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ABSTRACT. In this paper, we investigate the regularizing effect of a non-local operator on first order Hamilton-
Jacobi equations. We prove that there exists a unique solution that is C2 in space and C! in time. In order
to do so, we combine viscosity solution techniques and Green’s function techniques. Viscosity solution theory
provides the existence of a W1 solution as well as uniqueness and stability results. A Duhamel’s integral
representation of the equation involving the Green’s function permits to prove further regularity. We also
state the existence of C*® solutions (in space and time) under suitable assumptions on the Hamiltonian. We
finally give an error estimate in L* norm between the viscosity solution of the pure Hamilton-Jacobi equation
and the solution of the integro-differential equation with a vanishing non-local part.

Keywords: integro-differential Hamilton-Jacobi equation, non-local regularization, Lévy operator, vis-
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Introduction
The present paper is concerned with the non-local first order Hamilton-Jacobi equation:

Oyu+ H(t,z,u, Vu) + g[u] = 0 in [0, +00) x RV, (1)
u(0,2) = ug(z) for all z € RN (2)

with ug € WH(RY), where Vu denotes the gradient w.r.t. z and g[u] denotes the pseudodifferential
operator defined by the symbol [£|}, 1 < X < 2. More precisely, if S(RY) denotes the space of Schwartz

functions, g[v](z) is defined by:
glol(@) = F7H( - P Fo()) (@)

where F denotes the Fourier transform. If 1 < A < 2, as far as Hamilton-Jacobi equations are concerned,
the following equivalent form of g[v] is needed:

glvl(z) = - /RN\{O}(U(SU +2) —o(z) - Vo(z) - 2)du(z) 3)

where p denotes the mesure whose derivative w.r.t. the Lebesgue mesure is vo|z|~ (N (1 is a positive
constant, see Lemma 1).

We were first motivated by a paper by Droniou, Gallouét and Vovelle [14] in which the existence
of a global smooth solution of a scalar conservation law with the non-local term g[u] is proved. Those
non-local conservation laws (sometimes called fractional conservation laws) appear in many applications,
in particular in the context of pattern formation in detonation waves [11]. More generally, Lévy processes
appear in many areas of physical sciences ; in particular Hamilton-Jacobi equations of the form of (1)
appear in few models [26, §5]. Lévy operators also appear in the context of optimal control of jump
diffusion processes. Equation (1) can be interpreted as the Bellman-Isaacs equation of such an optimal
control problem if there is no control on the jumps; otherwise the integro-partial differential equation



(integro-pde for short) is no more linear w.r.t. to g[u]. Viscosity solution theory provides a good frame-
work to solve these equations and there is a important literature about it, from mathematical finance
[1, 8 7, 9, 2] to systems of integro-pde’s [6]. As far as stability, comparison results and existence of
viscosity solutions are concerned, results were obtained by Sayah [24] in the stationary case by using first
order equation techniques.

Jakobsen and Karlsen [19] developped a general theory for second order parabolic nonlinear integro-
pdes. In particular, they establish comparison results and continuous dependance estimates. These
later results rely on a “maximum principle for integro-pde’s” [20]. Because of the dependance of H
on the Hessian of w, their arguments are more technical. In our case, classical techniques work with
minor modifications. We construct a viscosity solution by Perron’s method and show that the “bump”
construction needed to conclude (see [12]) can be adapted. We also point out that we give an existence
result in [0; +00) x RV (Theorem 3) but one can construct solutions in [0,7) x RY under slightly weaker
assumption on the dependance of H on u (compare (Al) and (A1’)); the remaining results (regularity
and error estimate) still hold true.

Our main result is Theorem 3. It asserts that there exists a solution of (1) with bounded Lipschitz
continuous initial condition that is twice continuously differentiable in x and continuously differentiable in
t; in the following, we will say that the solution is regular. If A = 2, the classical parabolic theory applies
(see [17] for assumptions comparable to ours). In our case, we first use the viscosity solution theory to
give a notion of merely continuous solution of (1) and to construct a bounded Lipschitz continuous one;
secondly, using Duhamel’s integral representation of (1), we construct an “integral” solution that is C? in
z by a fixed point method (Lemma, 4); next, we prove that the “integral” solution is C! in ¢ (Lemma, 5)
and it finally turns out to be a viscosity solution of (1) (with classical derivatives)!; the comparison
result (which implies uniqueness) permits to conclude. We also prove that higher regularity (in fact C*
regularity in (¢,z)) can be obtained if the assumptions on H are strengthened. See Theorem 5. Even for
A = 2, this method for proving regularity results is new.

In the last section, thinking of the vanishing viscosity method [13, 22], we consider a vanishing Lévy
operator:

Opus + H(t,z,u, Vuc) + eg[u] = 0 in [0; +00) x RV, (4)

Such an equation appears in [19] and the authors ask if the solution is regular. Our main result answers
this question. Moreover we give an error estimate between the solution u¢ of (4) and the solution u of
the pure Hamilton-Jacobi equation:

Opu+ H(t,z,u, Vu) = 0 in [0; +00) x RV, (5)

We prove that ||u¢ — ul| oo (jo,1)xr ) is of order €'/, In the case A = 2, such a result appears first in [16]
and [22]; both proofs rely on probabilistic arguments. In [25], the proof relies on continuous dependance
estimates for first order Hamilton-Jacobi equations. An error estimate of order €'/2 is obtained in [19],
also as a by-product of continuous dependance estimates. Their rate of convergence is less precise than
ours since they consider a singular measure such that |z|>u(z) is bounded on the unit ball B; ours is such
that |z|°u(z) is bounded on B for any & > .

We conclude this introduction by mentioning that the techniques and results of this paper only rely
on the properties of the kernel K associated with the Lévy operator. Hence, one can adapt them to a
different non-local operator if the associated kernel enjoys properties similar to (7)-(10).

The paper is organized as follows. In Section 1, we recall the assumptions needed on the Hamiltonian
in order to ensure uniqueness for (5) (and (1)), we recall the notion of viscosity solution for such an
integro-pde and we list the properties of the kernel associated with the non-local operator that we use
in the following. In Section 2, stability, existence and comparison results of viscosity solutions of (1) are
proved. Section 3 is devoted to our main result, the regularizing effect of the Lévy operator. In Section 4,
we state and prove an error estimate in L* norm between the solution of (4) and the solution of (5). As
a conclusion, we give in Appendix a non-probabilistic proof of the equivalent form (3) of g[].

1We will see in Section 1 that viscosity solutions are not only used to give a generalized sense to derivatives but also to
give a weak sense to the non-local operator via (1).



1 Preliminaries

Throughout the paper, we assume that 1 < A < 2. Here are the assumptions we make about the
Hamiltonian H. For any T > 0,

(A0). The function H : [0,+00) x RN x R x RN — R is continuous;

(A1). For any R > 0, there exists yg € R such that for all z € RV, u,v € [-R,R], u < v, p € RV,
te[0,7),
H(t,x,v,p) - H(tamauap) Z ’YR(’U - U),

(A2). For any R > 0, there exists Cg > 0 such that for all z € RN, u € [-R,R],pe RV, ¢t € [0,7),
|H(t,z,u,p) — H(t,y,u,p)| < Cr(lp| + )|z - yl;

(A3). For any R > 0, there exists Cr > 0 such that for all z € RV, u,v € [-R, R], p,q € Bg, t € [0,T),

|H(t,z,u,p) — H(t,2,v,9)| < Cr(lu—v|+|p—ql);

(Ad). supyepo,1)0ern [H (2, 2,0,0)] < Co.

(A0) is assumed throughout the paper and we will not mention it in the following.

1.1 Viscosity solutions for (1)

In order to construct first W1 solutions of (1), we need to consider viscosity solutions (see [12] and
references therein for an introduction to this theory). This is the reason why we need the equivalent form
(3) of the non-local operator g.

Lemma 1. Let 1 < A < 2. For any v € S(RY), (3) holds with u, the positive mesure whose derivative
w.r.t. the Lebesgue mesure is V0|z|’(N+’\) and vy, a positive constant.

Remark 1. This lemma is perhaps classical but we did not find any reference for it. We provide a
non-probabilistic proof of it in Appendix.

We now turn to the definition of viscosity solution of (1). It relies on the notion of subgradients.

Definition 1. Let u : [0,400[xRY — R be bounded and lower semicontinuous (Isc for short). Then
(a,p) € R x RV is a subgradient of u at (t,x) if there exists r > 0 and o > 0 such that for all
y € B(z,r):

u(s,y) > u(t,z) +als —t) +p- (y —2) —o(ly — z*) + o(|s — t]) (6)

where o(-) is such that o(l) - 0 as ! — 0.

In the following, dpu(t,z) denotes the set of all subgradients of u at (¢,z) and it is referred to as the
subdifferential of u at (¢,z). If u is upper semicontinuous (usc for short), we then define supergradients
and superdifferentials by 0Fu(t,z) = —0p(—u)(t,r). Remark that dpu(t, ) is the projection on R x RY
of the parabolic subjet of u (see [12] for the definition of semi-jets). It also can be seen as a “parabolic”
version of the proximal subdifferential introduced by Clarke (see [10] for a definition). We can now define
viscosity solutions of (1).

Definition 2. 1. A Isc function u : [0,+00) x RY — R is a viscosity supersolution of (1) if it is
bounded and if for any (t,z) € (0,+00) x RN and any (a,p) € Opu(t, ),

a+ H(t,z,u(t,z),p) +/

ol2[2dp(z) - / (u(t, 2 + 2) — ult,z) — p- 2)du(z) > 0
B.\{0} B

c
r

where r and o denote constants introduced in Definition 1.



2. A usc function u : [0,+00) x RN — R is a viscosity subsolution of (1) if it is bounded and if for
any (t,z) € (0,+00) x RN and any (a,p) € 0Fu(t, ),

a+ H(t,z,u(t,z),p) _/

ol Pdu(z) - / (u(t,z + 2) — u(t, z) — p- 2)du(z) < 0.
B.\{0}

B:

3. A viscosity solution of (1) is a bounded and continuous function that is both a viscosity subsolution
and a viscosity supersolution of (1).

Remarks 1. 1. Note that both integrals are well defined since min(|z|?,|z|) is p-integrable. Moreover,
one can replace r by any s €]0, r[ (it is a consequence of the definition of subgradients).

2. Note that one can even take r = 0 because of the particular form of the equation. Indeed, the
function u(t,z + 2) — u(t,z) — p- z is p-integrable far away from 0 and is bounded from above by
the p-integrable function o|z|? in the neighbourhood of 0. This implies that it is u-quasi-integrable.
The equation permits to see that it is in fact p-integrable.

3. It is not hard to prove that this definition is equivalent to the one given in [24].

4. The definition still makes sense for sublinear functions but we will not use this notion of unbounded
solution in the following.

Throughout the paper and unless otherwise stated, subsolution (resp. supersolution and solution)
refers to viscosity subsolution (resp. viscosity supersolution and viscosity solution).

1.2 The kernel associated with the non-local operator

The semi-group generated by g is formally given by the convolution with the kernel (defined for ¢ > 0
and z € RY),

K(t,z) = }'(e’tw) (z).

Let us recall the main properties of K (see [14]).

K € C*((0,400) x RY) and K > 0; (7
V(t,z) € (0,400) x RN, K (t,z) =t VAK(1,t Y z); (8)
for all m > 0 and all multi-index «, |a| = m, there exists By, such that
B
N |« —(N+m)/A m i
V(t,.’lf) € (0,+OO) x R a|6zK(t7 ;L')| <t (1 + tf(N+1)/,\|$|N+1)7 (9)
IE )|~y = 1 and VK (8] pr@ny = Kot/ (10)

An easy consequence of the main result of [14] is the fact that K is the kernel of the semi-group generated
by g for bounded continuous (even L*°) data.

Proposition 1 ([14]). Consider ug € Cy(RY). Then K(t,-) x ug(-) is a C*™ (in (t,x)) solution of
Owu + g[u] = 0 submitted to the initial condition u(t,-) = ug(-).

2 Stability, uniqueness and existence of continuous solutions
This section is devoted to stability, uniqueness and existence results. In the stationary case, similar results

were established in [24]. Nevertheless, our stability results are more general and the proof of uniqueness
is simpler. The techniques used here are classical.



For the sake of completeness, we state and prove a general result of discontinuous stability for subso-
lutions of (1). Recall that the upper semi-limit of (uy)p>1, 2 uniformly bounded from above sequence of
usc functions is defined by:

lim sup*un, (¢, x) = lim sup Un(s,y)-
(5,9)—=(t,@),n—+00

This function is usc. If the sequence is constant (u, = u for any n), limsup*u,, (resp. liminf,u,) is the
upper usc (resp. lower lsc) envelope of u and is denoted by u* (resp. u.). See [4, 5, 12] for more details
about semi-limits, semi-continuous envelopes and their use in the viscosity solution theory.

Theorem 1 (Stability). Suppose that H is continuous and (un)n>1 is o sequence of viscosity subsolu-
tions of (1) that is locally uniformly bounded from above. Then limsup® u, is a viscosity subsolution of

(1).

Remark 2. An analogous result for supersolution can easily be stated and proved. Hence one can pass
to the limit in (1) w.r.t. the local uniform convergence.

Proof. Let u denotes limsup® u, and (a,p) € 8Fu(t,x). This means that (a,p,20I) € Ptu(t,z) and
it is well-known (see for instance [12]) that there then exists (t,,z,) — (t,z) and (k,),>1 such that
u(t,z) = lim, ug, (tn,Tn) and (g, pn,0n) — (a,p,0) such that (an,pn,20,1) € Ptug, (tn,z,). In
particular (c,,pn) € 0Fuyg, (tn, ) and since ug, is a subsolution of (1), we get,

an + H(tn, Tn, uk, (tn, Tn), Pn) — / (uk, (Tn + 2) — g, (Tn) — pn - 2)dp(z) <0
RN\ {0}

We therefore must pass to the upper limit in the integral to conclude. This is an easy consequence of
Fatou’s Lemma. O

We next state stability of subsolutions w.r.t. the “sup” operation; this property is used when con-
structing a solution by Perron’s method. The proof is analogous to the proof of Theorem 1 and is classical;
we omit it.

Proposition 2. Consider (uq)aca, a family of viscosity subsolutions of (1) that is locally uniformly
bounded from above. Then u = (sup{uq : @ € A})* is a viscosity subsolution of (1).

We now turn to strong uniqueness results. It permits to compare sub- and supersolutions of (1).

Theorem 2 (Comparison principle). Assume (A1)-(A3). Let T > 0 and ug be a bounded uniformly
continuous fonction. Suppose that u is a bounded subsolution of (1) on [0,T) x RN and v is a bounded
supersolution of (1) on [0,T) x RNV. If u(0,z) < uo(z) and v(0,z) > ug(z) then u < v on [0;T) x RY.

Remark 3. A comparison result for unbounded sub- and supersolution can be proven in the class of
sublinear functions. Since we will not use such an extension, we do not prove it.

Proof. First, we make a classical change of variables so that the Hamiltonian is nondecreasing w.r.t. u. Set
A1 = (YRr,)” + 1 where g, is given by (A1) and Ry = ||ul|eo + ||v||co- The functions U (¢, z) = e~ *tu(t, z)
and V (t,z) = e Mty(t,x) are respectively sub- and supersolution of:

OW + MW + e MUH(t, z, MW, eMIVIV) + g[W] = 0. (11)

It suffices to prove a comparison result for this equation.
Let M = sup[O’T)XRN(U — V). We must prove that M < 0. Suppose that M > 0 and let us exhibit a

contradiction. Consider a function ¢ € C?(RY) such that:

|z| —+o0



and four parameters €, v, a,y > 0. Define

lz —yl?> (s—1t) o
Mo = sup {Utailf -V(s,y) — - —ap(z) — —— .
[0,T)x[0,T) xRN xRN t2) (5) %€ 2w o(x) T —14

There exists (£,3,7,7) € [0,T) x [0,T) x RV x RY where the supremum is attained. We remark that

Mooz swp {Ult2) = V() —apla) - 7} >0
[0,T) xRN T—t

for o and y small enough (we use here that M > 0). In the following a, e < 1.
First case. Suppose that there exists €, — 0, a;, = 0 et v, — 0 such that M, ,,,., is attained at £ =0

or 3 =0. Then we claim that M, ., —v/T = limgy_ 1 M, vy 2> 0 where

€n,Qp,

z —y|? z—ul?
M, o := sup {U(O;flf) - V(0,y) - % — a(p(x)} < sup {uo(x) —uo(y) — &} .
z,yeRN € 2,y€RN %€

Since ug is bounded and uniformly continuous, the right-hand side tends to 0 as € — 0. Hence —v/T > 0
is a contradiction.

Second case. Suppose that for any €, a, v > 0 small enough, the supremum is attained at ¢ > 0 and 5 > 0.
We first get that,

. - v
lim lim lim U(t,7) - V(5,9) > 7 >0, (12)
| N Gt N
PRENI e Ty Te®=0 19)
F=TE < afullo + Jolloe) = 2R (14)
€ > [e’s) o) — 0-
Then,
v t—35 _ » P t—35 L
m+7,p+anp(w) €0 U(t,.’l)‘) and » ,D E@pV(s,y)

where p = 2=¥_ Since U is a subsolution and V' is a supersolution of (11), we get,

Y
T -1

i-3 . Fers = Ay .
+ ==+ NUGED) + e M HET, MU T), 5 +aVe(®) + gUIE 7,5+ Ve(@) < 0

t—3s

+ MV (3,9) +e MPH(3,7,eMV(5,7),P) + 9[V]E,5,p) >0

Substracting the two inequalities, using (12), (A1) and the definition of A1, it comes,
= < e MHEE NV (E,7),5+aVe(@) - e M HE T, eV (5,7),P)
Using the fact that U(Z,Z +2) — V(,7+ 2) —ap(T + 2) KU, Z) — V(I,7) — ap(T), we get,
9lV1G,9,p) — 9lUI(,Z,p + Vo (T)) < —ag[4](T). (16)

Combining (15) and (16), we obtain:

p)

0< 25 <e MHET, MV (E,7),5+aVe(@) - e MHE,T, MV ET),P) - aglél @)



Now let v — 0 and use (A2) with Ry and (A3) with R, = /28 4 C (use (14)):

z -7
€

1= < Cry(1+ |5l + )|~ |+ Cr Ca—agld)(z) = Cr,[7—7l+ Cr, +Cr,Caff 7| +Cr.Ca.
Using (13), we see that the right-hand side tends to 0 as @ — 0 and € — 0 successively; we therefore get
the desired contradiction. O

In order to prove the existence of a solution of (1) in [0, +00) x RY, we must strenghten assumption
(A1l). We suppose that either g is positive (that is H is nondecreasing w.r.t. u) or that it does not
depend on R (that is H is Lipschitz continuous w.r.t. u uniformly in (z,p)). With classical change of
variables, the second case reduces to the first one.

(A1’). H is nondecreasing w.r.t. u.
We use Perron’s method to prove the following result.

Theorem 3 (Existence). Assume (A1°)-(A4). For any uo : RN — R bounded and uniformly continu-
ous, there exists a (unique) viscosity solution of (1) in [0,4+00) X RN such that u(0,x) = uo(x).

Proof. Suppose we already constructed solutions for initial conditions that are C,?. Then if ug is bounded
and uniformly continuous, there exists (u2),>1 that converges uniformly to ug. Let u,, be the associated
solution of (1). One can easily see that th = uq £ e"||luf — ul|l are respectively a super- and a
subsolution of (1) and v} (0,2) > uf(z) > v, (0,z). Using the comparison principle, we then conclude
that ||up — ugllee < €7*||uf) — udl|oo so that the sequence (u,)n>1 satisfies Cauchy criterion and thus it
converges uniformly to a bounded continuous function u. Using the stability of solutions, we conclude
that u is a solution of (1).

Let us construct a solution for a C? initial condition. Define u®(¢,z) = uo(z) + Ct with C such that:
C > Cy + Cr,Ro + 2|| D*uol| 0o / . |22 du(z) + 2R0/ |2|dp(z) > |H(z,uo(z), Vuo)| + |guo]]
B\{0 Be

where Cy is given by (A4), Ry = |luol|w. =~y and Cg, is given by (A3). The functions v and u™ are
respectively a super- and a subsolution of (1). Moreover, both 4™ and u~ satisfy the initial condition in
a strong sense:

(u7)+(0,2) = u™(0,2) = (u")"(0,2) = u"(0,2) = uo(2).

Consider now the set
S ={w:[0,+00) x RN — R, subsolution of (1),w < u*}

and define u = (sup{w : w € §})*. By Proposition 2, u is a subsolution of (1). Using the barriers u~
and uT, we also get that u satisfies the initial condition. Consider now u,. We remark that u,(0,z) <
(u)«(0,2) = ug(x). Thus if we prove that u, is a supersolution of (1), the comparison principle yields
ux > u and we conclude that u is continuous, that it is a solution of (1) and that it satisfies the initial
condition.

It remains to prove that u. is a supersolution of (1). Suppose that it is false and let us construct a
subsolution U € § such that U > u at least at one point. This will contradict the definition of u. Thus,
suppose that there exists (¢,z) € (0,+00) x RY and («a,p) € Opu«(t,z) such that,

o+ H(t,z,u(t,z),p) — /RN\{O}(u*(t,x +2) —ux(t,z) —p-2)du(z) < -0 <0 (17)

and for all 2z € By,
u(t + 7,2+ 2) —us(t,z) —p-z > ar — alz|*> + o(|7]).



Note that in (17), the integral can be +oco. Define on (t —€,t + €) X B,(z):
Q(s,y) = us(t,2) +a(s —t) +p- (y —2) —oly — 2> + 6 = y(ly — 2> + s — t])
where €, 0,y are constants to be fixed later and r < ry. Thus,
u(,y) > tu(5,y) 2 ua(t,z) +a(s =) +p- (y — 2) = oly — 3|* + o(|s — 1))
> Q(s,y) = 6 +7ly — = + (v]s — t| + o(ls — ¢]))

We can choose € small enough such that for all (s,y) € (t —€,t+ €) x B.(x):

’U.(S,y) > Q(say) - 6/2 + '7|y - .CL'|2.

Choose next § = yr?/4 so that for (s,y) € (t — €,t + €) x (Br(z) \ By /2()),

u(s,y) > Q(s,y) —1r° /8 + 1?4 = Q(s,y) +77° /8 > Q(5, ).
Now define a function U by

U= max(u,Q) in (t—e€,t+¢€) x B.(x)
Tl u elsewhere.
Let us prove that U is a subsolution of (1). Consider (s,y) € (0,4+0c) x RN and (B,q) € 8FU(s,y).

First case. Suppose that U(s,y) = u(s,y). Then (3,q) € 8Fu(s,y). Since u is a subsolution of (1), we
get,

B+ B U0~ [ Uyt ~Ulsw) ~q-2)iuC)

<B4 Hpoulow) )= [ s,y +2) = u(s,0) = - du(z) <0

Second case. Suppose that U(s,y) = Q(s,y) > u(s,y). Then (s,y) € (t —€,t + €) X B.(z) and (8,q) €
0FQ(s,y); in particular, 8 = a — ve with |e| < 1, ¢ = p—2(0 +7)(y — ). We claim that if € = r2, then

lim nf / (U(s,y +2) — Uls,) — q- 2)du(z) > / (unlt, 2 + 2) — ua(t,2) — p- 2))du(z). (18)
= RN\ {0} RN\ {0}

To see this, write [in 0y = [\ (o) T [ @nd study each term:

[ Wew+n U -a-due) = [ (GDQzDdu@) =0 +) [ [sldu(z) » 0
B-\{0} B-\{0} B-\{0}

asr — 0.

[ Ww+2) -V =0 2du) > [ (o4 2) - Qov) - 0+ 2)du(2)

B

c
r r

2/ (ux(8,y +2) —us(t,z) —a(s —t) —p- (y —x) — 6 — q - 2)du(z).
B

The integrand of the right-hand side converges to [u«(t,z + 2) — us(t,2) — p - 2z]1g~ q03(2). Hence, it
suffices to exhibit a lower bound independant of r and integrable to conclude by using Fatou’s Lemma.
On By, we choose C(1 + |z|) for C large enough. On B;, \ B;, we have:

ux(8,y+2) —us(t,z) —a(s—t)—p-(y—2)~0—q-2 > —olz+y—a|’~Cr’ = Crlz| > ~C(r’+|2|*) > —C|z|”



for C large enough and we are done.
Suppose first that fRN\{O}(u*(t,a: +2) —us(t,z) — p- 2))du(z) = +o0o. Then for r small enough, we
have:
B+ H(s,y,U(s,9),9) — U(s,y +2) = Ul(s,y) — q- 2)dp(z) < 0.
RN\{0}
If now fRN\{o} (us(t,z + 2) — us(t,x) — p- 2))du(z) < +oo, then,

B+HEBUED0 - [ (WUl+) - Ul) ~q-)iuC)

< —0+v— H(t,z,u.(t,z),p) + H(s,y,U(s,9),q)

#[ e - ute) - p @) - [ Uy ) -~ Ulsy) - g 2)dulz)
RN\{0} RN\{o}
Choosing v = 0/2 and r small enough permits to conclude that U is a subsolution of (1).
By the comparison principle, since U(0,z) = u(0,z), we have U < u™. Thus U € S. Moreover, if
(tn, ) is a sequence such that u.(t,x) = lim, u(t,, x,), we get,
Limsup U(tn, n) > lUm Q(tn,zn) — u«(t,z) = > 0.
n—o0

n—oo

There then exists (s,y) such that U(s,y) > u(s,y) which is a contradiction. The proof is now complete.
O

3 Regularizing effect

In this section, we prove that if the natural assumptions that ensure the existence and the uniqueness of
a continuous (viscosity) solution of (1) are slightly strenghtened, the solution is in fact C? in z and C*!
in t. We also show that further regularity is obtained (Theorem 5) is the Hamiltonian is smooth. We use
techniques and ideas introduced in [14].

In order to state our first regularity result, we need the following assumption.

(A3%). For any R > 0, there exists Cr > 0 such that for all t € [0,T), z € RN, u,v € [-R, R], p,q € Bg,
OuH V,H, V>, H, V,0,H and V2 H are bounded by Cg.

Theorem 4 (C'? regularity). Assume that H satisfies (A1°)-(A2)-(A3’)-(A4) and consider an initial
condition ug € WH°(RN). Then the (unique) viscosity solution of (1) is C? in the space variable and
C* in the time variable in ]0; +oo[ xRV .

Proof. We first remark that the viscosity solution u of (1) remains (globally) Lipschitz continuous at any
time ¢ > 0. This fact is well-known for local equations (see [13, 22, 18, 3]) and the classical proof can be
adapted to our situation; this is the reason why we omit details.

Lemma 2. For anyt € [0,T), |lu(t,-)||w1.@®ny < Mt with Mt that only depends on ||uol|w1.00 m~y, Co

and T.

Sketch of the proof of Lemma 2. The comparison principle gives immediately: ||Jullco < |[@ollooc + CoT
2

where Co denotes the constant in (A4). Next, define: uf(t,x) = sup,cpn{u(t,y) — eKt%} with

K =4C)y.. from (A2) and verify that it is a viscosity subsolution of:

K
Opu + H(t,w,uf, Vu) + glu’](t,2) < T¢.

The non-local term makes no trouble since

u(t,x+2) —u(t,z) —p-z > ult,z. +2) —u(t,z) —p-2



2
where z. denotes a point such that u(t,z) = u(t, z¢) — eKt%. The comparison principle yields:

Ke —t+ sup {u§(z) —uo(z)}.

u(t,2) < ult,w) + Jot+ sup
€

Using the definition of u¢ and the fact that wg is Lipchitz continuous, we get:

ly — |_

u(t,y) < u(t,z) + (Kt/16 + [|Vuoll%,/2)e + ™ e

Optimizing w.r.t. €, we finally obtain:
u(t,y) < u(t,@) + €2 (K/8 + [ Vuol%) " |y - al.
O

We next construct a solution using Duhamel’s integral representation of (1). More precisely, we look
for functions satisfying:

v(t,z) = K(t,-) xvo() /Kt—s ) * H(s,z,v(s,-), Vu(s,-))(z)ds. (19)

Lemma 3. Let vg € W"°(RN). There exists Ty > 0, that depends only on X\, N and ||vg||y1. (), and
v € Cp(J0, Ty [xRN) such that Vv € Cyp(J0, T1[xRY) and (19) holds true.

Remark 4. If Cg in (A2) and (A3) does not depend on R (Cg = C), then T} in Lemma 3 only depends
on A, K1 and C. Hence we can construct classical solutions of (1) in [0, +00) x RY without using viscosity
solutions (time regularity is studied below).

Proof of Lemma 8. We use a contracting fixed point theorem. Consider the space
Ey = {v € Cp(J0, Ty [xRY), Vv € Cyp(]0, Ty [xRY)}

endowed with its natural norm ||v||g, = [|v||c,qo,my[xr™) + [Vl 0,11 [xr ). We define

Y1(v)(t,x) = K(t,-) xuo(-) / K(t—s,-)x H(s,z,v(s,*), Vu(s,-))(z)ds. (20)

Let us first show that ¢; maps E; into E;. Consider v € E; such that ||v]|g, < R;. By Proposition 1,
K(t ) * uo( ) is C! in space and K(t,-) * uo(+) and its gradient are continuous in (¢,z). Let ®(v)(t,z) =

fo )« H(s,z,v(s,-), Vu(s,-))(z)ds. Then defining
’H(S,JI) = H(S,.’L‘,U(S,IIJ),V’U(S,.’II))].]O,TI[(S),
IC(S7$) = K(‘g?m)l]O,Tﬂ(s)a

we have : ®(v) = H x K where the convolution is computed w.r.t. (¢,2). The function K is continuous in
(t,z) in ]0, T1[xRY and, using (A3)-(A4),

|H(s,z) K(t — s,z —y)| < (Co+ Cr, R1)K(t — 5,2 —y)

and the right-hand side is integrable since [, o~ K(t,z)dtde = Ty (see Estimate (10)) . The theorem

of continuity under the integral sign ensures that ®(v) is continuous in ]0,7}[xRY. We also have the
following upper bound:

|1 (v) (¢, )| < [luollos + (Co + Cr, R1)Th

Since K (t,z) is continuously differentiable and:

|H(s,z,v(s,2),Vu(s,z)) VK(t — s,z —y)| < (Co + Cr, R1)|VK(t — 5,2 — y)|

10



and |VK (t — s,z —y)| is integrable with || VK (t — 5, — y)|| 10,4 xrn) = 1o2t*~D/A (see estimate (10)),
we see that wl( ) is continuously differentiable in = and

t
Vi1 (v)(t,z) = K(t)*= Vog(x) —/0 ((VK)(t — s) * H(s,z,v(s,-), Vu(s,-))(z)ds

A -
V1)t 2)] < [Vulloo + (Co+ Cry R)Ka 3= T

We conclude that 1, (v) € E; and
1)l < Ra+ (ot Cn ) (T + Ka 200

if ||'l)0||W1,oo(RN) < Ry. Choose R; = 2Ry and T4 such that

(Co + CRlRl) (Tl + ’Cl T(/\ 1)//\) < Ryp.

-1

This implies that i)y maps Bg,, the closed ball of E; of radius R;, into itself. Moreover this condition
ensures that i is a contraction:

1) = 1 (@)l < Ch (T1+/c1 AT 1’“) = vlle,

Ry
< —|lu—w =
< pollu=vls,

Sl =iz,

By the Banach fixed point theorem, there then exists a unique fixed point v € Bp, .

Let us turn to second order regularity in x.

Lemma 4. The function v constructed in Lemma 3 is continuously twice differentiable in x in]0, To[xRN,
with Ty < Ty that only depends on A\, N and ||vo||w1, wn~y. Moreover tY/AD?v is bounded in )0, Ty[x RV .

Proof. Remark that w = Vv verifies:
w=K(t-)*xwo() / VK(t—s,-)x H(s,-,v(s,"),w(s,-))(x)ds and |[[@]|c,qo,zixr™) < R (21)
with wg = Vug. Consider the space

By = {w € Cy(J0, To[xRN ,RN), /2 Dw € Cy(]0, To[xRY )}

endowed with its natural norm |lw||g, = |lwl|c, qo,ms[xr~ &) + [[tY/*Dw||c, qo,75[xr~). We consider the
map 1 defined by

Pa(w)(t,) = K(t,) * wo / VE(t - 5,) * His, (s, ), w(s, ) (z)ds
with wg = Vug. Choose w such that |w||g, < Rz with Ry > R;. Remark first that:
|H (s, z,v(s,z),w(s,z))| < Co + 2Cr,Ra.
Moreover, z +— H(s,z,v(s,z), w(s,z)) is differentiable on ]0, T5[x RN and:

V(H(s,z,v(s,2),w(s, 7)) = Vo H(s,2,v(s, ), w(s,2)) + OuH (s, z,v(s,2),w(s, z)) Vv (s, z)
+Dw(s,z)VpH(s,z,v(s,z), w(s,x))
|V(H(s,z,v(s,z),w(s,z)))| < Cr,(1+2Ry) + CryRas /*

11



if ||w||g, < Ry (we used Ry > Ry > ||Vv]||oo). Using the theorem of continuity and differentiability under
the integral sign, we conclude that 1, maps E, into Es and:

Dipa(w)(t, ) = wo(-) *e VE(E,-)(2) — /0 VE(t—s,-) xg V(H (s, v(s,"),w(s,)))(z)ds

where xg is defined as follows: if F,G : RN — RN, F xg G(z) = [ F(y) ® G(z — y) dy. Recall that ®
denote the tensor product.
We also have the following estimates:

o (w)(t,2)| < Ro+(00+QCRQRQ)/CI%TQ(H)/A

|t/ D (w) (¢, )]

IN

KiRo + Cg, <(1 + 2R») KiTy + RZ’YA’C1T2()\_1)/)‘)

A-1

with vy = 25 fol s~1/X(1 — 5)~'/*ds. We therefore have:

A -
kea()lls, < (L+K)Ro + (Co +2Cn, Ro)Ka 3 =5 T/

+On, (14 2 2

—1K1T2 + Rz’Yz\lcng(/\_l)//\) .
We now choose R = max(2(1+ K;),1)Ro > R; and T» < T} such that:

A _ 1
(C()+ZCR2R2)IC1 T()\ 1)/)‘4-01332 ((1 + 2R2)mK1T2 + RQ’Y,\K:lTQ()\ 1)/>\> < min((l-l—/C1)R0, 5)

(22)
This condition thus ensures that 12 maps Bpg,, the closed ball of E, of radius Rp, into itself and that it
is a contraction for the norm FE,. Hence, there is a unique fixed point w. Moreover if wy, w2 ly in Dg,,
the closed ball of C,(]0, T[xRY) of radius R > Ry, (22) implies that

1
l[2(w1) = 2 (w2)lle, gomaixryy < Fllwr = wallo, go,zurxmm)-

and 1 is also a contraction in Dg, C Cy(]0, T[xRY). Using (21), we conclude that the fixed point we
just constructed coincide with w. The proof is now complete. O

We next prove that the function v constructed in Lemma 3 is C! in the time variable ¢ and that it
satisfies (1). This lemma is adapted from [14, p. 512].

Lemma 5. Suppose that w € Cy(]0, Ta[xRY) is C? in x such that Vw, D*w € Cy(]0, To[xRN). Then
d(w)(t,x) = fot K(t—s,-)xw(s,-)(z)ds is Ct w.r.t. t €]0,T>[ and 8;®(w)(t,x) = w(t, z) — g[®(w)](t, x).

Proof. Tt is enough to prove the result for ¢ €]do, T2 — do[ for any o €]0,7T>/2[. Fix such a &y, consider

0 €]0,00[ and define ®5(w)(t,z) = 5_6 K(t—s,-) *w(s,-)(z)ds in |60, To — So[xRN. Tt is easy to see
that ®4(w) converges uniformly to ®(w) in |dg, To — 60[X]RN We next prove that ®4(w) is continuously
differentiable in ]6, 7> — do[xRY and we compute its time derivative. To do so, consider ¢ : {(¢,s,z) :
16, Ty — 8[x]0, Ty — 6[xRN : 5 < t— 8} — R defined by é(t,s,z) = K(t —s,-) *w(s,-)(z). It is enough
to prove that ¢ and 0i¢ are bounded and continuous to get that ¢ — f(f -0 o(t, s, z)ds is continuously
differentiable and its time derivative equals

t—6
o(t,t—6,z) + / O op(t, s, x)ds
0

The function ¢ satisfies [|¢|| < [|w||o and its continuity is a consequence of the theorem of continuity

under the integral sign. Using Proposition 1, we can assert that ¢ is differentiable in time and 9;¢(¢, s, z) =

12



—g[o(t, s,-)](x). The space derivatives V@, D?¢ are bounded since Vw, D?>w are bounded. It follows that
g[¢] is bounded. We conclude that ®5(w) is differentiable in time and, using Fubini’s theorem:

0, ®5(w)(t,x) = 0,®5(w)(t, 2) = K(6,-) x w(t = 6,-)(x) — g[®s(w)](t, )-

It is now easy to see that 0;®s(w) converges to the continuous function w(t, z) — g[®(w)](¢,z) as § — 0.
Since ®5(w) converges uniformly to ®(w) on ]d, 7> — do[xRY and remains bounded, it also converges in
the distribution sense. We conclude that 0,®(w) = w(¢t, z) — g[®(w)](¢, ) and the proof is complete. O

Apply Lemma 5 to the continuous and bounded function w = H (¢, z,v(t, x), Vu(t, x)):

O(t,z) = —g[K(t,-)*xvo(-)](x) — H(t,z,v(t,x), Vu(t, z))

t
+g [/0 K(t—s, )« H(s,z,v(s,-), Vu(s,-))
= —H(t,z,v(t,z), Vu(t,z)) — g[v(t, )](z).

Hence v is the viscosity solution of (1) in ]0,72[xRY and its Fréchet derivatives 8;v, Vv, D?v exist.
Consider now the viscosity solution u of (1) in (0, +00) x RY and fix T > 0. Lemma 2 implies that for
any t € [0,T], |lu(t,-)|lwiemny < Mr. For any Ty € [0,T], v(t,z) = u(To +t,) is a viscosity solution
of (1) in [0, +oo[xRY with initial data vo(t,z) = u(Tp,z) € WH(RY). By Lemmata 3, 4 and 5, there
exists Ty > 0 that depends only on A\, N and Mr such that v is C? in z and C* in # in ]0, To[xRY; this
implies that v has the same regularity in |Tp, Ty + T2[xRY . Since Ty and T are arbitrary, the proof is
complete. O

We conclude this section with the following regularity result which asserts the existence of a solution
of (1) that is infinitely differentiable in time and space.

Theorem 5 (C™ regularity). Let H € C*°(RY). The unique viscosity solution of
0w+ H(Vu) +glu] =0
with initial data ug € WH(RYN) is C* in both time and space variables in |0; +oo[xRY .

Remarks 2. 1. If N =1, the result is an immediate consequence of the integral representation of J,u,
(21), and of the main result of [14].

2. An analogous result with an Hamiltonian H depending on ¢,z and u can be stated and proved
under suitable assumptions. The ideas are exactely the same as the ones presented here. We choose
to restrict ourselves to H(Vu) so that technical difficulties do not hide the key points of the proof.

Proof. We first prove that u is C*° with respect to z.

Space regularity. We already proved that the (unique) viscosity solution u of (1) is C? in x and C! in ¢
and that t'/*D?y is bounded in ]0, To[x RN . Then construct an “integral” solution on |T/2,3T5/2[ with
Lemmata 3 and 4. It coincides with u in |T5/2,3T2/2[xRY and Vu, D?u are bounded in ]T%, 3T2/2[ by
a constant C' only depending on A, N and [|ug ||y 1. rny. Iterating this process, we conclude that D?u is
bounded in Jtg, +oo[xRY by a constant only depending on A, N, [luo |lyw1.00 vy and to.

We now prove by induction that u is C* in the space variable in (0,+00) x RY and that D*u is
bounded on Jty, +oo[xRY by a constant only depending on A, N, [luollw1, e~y and to. We proved this
assertion at rank k£ = 2. Suppose it is true at any rank i for 2 < 4 < k + 1 and let us prove it at rank
k + 2. Let us fix ty > 0. Then W (t,x) = Vu(ty + t, ) satisfies for any ¢ > 0:

t
Wt z) = K(t,-) * Wo(z) —/0 VK(t—s,-) « HW(s,))(x) ds.

where Wo(-) = W(0,-)(= Vu(ty,-)). By assumption, we know that W is C* in space and its k first
derivatives are bounded in (0, +00) x RY.
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Remark that if v is sufficiently regular and j € {1,...,k+1}:

DI(VK(t —s)* H(v(s)) = VK (t — 5) xg (Djv ® VH(@)) (s)
+VK(t - s) *g Gj(v, Dv,...,DI"1v)(s)

where G is C*° and ® denotes the contraction product of tensors. Consider the space
Eip1 = {v € Cy(10, Tpa [¥XRY), Vo, ..., D*v € Cy (10, Tpya [xRY), /2 D*H0 € C, (10, Trpa [xRY)}

endowed with its natural norm [|v||g,,, = ||v|lo + [[v]|x + [[t'/AD*+'v||o where

Ivllo = llvllcy 10,7541 [xRNY 5 and |k = llvllo + Zl [1D%v]lo-

We consider 4, defined in the proof of Lemma 4: _
P2 (W)(t,2) = K(t,-) « Wo(-)(z) — /Ot VK(t—s,) « HW(s,"))(z)ds
Do (W)(t,x) = K(t,-) * D'Wo(-) / VK(t—s,-) xg (D'W(s,") ® VH(W (s,"))) (z) ds
/ VK(t—s,-) xg Gi(W(s,-),DW(s,-),..., D71 W (s, ))(x) ds
DMLy (W) (t, z) = DA Wy % VK (¢ / VE(t - 5,7) % (D*1W(s,) @ VE(W(s,))) (z) ds
—/0 VK(t—5,") 0 Grsr (W(s,-), DW(s,), .. D*W (s, ))() ds.

where i € {L,..., k}. Now estimate each term:

AKX
2 (W)(t,2)] < W llo + =7 T (Co + Chwio W o)

i AK - i
D' (W) (t,2)| < D' lo + 5 11T,§iﬁ’“<cnwuo||n Wllo + Dyw 1 I 1l)

A A
1Tk+1D||W||k||W||k + KT O I8/ 2D o

— Ay
| A DRy (W) (8, 7)| < K[| D*TW o + Y —

where D)y, only depends on ||W||;. If W is such that [|[W||g, ., < Rgy1, then:

A
W2 (Mg < A+ KDIT e+ =5 T3 (Co + Cryyy Ria)

AKy
+mTk+1DR'“+1Rk+1 + ’Cl’y,\Tlgj‘_l /A CRriyy Rit1-

If now one chooses Ryy1 = 2(1 + K1)||W||x and Ty41 such that:

MC MC
P - Tlgf\u 1)//\(00 + CRyp Bia1) + 3 _llTk+1DRk+1Rk+1

T A Criy Rt < (14 K0)[[W ][

we ensure that 1, maps Bpg, ., into itself (in the space Ejy;). There then exists a fixed point Wy, €
F,11. Moreover one can check that it is a contraction map in the subspace Fj, C Ej41 defined by:

Fy, = {v € Cy(]0, Te41[xRY), Vo, ..., D*v € Cy(]0, Thy1 [xRV )}
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endowed with its natural norm ||v||x; since [|Wii1llm < [[Witillges: < Rigr and [[Wl|p, < Rgqr, we
conclude that W, = W. Finally, since Ty, only depends on A\, N, #; and lluol| w10 Ny, by arguing as
at the beginning of this proof, we conclude that u is C**2 on Jty, +oo[xRY and that D*+2y is bounded
in ]2to, +0o[xRY by a constant that only depends on X, N, to and [[uolly 1.« ry. Since to is arbitrary,
this achieves the proof of space regularity. We now turn to time regularity.

Time regularity. We first prove that Vu is C* in time. In order to do so, we represent Vu in the following

way:
Vu(t,z) = K(t,-) * Vuo()(z) — /t K(t—s,-) * D*u(s, ) VH(Vu(s,"))(x) ds
0

and we apply Lemma 5 to prove that the second term of the right-hand side is C! in ¢ (we already know
that the first one is C' in time). Next, since dyu(t,z) = —g[u](t,z) — H(Vu(t,z)), we see that dyu is
bounded in Jtg, +0o[xRY; the theorem of differentiability under the integral sign ensures that d;u has
second order spacial derivatives that they are bounded in Jtg, +0o[xRY . Hence, ;u is differentiable w.r.t.
t and

Oiu(t,x) = —g[Bwu)(t,x) — VH(Vu(t,z)) - 8;(Vu)(t, z).

This process can be iterated to conclude. O

4 An error estimate

In this section, we compare the solution of the Hamilton-Jacobi equation with a vanishing Lévy operator
(4) with the solution of the pure Hamilton-Jacobi equation (5) (we impose the same initial condition (2)
to both equations).

Theorem 6. Assume (A0)-(A4) and consider ug € W1 (RN ). There then exists a constant C > 0 only
depending on H and ug and T such that, if u¢ and u respectively denote the solutions of (4) and (5) such
that u(0,-) = u(0,-) = ug(-), then for all t € [0,T]:

lus(t, ) — ult, )| Loy < Ce/ V2

Remarks 3. 1. Using the fact that u¢ is C? in = and C" in ¢ and the bound on #'/*D?u¢, we get an
error estimate of the form Ce'/*¢'~1/A_ which is less precise than the one of Theorem 6.

2. About the optimality of the estimate, the power in € cannot be improved: choosing H = 0, ug(z) =
min(|z|,1) and 2 = 0, we get u¢(t,0) — u(t,0) = Ce'/A(t}/* 4+ 0,(1)). We do not know if one can do
better about the power in ¢.

Proof. Let us define:

—l? )
2=yl By 7}_

2 2

M = sup {u(t,x) —u(t,y) — T3

te[0,T),z,yeRN
Since v and u¢ are bounded, this supremum is attained. We now prove that if one chooses 7, v and
properly, the supremum cannot be achieved at ¢t = 0.
Consider:

Mu = sup {U(t, ZC) - ue(s7y) -
t,s€[0,T),z,yeERN

lz—yl> (s—1)° B, 7y
2a 2% glol —nt— 57—

It is classical to prove that M, tends to M as v — 0. Let (t,,$,,%,,y,) denote a point where the
supremum is attained. We have:

¥ t, — s
and (n + T_0) + = 1/ L +ﬁw,,> € dfu(t,,z,)

tu — Sy €
( 7%/) 8Pu (Swyu)

v

-'L'u_yu
(6]

qv =
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Since u€ is regular, its subgradient is the set (O;u€, Vu,); using Remark 1.2, we can take r = 0 in the
viscosity formulation of (1). Since w is a viscosity solution of (5) and u€ is viscosity (classical) solution
of (4), we get:

¥ +t,,—s,,

Tt Tt

+ H(tuaxua u(t,,, -771/)7 Qv + ,BIL',,) <0

tu_su

+ H (80, Y0, u(80,90),qv) — €/ [u (80, Y0 + 2) —u (80, y0) — qu - 2]du(2) > 0.
RN\{o}
Substracting these two inequalities yields:

i 5 + H(ty, v, u(ty, T0), @ + Bxy) — H(su, Yo, u (80, Y0), )

T )

+e/ [u¢(sy, Yy + 2) — u(Su,yp) — qu - 2]du(z) < 0.
RM\{0}

Now let v — 0. We can ensure that (¢,,s,,%.,,v,) = (£,£,Z,y) such that M is achieved at (£,T,7). We
can pass to the limit in the integral thanks to Fatou’s lemma. We obtain:

v
T -2

e / (5 + 2) — u () — - 2Jd(2) < 0.
RN\{0}

77+ +H(¥7§7U(f7f)7q+ﬂj)_H(z7y7u€(fay)7Q)

Notice that u(t,Z) — u(5,9) — 75 > —7 which implies that u(Z,Z) > u(5,7). Since u is Lipschitz
continuous, we now that [g] < ||[Vu|lee < C and |T —y| < Ca. We easily get |z|> < C and thus
BT < C+/B. Using (A1%),(A2) and (A3) we therefore get for a < 1:

T _Ca-C € u (t, 7+ 2) —u(t,y) — q- zldu(z) <O0. 23
1+ VBre[ WG+~ )~ dute) < (23)

1/A

We now make a change of variables r = e~'/*z in the remaining integral:

6/ (w7 + 2) — u(£,7) — 7 - 2]du(2)
RM\{0}
= o€ / [us (7 + €/7r) — us (£,7) — /g - r]|e!/ | "N 2N Ay

=/ [ue(f,y+el/)‘r)—ue(f,y)—el/)‘ﬁ-r]d,u(r):/ O Ty AV
RN\{0} B\{0} Be

where B denotes the unit ball. Using the fact that u®(£,5 + z) > u(,7) + (7, 2) — 5=|2|*, we get:

[ | <19ule [ rautr) < o
Be Be

1. 2/
[oterz—geet [ pdue) > -5
B\{0} 20 B\{0} 20

(the fact that u® is Lipschitz continuous and its Lipschitz constant is bounded independently of € can be
proven as we did when ¢ = 1). Rewriting (23) yields,

2/
Ce”

N+ —1— — Ca—C\G—Ce/* - <

(T -1)?
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Now choosing = C(a + €'/* + ¢2/*/a) and v = CT?\/B yields
fact that £ > 0.
We conclude that

, ﬁ — 7z < 0 which contradicts the

z—yl* B CT*VB |z —y|? [[Vuo|*
t,x) —u(t,y) — - Za? —nt - < - i A .l
u(t, z) — u(t,y) %% g l2l” —nt — === < zztg)w{uo(x) uo(y) PR e
and letting 8 — 0,
—ul? 2
u(t, ) < uf(t,y) + % + Cla+ e/ + /M a)t + am.
Choosing z = y and a = €'/2/t, we finally get,
u(t,x) < u(t,x) + Ce/ .
We can argue similarly to get the other inequality. The proof is now complete. O

A Appendix: proof of Lemma 1

To prove Lemma 1, we use Lemma 5.1 from [15, p. 17].
Lemma 6 ([15]). There exists po € R such that

glul(@) = —pol - |TFIV*E 5 A

where x denotes the convolution.

It is not proven that py is positive. To see this, let us fix u € S(RY) and write p()) to enhance the fact
that it is a function of A. Since it never vanishes and it is continuous w.r.t. A (use the theorem of continuity
under the integral sign), it suffices to prove that limy_,» po(A) > 0 to conclude. We know that gy[u] —
—L_Au as A - 2 and g[u] = po(A\)DA)(DN) 7 - |[TNF272) « Au where D(X) = ||| - [TV 1.
Since the limit of D(A)71|-|7N+2-* as A — 2, in the distribution sense, is the Dirac mass at the origin,
we conclude that pg is positive.

Let a denote —(N + A) + 2. We first remark that if z is fixed and if one defines a(y) = u(y) — u(z) —
Vu(z) -y, then Ai(y) = Au(y). Combining this fact with Lemma 6 yields:

1
—g[u](z) = lim z|*Ad(x + z) = lim A(lz|*)a(z + 2
o [u](z) = lim esmsue' |"Ad(z +2) = lim <lul< e (I2[*)a(z + 2)

i . 6|z|°‘>
+/ (za—m+z —a(z + 2z .
z|=e OF |2|=1/e | 3"( )~ ) on

Easy computation gives A|z|* = a(N + a — 2)[z|* 2 = (N + X — 2)Az|~ O+, Let us set vy =
o(N + A — 2)X > 0. Thus, it remains to prove that the second term of the right-hand side goes to 0 as
€ — 0. We use the fact that 4 is sublinear and g—z is bounded.

If |2 = e |2]*|22(z + 2)| < Ce®e and |i(z + 2) 22| < Ce?e1. Moreover, |{z : |z| = €}| = CeN 1,

We conclude that
‘/M_e <|z|"‘g—Z(x +2) e+ 2 )

<CeNte =0 50

as e — 0.
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If 2] = 1/e: |2|%|2E(z + 2)| < C(1/€)*CeN A2 and |i(z + 2) 22| < Cem> = CeN A2, Moreover,
[{z:|2| = 1/e}| = Ce=N*1. We conclude that

‘/|Z|_€ (|z|ag_Z(a: + 2) —a(z + z)%) ‘ <C 1l 50

as € — 0. The proof is now complete.
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