of an Arbitrary Single Qudit

Abstract

As a continuation of our previous work (arXiv:0708.4333) an algebraic geometrical study of a single $d$-dimensional qudit is made, with $d$ being {\it any} positive integer. The study is based on an intricate relation between the symplectic module of the generalized Pauli group of the qudit and the fine structure of the projective line over the (modular) ring $\bZ_{d}$. Explicit formulae are given for both the number of generalized Pauli operators commuting with a given one and the number of points of the projective line containing the corresponding vector of $\bZ^{2}_{d}$. We find, remarkably, that a perp-set is not a set-theoretic union of the corresponding points of the associated projective line unless $d$ is a product of distinct primes. The operators are also seen to be structured into disjoint `layers' according to the degree of their representing vectors. A brief comparison with some multiple-qudit cases is made.
Fichier principal
Vignette du fichier
gen_qudit_arXiv.pdf (195.67 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00176551 , version 1 (04-10-2007)
hal-00176551 , version 2 (27-12-2007)

Identifiers

Cite

Hans Havlicek, Metod Saniga. Projective Ring Line of an Arbitrary Single Qudit. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 015302 (12pp). ⟨10.1088/1751-8113/41/1/015302⟩. ⟨hal-00176551v2⟩

Collections

INSMI TDS-MACS
73 View
105 Download

Altmetric

Share

Gmail Facebook X LinkedIn More