A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications

Cyril Imbert, Julien Vovelle

To cite this version:

HAL Id: hal-00176541
https://hal.science/hal-00176541
Submitted on 3 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A KINETIC FORMULATION FOR MULTIDIMENSIONAL SCALAR CONSERVATION LAWS WITH BOUNDARY CONDITIONS AND APPLICATIONS

C. IMBERT* AND J. VOVELLE†

Abstract. We state a kinetic formulation of weak entropy solutions of a general multidimensional scalar conservation law with initial and boundary conditions. We first associate with any weak entropy solution a entropy defect measure: the analysis of this measure at the boundary of the domain relies on the study of weak entropy sub and supersolutions and implies the introduction of the notion of sided boundary defect measures. As a first application, we prove that any weak entropy subsolution of the initial-boundary value problem is bounded above by any weak entropy supersolution (Comparison Theorem). We next study a BGK-like kinetic model that approximates the scalar conservation law. We prove that such a model converges by adapting the proof of the Comparison Theorem.

Key words. Conservation law, initial-boundary value problem, boundary defect measures, kinetic traces, weak entropy sub and supersolutions, Comparison Theorem, generalized kinetic solutions, BGK-like kinetic model.

AMS subject classifications. 35L65, 35B50, 35D99, 35P25, 35P30, 35A35

1. Introduction. Let Ω be a strong Lipschitz open subset of \(\mathbb{R}^d \). Let \(\partial \Omega \) denote its boundary, \(n(\mathbf{x}) \) the outward unit normal to \(\Omega \) at a point \(\mathbf{x} \in \Omega \), \(Q = (0, +\infty) \times \Omega \) and \(\Sigma = (0, +\infty) \times \partial \Omega \). We consider the following multidimensional scalar conservation law:

\[
\partial_t u + \text{div}_x A(u) = 0 \text{ in } Q,
\]

with the initial condition:

\[
u(0, x) = u_0(x), \forall x \in \Omega,
\]

and the boundary condition:

\[
u(s, y) = u_0(s, y), \forall (s, y) \in \Sigma.
\]

The first step in the understanding of (1.1c) is the work of Bardos, Le Roux and Nédelec [1]: they show that if the initial datum \(u_0 \) is BV and the boundary datum is \(C^2 \)-regular, there exists a unique (weak entropy) solution of (1.1). In particular, they show that an inequality must hold at the boundary. This inequality is known as the BLN condition (see (3.19)). Note that the BLN condition does make sense only if the solution \(u \) admits a trace on \(\partial \Omega \). In the case of the Cauchy problem with merely essentially bounded (\(L^\infty \)) data, some notions of generalized solution have been defined. The measure-valued entropy solutions were introduced by DiPerna [9], the entropy process solutions by Eymard, Gallouët and Herbin [11]. These notions of very weak solution are well adapted to the study of the convergence of numerical schemes and error estimates are also available. In the case of the Cauchy-Dirichlet problem with \(L^\infty \) data, Otto [25] proposed a notion of weak entropy solution \(u \in L^\infty(Q) \), relying on the notion of boundary entropy-flux pairs. An equivalent definition can be given.

*LABORATOIRE ACSIOM, UNIVERSITÉ MONTPELLIER-II, MONTPELLIER, FRANCE
†LABORATOIRE D’ANALYSE, DE TOPOLOGIE ET DE PROBABILITÉS, CMI, UNIVERSITÉ DE PROVENCE, MARSEILLE, FRANCE
by using “Kružkov semi-entropies” (see [8, 30, 34]). An accurate notion of entropy process solution can be given in order to prove the convergence of certain numerical methods [34] but it does not seem possible to get an error estimate with respect to the approximation by vanishing viscosity for example. In order to fill this gap, we follow the ideas developed by Lions, Perthame and Tadmor [18]. Their heuristic idea, which is, in part, a continuation of the works of Brenier [7] and Di Perna [9], is to take into account the decrease of the entropy by introducing an “entropy defect” measure. More precisely, a kinetic function f is associated with the macroscopic function u by setting:

$$ f(t, x, \xi) = \begin{cases}
1 & \text{if } 0 < \xi < u(t, x), \\
-1 & \text{if } u(t, x) < \xi < 0, \\
0 & \text{otherwise.}
\end{cases} \quad (1.2) $$

Such a kinetic function is a so-called equilibrium function. The kinetic formulation of Lions, Perthame and Tadmor states that u is a weak entropy solution of the conservation law if and only if there exists a bounded nonnegative measure m such that:

$$ (\partial_t + a \nabla_x) f = \partial_x m \text{ in } D'((0, T) \times \mathbb{R}^d \times \mathbb{R}). \quad (1.3) $$

Next, Perthame [27] showed that these techniques supply a good technical framework to easily prove, for instance, the L^1-contraction property and the error estimate w.r.t. the parabolic approximation, without relying on the dedoubling variable technique.

We start from [27] and we develop analogous techniques for a conservation law with boundary conditions. The main difficulty is to study how the weak entropy solution u and the defect measure m behave at the boundary of the domain. We handle this difficulty by considering the space kinetic trace f^* of the kinetic function f [32, 33]. As far as the defect measure is concerned, two nonnegative measures m^b_\pm supported by $\Sigma \times \mathbb{R}_\xi$ must therefore be considered. They are characterized by the formula:

$$ (-a \cdot n) f^* = M f^b + (-a \cdot n) \text{sgn}_\pm + \partial_x m^b_\pm \quad (1.4) $$

where the constant M is a Lipschitz constant of the flux A on a compact subset of \mathbb{R} in which the data u_0 and u^b, which are supposed to be measurable essentially bounded functions, take a.e. their values (see Section 2). Relation (1.4) can be understood as a kinetic analogue of the BLN condition\(^1\). Why do we need two nonnegative measures to describe the behaviour of the entropy defect measure at the boundary? Because the notion of weak entropy solution is “sided”. Let us be more specific. We define weak entropy sub and supersolutions for the initial-boundary value problem and we give a kinetic formulation of them. Hence two different defect measures m_\pm are a priori associated with each weak entropy solution. But eventually, we prove they coincide in $Q \times \mathbb{R}_\xi$ and can be different at the boundary. Notion of weak entropy sub and supersolutions for the Cauchy problem were previously considered [2, 15, 3, 4] and comparison principle were established: any weak entropy subsolution of the Cauchy problem is bounded above by any weak entropy supersolution. Such results have also been proved by Terracina [31] for the initial-boundary value problem in the context of BV solutions. We state and prove an analogous result for the initial-boundary

\(^1\) It is a generalization of it in the sense that no strong traces are required; thus merely L^∞ data can be treated
value problem in the context of L^∞ solutions. The L^1-contraction property and the maximum principle follow from it.

We then use our results to study an approximation of the conservation law, namely a kinetic model “à la Bhatnagar-Gross-Krook” (BGK-like kinetic model for short). It was first introduced by Perthame and Tadmor [29] for the Cauchy problem and adapted by Nouri, Omrane and Vila [22, 23] to the initial-boundary value problem. The authors Nouri, Omrane and Vila prove the convergence of the BGK-like kinetic model whenever the data are at equilibrium or not. Here, we restrict our study to the case where the data are at equilibrium and show how, in this framework, the concept of generalized kinetic solution can be used to prove the convergence of the BGK-like kinetic model. Such very weak solutions were introduced by Perthame [28] for the Cauchy problem. They can be viewed as the analogue of the measure-valued solutions of DiPerna [9] or the entropy process solutions of Eymard, Gallouët and Herbin [11]. The definition of a generalized kinetic solution is based on the kinetic formulation: instead of considering an equilibrium function, a solution can be a general kinetic function (See Sections 2 and 5 for precise definitions). The proof of the Comparison Theorem is slightly modified in order to prove that there is at most one generalized kinetic solution of (1.1) and that it is in fact a weak entropy solution. Hence, it permits us to easily pass to the limit in the kinetic model.

To conclude this introduction, let us mention the recent work of Ben Moussa and Szeptycki [6] in which is used the concept of measure-valued solution to deal with “very weak solutions” and let us state some other occurrence of “kinetic methods” in the study of first order problems with boundary conditions [5, 20], see also [21, 13, 14].

The paper is organized as follows. Section 2 is devoted to notations and assumptions. In Section 3, kinetic formulations of weak entropy solutions (Theorem 3.1) and entropy semisolutions (Proposition 3.3) are stated and proved. In particular, kinetic traces and boundary defect measures are constructed and characterized (Proposition 3.4). In Section 4, the Comparison Theorem (Theorem 4.1) is proved. Section 5 is devoted to the study of the BGK-like kinetic model.

To finish with, let us mention that in a forthcoming paper [10], we study another approximation of the initial-boundary value problem: the parabolic regularization of the conservation law by an artificial viscosity. We get an error estimate between the entropy solution of the conservation law and the regular solution of the parabolic equation. Even if we adapt once again the proof of the Comparison Theorem, additional difficulties arise and the proof is rather long and technical.

2. Preliminaries. We give here some notations, assumptions and basic properties that are used throughout the paper.

The space \mathbb{R}^d is endowed with its usual Euclidian structure. The scalar product is denoted by $x \cdot y$ and the Euclidian norm by $|x|$. For the sake of clarity \mathbb{R}_d and \mathbb{R}_ξ denote the lines of reals respectively related to the t and ξ variables.

DATA. We assume u_0 and u_b to be essentially bounded measurable functions. Let $K > 0$ be a positive constant such that

$$-K \leq u_0(x) \leq K \text{ for a.e. } x \in \Omega \text{ and } -K \leq u_b(t,x) \leq K \text{ for a.e. } (t,x) \in \Sigma.$$

The flux function A is assumed to be locally Lipschitz continuous. Let M be the Lipschitz constant of the function A restricted to $[-K, K]$ and let $a(\xi) = A'(\xi)$.

Remark 1. We could as well consider the equation $\partial_t u + \text{div}_x (A(t,x,u)) = 0$. All the results presented in this paper remain valid under the assumption that the function
A is locally Lipschitz continuous with respect to \((t, x) \in [0, T] \times \overline{\Omega}\) uniformly w.r.t. the \(u\) variable, while for every \(u \in \mathbb{R}\), \((t, x) \mapsto A(t, x, u)\) is in \(C^1([0, T] \times \overline{\Omega})\).

Kružkov semi-entropies. Define

\[
\text{sgn}_+(\xi) = \begin{cases}
1 & \text{if } \xi > 0 \\
0 & \text{if } \xi \leq 0
\end{cases} \quad \text{and} \quad \text{sgn}_-(\xi) = \begin{cases}
-1 & \text{if } \xi < 0 \\
0 & \text{if } \xi \geq 0
\end{cases}
\]

and \(\xi^\pm = \text{sgn}_\pm(\xi)\xi\). Let \(a \cap b\) denote \(\max\{a, b\}\) and let \(a \cup b\) denote \(\min\{a, b\}\). The Kružkov semi-entropies are the convex functions \(u \mapsto (u - \kappa)^\pm\) for \(\kappa \in \mathbb{R}\). The corresponding entropy fluxes are given by the formula

\[
F^\pm(u, \kappa) = \text{sgn}_\pm(u - \kappa)(A(u) - A(\kappa)).
\]

Kinetic and equilibrium functions. We previously recalled what an equilibrium function is (see (1.2)). More generally, a kinetic function is a function \(f(t, x, \xi)\) such that:

\[
0 \leq f(t, x, \xi)\text{sgn}(\xi) \leq 1, \quad \partial_\xi f(t, x, \xi) = \delta(\xi) - \nu_{t,x}(\xi)
\]

where \(\nu\) is a Young measure. For an equilibrium function, \(\nu_{t,x}(\xi) = \delta(\xi - u(t, x))\). In the following, we also consider two functions associated with any kinetic one:

\[
\begin{align*}
f_+(t, x, \xi) &= f(t, x, \xi) - \text{sgn}_-(\xi), \\
f_-(t, x, \xi) &= f(t, x, \xi) - \text{sgn}_+(\xi).
\end{align*}
\]

Notice that \(\partial_\xi f_\pm = -\nu_{t,x}(\xi)\) and that these functions have no longer a bounded support w.r.t. the kinetic variable \(\xi\). Nevertheless, and it is essential, there exists \(\kappa \in \mathbb{R}\) such that \(f_+(t, x, \xi) = 0\) if \(\xi \geq \kappa\) and there exists \(\kappa' \in \mathbb{R}\) such that \(f_-(t, x, \xi) = 0\) if \(\xi \leq \kappa'\). We simply say that \(f_+\) vanishes for \(\xi \gg 1\) and \(f_-\) vanishes for \(\xi \ll -1\). For equilibrium functions, if \((t, x)\) is fixed, then for a.e. \(\xi \in \mathbb{R}\):

\[
\begin{align*}
f_+(t, x, \xi) &= \text{sgn}_+(u(t, x) - \xi), \\
f_-(t, x, \xi) &= \text{sgn}_-(u(t, x) - \xi).
\end{align*}
\]

Localization. The set \(\Omega\) is assumed to be a strong Lipschitz open subset of \(\mathbb{R}^d\), which means that, locally, \(\Omega\) can be represented as the epigraph of a Lipschitz continuous function. More precisely, there exists a locally finite open cover \(\{B_\lambda\}_{i \in \mathcal{I}}\) of \(\overline{\Omega}\) and a partition of unity \(\{\lambda_i\}_{i \in \mathcal{I}}\) of \(\overline{\Omega}\) subordinate to \(\{B_\lambda\}_{i \in \mathcal{I}}\) such that for any \(\lambda\):

\[
\begin{align*}
\Omega_\lambda := \Omega \cap B_\lambda &= \{x \in B_\lambda : (A_\lambda x)_t > h_\lambda(A_\lambda x)\} \\
\partial \Omega_\lambda := \partial \Omega \cap B_\lambda &= \{x \in B_\lambda : (A_\lambda x)_t = h_\lambda(A_\lambda x)\}
\end{align*}
\]

where \(x \mapsto A_\lambda x\) is a change of coordinates of \(\mathbb{R}^d\) (i.e. the composition of a translation and a rotation of \(\mathbb{R}^d\) and where \(\overline{\mathbb{R}}\) stands for \((y_1, \ldots, y_{d-1})\) if \(y \in \mathbb{R}^d\). In the following, we also use the notations \(Q_\lambda = (0, +\infty) \times \Omega_\lambda\) and \(\Sigma_\lambda = (0, +\infty) \times \partial \Omega_\lambda\). When proving the Comparison Theorem and the error estimate, the problem is localized with the help of the functions \(\lambda_i\). For the sake of clarity, we drop the index \(i\) and we suppose that the change of coordinates is trivial: \(A = \text{Id}\). The open set \(\Pi_\lambda = \{x \in \overline{\mathbb{R}} ; x \in B_\lambda \subset \mathbb{R}^{d-1}\}\) is used to parametrize \(\partial \Omega_\lambda\). As a matter of fact, we even identify \(\partial \Omega_\lambda\) with the graph
of h restricted to $\Pi_* \Lambda$ and $\Omega_* \Lambda$ with its epigraph. The outward unit normal to $\Omega_* \Lambda$ at any point $(x, h(x))$ of $\partial \Omega_* \Lambda$ is given by

$$n(x) := n((x, h(x))) = \frac{1}{\sqrt{1 + |\nabla h(x)|^2}} (\nabla h(x), -1).$$

Eventually, in order to make clearer integrations on $\partial \Omega_* \Lambda$, we use the notation

$$d\Omega(x) = \sqrt{1 + |\nabla h(x)|^2} dx.$$

Regularization. Functions that are defined locally, i.e. that are defined on $\Omega_* \Lambda$ and $\partial \Omega_* \Lambda$, are regularized in the following way. Fix $\delta \in]0, 1[$ and consider a smooth function $\theta : \mathbb{R} \to \mathbb{R}_+$ whose support is a subset of $[\delta, 1]$ and such that $\int \theta = 1$. Then define a (right-decentred) regularizing kernel $\theta_{\varepsilon} := \frac{1}{\varepsilon} \theta(x/\varepsilon)$ and set $\gamma_{\alpha, \varepsilon}(t, x, z) = \theta_{\alpha}(t) \times \Pi_{i=1}^{d-1} \theta_{\varepsilon}(x_i) \times \theta_{\varepsilon}(x_d)$. The space regularizing kernel $\Pi_{i=1}^{d-1} \theta_{\varepsilon}(x_i) \times \theta_{\varepsilon}(x_d)$ is denoted by γ_{ε}. Consider now a function H defined on $Q_* \Lambda$ and a function \overline{H} defined on $\Sigma_* \Lambda$. Their (local) regularized functions are (both) defined on $Q_* \Lambda$ by the following formulae:

$$\begin{aligned}
H^{\alpha, \varepsilon}(t, x) := (H \times 1_{Q_* \Lambda}) \ast \gamma_{\alpha, \varepsilon} & = \int_Q H(r, z) \gamma_{\alpha, \varepsilon}(t - r, x - z) \, dr \, dz \\
\overline{H}^{\alpha, \varepsilon}(t, x) := (\overline{H} \times 1_{\Sigma_* \Lambda}) \ast \gamma_{\alpha, \varepsilon} & = \int_{\Sigma_*} \overline{H}(r, z) \gamma_{\alpha, \varepsilon}(t - r, x - z) \, d\sigma(z).
\end{aligned}$$

These two functions equal zero out of $Q_* \Lambda$ as soon as $\delta \varepsilon_d \geq \sqrt{d} \Lip h$, which is always assumed. Of course, if a function ψ is defined both on $Q_* \Lambda$ and $\Sigma_* \Lambda$, then the two means of regularization described above do not lead to the same functions $\psi^{\alpha, \varepsilon}$; nevertheless, there will be no risk of confusion in the forthcoming proofs. Let us also point out the fact that this regularization is local and in fact depends on the map A_ε, even if it is hidden in computations in order to make them more readable.

3. A kinetic formulation of the Cauchy-Dirichlet problem. The main result of the paper is the following kinetic formulation of generalized entropy solutions. For any smooth test function $\phi \in C^\infty_c(\mathbb{R}^{d+2})$, $\phi^{(t=0)}$ and $\overline{\phi}$ denote respectively the restriction of ϕ to $\{t\} \times \Omega \times \mathbb{R}_+$ and to $\Sigma \times \mathbb{R}_+$.

Theorem 3.1. Consider a bounded function $u \in L^\infty(Q)$. Let f^0 and f^b be the equilibrium functions associated with u_0 and u_b. Then u is a weak entropy solution of (1.1) if and only if there exists a bounded nonnegative measure $m \in M^+(Q \times \mathbb{R}_+)$ and two nonnegative measurable functions m_+^b, $m_-^b \in L^\infty_c(\Sigma \times \mathbb{R}_+)$ such that the function m_+^b vanishes for $\xi \gg 1$ (resp. the function m_-^b vanishes for $\xi \ll -1$) and such that the equilibrium function f associated with u satisfies for any $\phi \in C^\infty_c(\mathbb{R}^{d+2})$:

$$\begin{aligned}
\int_{Q \times \mathbb{R}_+} f(\partial_t + a \cdot \nabla_x) \phi & + \int_{Q \times \mathbb{R}_+} f^0 \phi^{(t=0)} + \int_{\Sigma \times \mathbb{R}_+} (Mf_+^b - (-a \cdot n) \text{sgn} \phi) \overline{\phi} \\
= & \int_{Q \times \mathbb{R}_+} \partial_t \phi \, dm + \int_{\Sigma \times \mathbb{R}_+} \partial_t \phi \, dm_\pm^b \quad (3.1)
\end{aligned}$$

where M is the Lipschitz constant of the flux function A on $Q \times [-K, K]$.

In order to prove and understand this formulation, we define weak entropy sub and supersolutions of the initial-boundary value problem (1.1) and we exhibit a kinetic formulation for these semisolutions.
3.1. Weak entropy sub and supersolutions. Let us define weak entropy sub
and supersolutions for the initial-boundary value problem (1.1).

Definition 3.2. Consider a bounded function \(u \in L^\infty(Q) \).

1. The function \(u \) is a weak entropy subsolution (resp. weak entropy supersolution) of (1.1) if for any \(\kappa \in \mathbb{R} \) and any \(\phi \in C^\infty_c(\mathbb{R}_+ \times \mathbb{R}^d) \), \(\phi \geq 0 \),

\[
\int_Q \left[(u(t,x) - \kappa) \pm \partial_t \phi(t,x) + F^\pm(u(t,x),\kappa) \nabla_x \phi(t,x) \right] dt \, dx \\
+ \int_\Omega (u_0(x) - \kappa) \pm \phi(0,x) dx + M \int_\Sigma (u_b(s,y) - \kappa) \pm \phi(s,y) ds \, d\sigma(y) \geq 0.
\]

(3.2)

2. The function \(u \) is an weak entropy solution of (1.1) if it is both a weak entropy
subsolution and a supersolution.

Proposition 3.3. Let \(f^0 \) and \(f^b \) be the equilibrium functions associated with \(u_0 \) and \(u_b \). Consider a bounded function \(u \in L^\infty(Q) \). Then \(u \) is a weak entropy subsolution (resp. weak entropy supersolution) of (1.1) if and only if there exists \(m^\pm \in C(\mathbb{R}_+ ; w - M^+(\overline{Q})) \) such that \(m^\pm \) vanishes for \(\xi \gg 1 \) (resp. for \(\xi \ll -1 \)) and such that for any \(\phi \in C^\infty_c(\mathbb{R}_d^\pm + 1) \),

\[
\int_{Q \times \mathbb{R}_d} f(\partial_t + a \cdot \nabla_x) \phi + \int_{\Omega \times \mathbb{R}_d} f^0 \phi(t=0) + \int_{\Sigma \times \mathbb{R}_d} (MF^b + (-a \cdot n) \text{sgn} \pm) \phi \\
= \int_{Q \times \mathbb{R}_d} \partial_t \phi dm^\pm. \quad (3.3)
\]

Remark 2. The function \(f \) satisfies (3.3) if and only if the function \(f^\pm \) satisfies:

\[
\int_{Q \times \mathbb{R}_d} f^\pm(\partial_t + a \cdot \nabla_x) \phi + \int_{\Omega \times \mathbb{R}_d} f^0 \phi(t=0) + M \int_{\Sigma \times \mathbb{R}_d} f^b \phi \\
= \int_{Q \times \mathbb{R}_d} \partial_t \phi dm^\pm. \quad (3.4)
\]

Notice that, here, the expression of the boundary term is simplified. Moreover, (3.4)

is the kinetic equation that appears in the construction \(m^\pm \) and it is also the one we
consider when proving the Comparison Theorem.

Proof of Proposition 3.3. Consider a weak entropy subsolution (resp. weak entropy supersolution) \(u \) of (1.1). Let us fix \(\kappa \in \mathbb{R} \) and define a linear form \(m^\pm_\kappa \) on \(C^\infty_c(\overline{Q}) \) by:

\[
m^\pm_\kappa(\phi) = \int_Q (u(\kappa) \pm \partial_t \phi + F^\pm(u(\kappa) \cdot \nabla_x \phi + \int_\Omega (u_0(\kappa) \pm \phi(t=0) + M \int_\Sigma (u_b(\kappa) \pm \phi. \quad (3.5)
\]

Since \(u \) is a weak entropy subsolution (resp. weak entropy supersolution), we know
that \(m^\pm_\kappa(\phi) \) is nonnegative for any \(\kappa \) and any \(\phi \). We conclude that for any \(\kappa \), \(m^\pm_\kappa \) is
a nonnegative measure on \(\overline{Q} \) and \(m^\pm \in C(\mathbb{R}_+, w - M^+(\overline{Q})) \). Since \(m^\pm \geq 0 \), we have
\(\|m^\pm\| = m^\pm(1) < + \infty \) by (3.5) and \(m^\pm \) is bounded; moreover \(m^\pm \) vanishes for \(\kappa \gg 1 \).
(resp. \(\kappa \ll 1\)). Next, we compute:

\[
\int_{Q \times \mathbb{R}^d} \partial_t \phi(t, x, \xi) dm_{\pm}(t, x, \xi)
= \int_{Q \times \mathbb{R}^d} (u_0 - \xi) \cdot \partial_t \phi + F^\pm(u_0, \xi, \nabla_x \phi) + \int_{\Omega \times \mathbb{R}^d} (u_0 - \xi) \partial_t \phi(t=0) + M \int_{\Sigma} (u_0 - \xi) \partial_t \phi(t=0) + \int_{\Sigma} (a \cdot \nabla_x \phi) + M \int_{\Sigma} f^b_{\pm}(t=0) - M \int_{\Sigma} (a \cdot \nabla_x \phi) + M \int_{\Sigma} f^b_{\pm}(t=0) + M \int_{\Sigma} (M f^b_{\pm} + (-a \cdot n) \text{sgn}_+ \phi).
\]

Hence (3.3) is proved.

Conversely, consider \(u \in L^\infty(Q)\) and \(g \in C^\infty_c(\mathbb{R}_t \times \mathbb{R}^d)\). Let \(\xi \mapsto E_n(\xi)\) be a smooth approximation of \(\xi \mapsto (\xi - \kappa) \pm\) such that \(|E_n'(\xi)| \leq 1\) for any integer \(n\). Let \(\Psi\) be a smooth function with support in \([-2, 2]\), values in \([0, 1]\) and that equals 1 on \([-1, 1]\). Next, define \(\Psi_n(\xi) = \Psi(\xi/n)\). Now apply (3.4) to the test function \(\phi(t, x, \xi) = g(t, x)\Psi_n(\xi)E_n'(\xi)\):

\[
\int_Q \left[\int_{\mathbb{R}^d} \Psi_n E_n g \right] \partial_t g + \int_{\mathbb{R}^d} a \Psi_n E_n f_{\pm} \cdot \nabla_x g + \int_{\Omega} \left[\int_{\mathbb{R}^d} \Psi_n E_n f^0_{\pm} \right] g(t=0)
+ M \int_{\Sigma} \left[\int_{\mathbb{R}^d} \Psi_n E_n f^b_{\pm} \right] g_{\pm} = \int_Q g E_n g'_{\pm} + \Psi_n E_n g_{\pm} \, dm_{\pm}.
\]

Letting \(n \to +\infty\), we get:

\[
\int_Q \left(u(t, x) - \kappa \right) \partial_t g(t, x) + F_{\pm}(u(t, x), \kappa) \cdot \nabla_x g(t, x) dt dx + \int_{\Omega} \left(u_0(x) - \kappa \right) g(0, x) dx
+ M \int_{\Sigma} \left(u_0(s, y) - \kappa \right) g(s, y) ds \, d\sigma(y) = \int_Q g(t, x) dm_{\pm}(t, x, \kappa).
\]

If moreover \(g\) is assumed to be nonnegative, (3.6) yields (3.2).

\[\square \]

3.2. Kinetic traces

In this subsection, we prove the following proposition. See [32, 33] and [19, Lemma 7.34, p. 115].

Proposition 3.4. Consider a function \(f \in L^\infty(Q \times \mathbb{R}_t)\) satisfying (3.3).

1. There exist two kinetic functions \(f^\pm \in L^\infty(Q \times \mathbb{R}_t)\) and \(f^* \in L^\infty(\Sigma \times \mathbb{R}_t)\) such that:

\[
\lim_{\alpha \to 0^+} \int_{\Omega \times \mathbb{R}_t} \int_0^{+\infty} f(t) \theta_\alpha(t) dt \phi = \int_{\Omega \times \mathbb{R}_t} f^\pm \phi, \quad (3.7)
\]

\[
\lim_{\varepsilon \to 0^+} \int_{[0, +\infty) \times \Omega \times \mathbb{R}_t} \int_0^{+\infty} f(h(\overline{x}) + r) \lambda(h(\overline{x}) + r) \, dr \psi = \int_{[0, +\infty) \times \Omega \times \mathbb{R}_t} (-a \cdot n) f^* \overline{x} \psi, \quad (3.8)
\]

for any \(\phi \in L^1(\Omega \times \mathbb{R}_t)\) and any \(\psi \in L^1(\Sigma \times \mathbb{R}_t)\) and any function \(\lambda\), element of the partition of unity \(\{\lambda_i\}_{i \in I}\).
2. The time kinetic trace f^{τ_0} is bounded above (resp. bounded below) by f^0 and the space kinetic trace f^τ satisfies (1.4) where m_{\pm} denotes the restriction of m_{\pm} to $\Sigma \times \mathbb{R}^d$.

Proof. The proof of the existence of f^{τ_0} and of f^τ such that (3.7), (3.8) hold true can be found in [32, 33]. Let us prove that for any test function $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^{d+2})$:

$$
\int_{Q \times \mathbb{R}^d} f(\partial_t + a \cdot \nabla x) \phi + \int_{\Omega \times \mathbb{R}^d} f^{\tau_0} \phi(t=0) + \int_{\Sigma \times \mathbb{R}^d} (-a \cdot n) f^\tau \phi = \int_{Q \times \mathbb{R}^d} \partial_\xi \phi dm_{\pm}.
$$

(3.9)

Let $\phi \in \mathcal{C}_c^\infty([0, +\infty) \times \Omega \times \mathbb{R}^d)$; consider a right-decentred regularizing kernel $\theta_\alpha(r)$; define a cut-off function $w_\alpha(r) = \int_0^r \theta_\alpha(\tau) d\tau$ and apply (3.3) to the test function $w_\alpha(t) \phi(t,x,\xi)$:

$$
\int_{Q \times \mathbb{R}^d} w_\alpha(t) f(\partial_t + a \cdot \nabla x) \phi(t,x,\xi) dt dx d\xi + \int_{\Omega \times \mathbb{R}^d} \theta_\alpha(t) f(t,x,\xi) \phi(t,x,\xi) dt dx d\xi
= \int_{Q \times \mathbb{R}^d} w_\alpha(t) \partial_\xi \phi(t,x,\xi) dm(t,x,\xi).
$$

Letting $\alpha \to 0^+$ and using the Lebesgue dominated convergence theorem and (3.7), we obtain:

$$
\int_{Q \times \mathbb{R}^d} f(\partial_t + a \cdot \nabla x) \phi + \int_{\Omega \times \mathbb{R}^d} f^{\tau_0} \phi(t=0) = \int_{Q \times \mathbb{R}^d} \partial_\xi \phi dm.
$$

(3.10)

Next, ϕ^λ denotes the function $\phi \lambda$ and we define a cut-off function

$$
W_{\varepsilon_d}(x) = \int_0^{x_d - h(\bar{x})} \theta_{\varepsilon_d}(s) ds.
$$

We apply (3.10) to the test function $\phi^\lambda W_{\varepsilon_d}$:

$$
\int_{Q \times \mathbb{R}^d} W_{\varepsilon_d}(x) f(\partial_t + a \cdot \nabla x) \phi^\lambda(t,x,\xi) dt dx d\xi + \int_{Q \times \mathbb{R}^d} f \phi^\lambda \cdot \nabla x W_{\varepsilon_d}
+ \int_{\Omega \times \mathbb{R}^d} f^{\tau_0}(x,\xi) \phi^\lambda(t=0) W_{\varepsilon_d}(x) dx d\xi = \int_{Q \times \mathbb{R}^d} \partial_\xi \phi^\lambda(t,x,\xi) W_{\varepsilon_d}(x) dm(t,x,\xi).
$$

(3.11)

In (3.11), we can pass to the limit in each term, except from $\int_{Q \times \mathbb{R}^d} f \phi^\lambda a(\xi) \cdot \nabla x W_{\varepsilon_d}$. Let us study it. Notice that

$$
\nabla_x W_{\varepsilon_d}(x) = \theta_{\varepsilon_d}(x_d - h(\bar{x}))(\nabla h(\bar{x}),1) = -\theta_{\varepsilon_d}(x_d - h(\bar{x})) \sqrt{1 + |\nabla h(\bar{x})|^2} n(\bar{x}).
$$

Hence:

$$
\int_{Q \times \mathbb{R}^d} \phi^\lambda f a(\xi) \cdot \nabla x W_{\varepsilon_d} dt dx d\xi
= \int_{Q \times \mathbb{R}^d} \phi^\lambda(t,x,\xi)(-a \cdot n) f(t,x,\xi) \theta_{\varepsilon_d}(x_d - h(\bar{x})) \sqrt{1 + |\nabla h(\bar{x})|^2} dt dx d\xi
= \int_{[0, +\infty) \times \Omega \times \mathbb{R}^d} (-a \cdot n) \left[\int_{x_d = h(\bar{x})}^{+\infty} f(x_d) \theta_{\varepsilon_d}(x_d - h(\bar{x})) \lambda(x_d) dx_d \right] \phi^\lambda dt d\sigma d\xi.
$$
Using (3.8), we get (3.9) with \(\phi^\lambda \) instead of \(\phi \) as a test-function. Recalling that the function \(\lambda \) is an element of the partition of unit \(\{ \lambda_i \}_{i \in I} \) and summing this previous inequality over \(i \in I \) yields (3.9). We then deduce from (3.2) and (3.9) that (1.4) holds true and that \(f^{\tau_0} = f^0 + \partial_\xi m^0_\pm \) where \(m^0_\pm \) stands for the restriction of \(m_\pm \) to \(\{0\} \times \Omega \times \mathbb{R}_\xi \). It follows that:

\[
\int f^\tau_\pm(x, \xi) \text{sgn}_\pm(\xi - \kappa) d\xi \leq (u_0(x) - \kappa)_\pm
\]

Since \(f^{\tau_0} \) is a kinetic function and \(f^{\tau_0}(\xi) = 0 \) for \(\xi \gg 1 \), we conclude that it can be written under the following form:

\[
\begin{align*}
\text{resp. } f^{\tau_0}(x, \xi) &= \nu^{\tau_0}_\pm(\xi; +\infty) + \text{sgn}_- \\
\nu^{\tau_0}_\pm(\xi; -\infty) + \text{sgn}_+
\end{align*}
\]

(3.12)

Next, replace \(\kappa \) with \(u_0(x) \) and conclude that the support of \(\nu^{\tau_0}_\pm \) lies in \((-\infty, u_0(x)] \) (resp. in \([u_0(x), +\infty) \)). Finally, \(f^{\tau_0} \) satisfies:

\[
\begin{align*}
\text{resp. } f^{\tau_0}_+(x, \xi) &= \nu^{\tau_0}_+(\xi \uplus u_0(x), u_0(x)] \leq \text{sgn}_+(u_0(x) - \xi) \\
\nu^{\tau_0}_-(u_0(x), \xi \uplus u_0(x)) \geq \text{sgn}_-(u_0(x) - \xi)
\end{align*}
\]

(3.13)

This achieves the proof. \(\square \)

\textbf{Proof of Theorem 3.1.} From Proposition 3.3, we get two measures \(m_\pm \). If \(u \) is a weak entropy solution of the initial-boundary value problem, then \(m_+ \) and \(m_- \) coincide in \(Q \times \mathbb{R}_\xi \). Indeed, from (3.5), we get:

\[
m_\pm(t, x, \kappa) = -\partial_\xi (u - \kappa)^\pm + \text{div}_x \mathcal{F}_\pm(u, \kappa) \text{ in } \mathcal{D}'(Q \times \mathbb{R}_\xi).
\]

(3.15)

Choosing \(\kappa \) respectively large enough and \(-\kappa \) large enough, we obtain that \(u \) is a weak solution of (1.1), i.e. \(\partial_t u + \text{div}_x A(u) = 0 \) in \(\mathcal{D}'(Q) \). Next, we conclude that \(m_+ = m_- \) in \(Q \times \mathbb{R}_\xi \):

\[
m_\pm(t, x, \kappa) = -\frac{1}{2} \partial_\xi |u - \kappa| - \frac{1}{2} \text{div}_x \mathcal{F}(u, \kappa) \text{ in } \mathcal{D}'(Q \times \mathbb{R}_\xi)
\]

(3.16)

where \(\mathcal{F} = \mathcal{F}^+ + \mathcal{F}^- \). Moreover, we proved in Proposition 3.4 that \(f^{\tau_0} = f^0 + \partial_\xi m^0_\pm \) and that \(f^{\tau_0} \) is bounded above and below by \(f^0 \). We then conclude that \(\partial_\xi m^0_\pm = 0 \) hence that \(m^0_\pm \) is constant in \(\xi \). Since it equals 0 for large \(\xi \), we conclude that \(m^0_\pm = 0 \). Eventually, the two measures \(m^0_\pm \) are functions: indeed, since they satisfy (1.4) and respectively vanish for \(\xi \gg 1 \) and \(\xi \ll -1 \), we have:

\[
m^0_+(s, y, \kappa) := M(u_0(s, y) - \kappa)_+ - \int_0^{+\infty} (-a \cdot n) f^+_\xi(s, y, \xi) d\xi \geq 0
\]

(3.17)

\[
m^0_-(s, y, \kappa) := M(u_0(s, y) - \kappa)_- + \int_{-\infty}^{0} (-a \cdot n) f^-_\xi(s, y, \xi) d\xi \geq 0.
\]

(3.18)

The proof of Theorem 3.1 is therefore achieved. \(\square \)

\textbf{Remark 3.} Formula (3.16) appears in [18, p. 173]. Additional properties of \(m \) can be derived. See [18].

9
Link with the BLN condition. We detail here the link between the kinetic formulation of weak entropy solutions given in Theorem 3.1 and the BLN condition. Suppose that the function u is a weak entropy solution of Problem (1.1) such that $u \in BV(Q)$. Let u_τ denote the (strong) trace of the function u on Σ. Obviously, the space kinetic trace is the associated equilibrium function: $f^\tau = \chi_{u_\tau}$. (See Proposition 3.4). Next, remark that:

$$
\int_{\kappa}^{+\infty} a(\xi) \cdot n(y) f^+_\tau(s, y, \xi) d\xi = F^+(u_\tau(s, y), \kappa) \cdot n(y)
$$

and combine with (3.17) in order to get

$$
m^b_+(s, y, \kappa) = M(u(b, y) - \kappa)^+ + F^+(u_\tau(s, y), \kappa) \cdot n(y).
$$

The fact that the function m^b_+ is nonnegative is equivalent to the following condition:

$$
\forall \kappa \in [u_b, u_\tau], \quad \text{sgn}_+(u_\tau - u_b)[A(u_\tau) - A(\kappa)] \cdot n \geq 0.
$$

Similarly $m^b_- \geq 0$ if and only if the previous condition holds true replacing sgn_+ with sgn_-. Summing these two inequalities yields the well-know BLN condition [1]:

$$
\forall \kappa \in [u_b, u_\tau], \quad \text{sgn}(u_\tau - u_b)[A(u_\tau) - A(\kappa)] \cdot n \geq 0.
$$

3.3. An example. Let us detail the expressions of the entropy defect measure m and the boundary defect measures m^b_- for Burgers’ equation $\partial_t u + \partial_x (u^2/2) = 0$ considered on the domain $(0, 2T) \times (0, +\infty)$ with data $u_0(x) = 0$ and

$$
u^b(t) = \begin{cases}
1 & \text{if } 0 < t < T, \\
-1 & \text{if } T < t < 2T.
\end{cases}
$$

A shock occurs at the time $t = 0$ and a rarefaction wave appears at the time $t = T$. It collides the shock at time $t = 2T$. The corresponding weak entropy solution u is represented on Figure 3.1. Then the entropy defect measure is

$$
m = \frac{1}{2} \left(\frac{1}{2} |u - \xi|^0_1 - [\text{sgn}(u - \xi) (u^2/2 - \xi^2/2)]^0_1 \right) \delta_L
$$

where L is the line $t = 2x$ in the (x, t)-plane and where $[G(u)]^0 := G(0) - G(1)$. In particular the measure m is concentrated on the line of discontinuity of u and the
entropy criterion ensures that it is non-negative. On the other hand, the boundary
defect measures are given by
\[
m^b_+(t, \xi) = (M(1 - \xi)^+ - \text{sgn}^+(1 - \xi)(1/2 - \xi^2/2))1_{(0, T)}(t) + (M(1 + \xi)^- - \text{sgn}^-(\xi)\xi^2/2)1_{(T, 2T)}(t)
\]
and
\[
m^b_-(t, \xi) = (M(1 - \xi)^- - \text{sgn}^-(1 - \xi)(1/2 - \xi^2/2))1_{(0, T)}(t) + (M(1 + \xi)^+ - \text{sgn}^+(\xi)\xi^2/2)1_{(T, 2T)}(t)
\]
where \(M \) is a constant greater than 1. The identity \(a^2 - b^2 = (a + b)(a - b) \) ensures
that the two functions are non-negative. The reader would check that the expressions
of \(m \) and \(m^b_\pm \) are consistent with the formula (3.16) and (3.18)-(3.17) respectively.

4. A Comparison Theorem, Theorem 4.1. Let \(u \in L^\infty(Q) \) be a weak
entropy subsolution of (1.1) with data \((u_0, u_b)\) and let \(v \in L^\infty(Q) \) be a weak entropy
supersolution of (1.1) with data \((v_0, v_b)\). Then:
\[
\frac{1}{T} \int_0^T \int_{\Omega} (u(t, x) - v(t, x))^+ \, dx \, dt \leq \int_{\Omega} (u_0(x) - v_0(x))^+ \, dx
\]
\[
+ M \int_0^T \int_{\partial\Omega} (u_b(t, x) - v_b(t, x))^+ \, dtd\sigma. \quad (4.1)
\]
In particular, \(u \leq v \) as soon as \(u_0 \leq v_0 \) and \(u_b \leq v_b \) (Comparison principle).
Before proving Theorem 4.1, let us enlight that the \(L^1 \)-contraction property and the
maximum principle follow from it.

Corollary 4.2.
1. Let \(u, v \in L^\infty(Q) \) be two weak entropy solutions of (1.1). Then:
\[
\frac{1}{T} \int_0^T \int_{\Omega} |u(t, x) - v(t, x)| \, dx \, dt \leq \int_{\Omega} |u_0(x) - v_0(x)| \, dx
\]
\[
+ M \int_{(0; T) \times \partial\Omega} |u_b(t, y) - v_b(t, y)| \, dtd\sigma(y)
\]
(\(L^1 \)-contraction property).
2. Let \(u \) be a weak entropy solution of (1.1) and suppose that there exists two
constants \(U_m, U_M \in \mathbb{R} \) such that:
\[
U_m \leq u_0 \leq U_M \quad \text{a.e. in } \Omega \quad \text{and} \quad U_m \leq u_b \leq U_M \quad \text{a.e. in } \Sigma
\]
then \(U_m \leq u \leq U_M \) a.e. in \(Q \) (Maximum principle).

Proof of Corollary 4.2. The \(L^1 \)-contraction property is obtained by combining the
two equations (4.1) obtained successively with \(u \) as a weak entropy subsolution and \(v \) as a weak entropy supersolution and with \(v \) as a weak entropy subsolution and \(u \) as a weak entropy supersolution. In order to prove the maximum principle, one may
remark that the constant function \(U_m \) is a weak entropy subsolution for data \(u_0, u_b \) and that the constant function \(U_M \) is a weak entropy supersolution for data \(u_0, u_b \). \(\square \)
Proof of Theorem 4.1. In order to prove Theorem 4.1, we show that:

$$
\int_Q (u-v)^+ \partial t \phi + \mathcal{F}^+(u,v) \cdot \nabla \phi + \int_\Omega (u_0-v_0)^+ \phi^{(t=0)} + M \int_\Sigma (u_b-v_b)^+ \phi \geq 0, \tag{4.2}
$$

holds true for any test function $\phi \in C^\infty_c(\mathbb{R}_x \times \mathbb{R}_t)$. Passing from (4.2) to (4.1) is classical. Let f, f^0 and f^b (resp. g, g^0 and g^b) denote the equilibrium functions associated with u, u_0 and u_b (resp. with v, v_0 and v_b). The kinetic traces associated with u (resp. with v) are denoted by $f^n u$ and f^n (resp. $g^n u$ and g^n). Eventually, let m (resp. q) denote the entropy defect measure associated with u (resp. v) and set, for $(s, y, \xi) \in \Sigma \times \mathbb{R}_x$,

$$
\mathcal{T}^+(s, y, \xi) = -(a(\xi) \cdot n(y)) f^+_+(s, y, \xi) \quad \text{and} \quad \mathcal{G}^-(s, y, \xi) = -(a(\xi) \cdot n(y)) g^- (s, y, \xi).
$$

Since u is a weak subsolution of (1.1), the following kinetic equation holds true:

$$
\int_{Q \times \mathbb{R}_t} f^+_+(\partial_t + a \cdot \nabla x) \phi + \int_{\Lambda \times \mathbb{R}_t} f^+_0 \phi^{(t=0)} + \int_{\Sigma \times \mathbb{R}_t} \mathcal{F}^+_+ \phi = \int_{Q \times \mathbb{R}_t} \partial_t \phi \, dm \quad (4.3)
$$

for any $\phi \in C^\infty_c(\mathbb{R}_t \times \mathbb{R}_t)$. Let us fix a test function $\tilde{\phi} \in C^\infty_c(\mathbb{R}_x \times \mathbb{R}_t)$ and apply (4.3) to the test function $\tilde{\phi} \cdot \gamma_{\alpha, \varepsilon}$, where $\gamma_{\alpha, \varepsilon}$ denotes a right-decentered regularizing kernel and ϕ^0 denotes ϕ:

$$
\int_{\mathbb{R}_d ^{d+2}} f^+_+(\partial_t + a \cdot \nabla x) \phi^0 + f^+_0 \phi^{(t=0)} + \mathcal{F}^+_+ \phi^0 = \int_{\mathbb{R}_d ^{d+2}} \partial_t \phi^0 \, dm \quad (4.4)
$$

where $f^+_0 = (f^+ \times 1_Q) *_{t, x} \gamma_{\alpha, \varepsilon}$, $f^+_0 = (f^+ \times 1_Q) *_{t, x} \gamma_{\alpha, \varepsilon}$, $m_{\alpha, \varepsilon} = (m \times 1_Q) *_{t, x} \gamma_{\alpha, \varepsilon}$ and $\mathcal{F}^+_+ = (\mathcal{F}^+ \times 1_\Sigma) *_{t, x} \gamma_{\alpha, \varepsilon}$. Now, let us also regularize the kinetic equation satisfied by g, but with different parameters:

$$
\int_{\mathbb{R}_d ^{d+2}} g^+_{\beta, \nu}(\partial_t + a \cdot \nabla x) \phi^0 + g^+_{\beta, \nu} \phi^0 + \mathcal{G}^+_{\beta, \nu} \phi^0 = \int_{\mathbb{R}_d ^{d+2}} \partial_t \phi^0 \, dq^+_{\beta, \nu} \quad (4.5)
$$

Now apply (4.4) to $-g^+_-(t, x, \xi) \phi^0 (t, x)$ and (4.5) to $-f^+_-(t, x, \xi) \phi^0 (t, x)$ and sum the two equations:

$$
\int_{\mathbb{R}_d ^{d+2}} -\phi^0 (\partial_t + a \cdot \nabla x) (f^+_0 g^+_0) + 2 \int_{\mathbb{R}_d ^{d+2}} -f^+_0 g^+_0 \phi^0 \phi^0 + \int_{\mathbb{R}_d ^{d+2}} \left[f^+_0 g^+_0 \phi^0 \theta^0 + f^+_0 g^+_0 \phi^0 \theta^0 \right] \phi^0 - \int_{\mathbb{R}_d ^{d+2}} \left[\mathcal{F}^+_+ g^+_0 \phi^0 + \mathcal{G}^+_+ \phi^0 \right] \phi^0 = \int_{\mathbb{R}_d ^{d+2}} \phi^0 \left[\delta^0_{\beta, \nu} + \delta^0_{\nu, \beta} \right] \phi^0 \quad (4.6)
$$

where $\delta^0_{\beta, \nu} = (\delta^0 (\xi - u(t, x)) \times 1_Q) *_{\gamma_{\alpha, \varepsilon}}$ and $\delta^0_{\beta, \nu} = (\delta^0 (\xi - v(t, x)) \times 1_Q) *_{\gamma_{\alpha, \varepsilon}}$. Use the fact that the right-hand side of (4.6) is nonnegative and make an integration by parts in the first line:

$$
\int_{\mathbb{R}_d ^{d+2}} -f^+_0 g^+_0 \phi^0 \phi^0 - \int_{\mathbb{R}_d ^{d+2}} \left[f^+_0 g^+_0 \phi^0 \theta^0 + f^+_0 g^+_0 \phi^0 \theta^0 \right] \phi^0 - \int_{\mathbb{R}_d ^{d+2}} \left[\mathcal{F}^+_+ g^+_0 \phi^0 + \mathcal{G}^+_+ \phi^0 \right] \phi^0 \geq 0.
$$

12
Now let successively β, ν and ν_d go to 0^+:
\[
\int_{Q_\lambda \times R_\xi} (-f^{\alpha, \varepsilon}_+ g_-)(\partial_t + a \cdot \nabla_x)\phi^\lambda - \int_{Q_\lambda \times R_\xi} f^{\tau, \varepsilon}_+ g_- \theta \phi^\lambda - \int_{Q_\lambda \times R_\xi} F^{\alpha, \varepsilon}_+ g_- \phi^\lambda \geq 0. \tag{4.7}
\]
We used the fact that regularized functions equal zero at $t = 0$ and at the boundary. Next, let successively α, τ and ε go to 0^+. The first limit is easy to compute:
\[
\lim_{\varepsilon \to 0^+} \lim_{\tau \to 0^+} \lim_{\alpha \to 0^+} \int_{Q_\lambda \times R_\xi} (-f^{\alpha, \varepsilon}_+ g_-)(\partial_t + a \cdot \nabla_x)\phi^\lambda = \int_{Q_\lambda \times R_\xi} (-f^{\tau, \varepsilon}_+ g_-)(\partial_t + a \cdot \nabla_x)\phi^\lambda
\]
\[
= \int_Q (u - v)^+ \partial_t \phi^\lambda + F^+(u, v) \cdot \nabla \phi^\lambda. \tag{4.8}
\]
Use (3.7) for g, and (3.13) for f and (3.14) for g:
\[
\lim_{\varepsilon \to 0^+} \lim_{\tau \to 0^+} \lim_{\alpha \to 0^+} - \int_{Q_\lambda \times R_\xi} f^{\tau, \varepsilon}_+ g_- \theta \phi^\lambda = \lim_{\varepsilon \to 0^+} \lim_{\tau \to 0^+} \lim_{\alpha \to 0^+} f^{\tau, \varepsilon}_+ g_- \theta \phi^\lambda
\]
\[
= - \int_{Q_\lambda \times R_\xi} f^{\tau, \varepsilon}_+ g_- \phi^\lambda \big|_{t=0} = \int_{Q_\lambda \times R_\xi} f^{\tau, \varepsilon}_+ g_- \phi^\lambda \big|_{t=0} = \int_{Q} (u_0 - v_0)^+ \phi^\lambda. \tag{4.9}
\]
We proceed analogously with the boundary term.
\[
\lim_{\varepsilon \to 0^+} \lim_{\tau \to 0^+} \lim_{\alpha \to 0^+} \int_{Q_\lambda \times R_\xi} F^{\alpha, \varepsilon}_+ g_- \phi^\lambda = \int_{\Sigma \times R_\xi} (-a \cdot n) f^{\tau}_+ g_- \phi^\lambda
\]
\[
\leq M \int_{\Sigma} (u_b - v_b)^+ \phi^\lambda. \tag{4.10}
\]
Let us now justify the inequality in (4.10). In order to do so, we use (1.4) and we represent f^τ and g^τ with their Young measures as in (3.12).
\[
\int_{R_\xi} (-a \cdot n) f^{\tau}_+ g_- = - \int_{-\infty}^{\infty} \nu^\tau(\xi; +\infty) \partial_t q^\nu
\]
\[
+ \int_{\nu_b^+}^{\nu_b^-} (-a \cdot n) \nu^\tau(\xi; +\infty) \mu^\tau(-\infty; \xi) + \int_{\nu_b^+}^{+\infty} \mu^\tau(-\infty; \xi) \partial_t m^\mu
\]
\[
\leq - \int_{-\infty}^{\infty} q^\nu \, d\nu^\tau - \left[q^\nu \nu^\tau(\xi; +\infty)\right]_{-\infty}^{\nu_b^-} + M(u_b - v_b)^+
\]
\[
- \int_{\nu_b^+}^{+\infty} m^\mu \, d\mu^\tau + \left[m^\mu \mu^\tau(-\infty; \xi)\right]_{\nu_b^+}^{\nu_b^-} \leq M(u_b - v_b)^+
\]
Hence, we can pass to the limit in (4.7). By using (4.8), (4.9) and (4.10) and by summing over $i \in I$, (4.11) follows and the proof of Theorem 4.1 is complete. \[\square\]

5. Convergence of a BGK-like model. In this section, we present the first application of the kinetic formulation we introduced above. Let us consider the following BGK-like model:
\[
(\partial_t + a \cdot \nabla_x) f_\varepsilon = \frac{\chi u_\varepsilon - f_\varepsilon}{\varepsilon} \quad \text{in } Q \times \mathbb{R}_\xi, \tag{5.1a}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}} f_\varepsilon(t, x, \xi) d\xi, \forall (t, x) \in Q, \tag{5.1b}
\]
\[\int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2a}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2b}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2c}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2d}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2e}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2f}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2g}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2h}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2i}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2j}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2k}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2l}
\]
\[
u u_\varepsilon(t, x) = \int_{\mathbb{R}^3} f_\varepsilon(t, x, \xi) d\xi \leq C, \forall (t, x) \in Q, \tag{5.2m}
\]
\[f_\varepsilon(0, x, \xi) = f^0(\xi), \forall (x, \xi) \in \Omega \times \mathbb{R}_\xi, \]
(5.1c)
\[f_\varepsilon(t, y, \xi) = f^b(y, \xi), \forall (t, y, \xi) \in \Sigma^+, \]
(5.1d)
where \(f^0 \) and \(f^b \) are the equilibrium functions respectively associated with the initial and the boundary data, and where \(\Sigma^+ = \{(t, y, \xi) \in \Sigma \times \mathbb{R}_\xi : -a(\xi) \cdot n(y) > 0 \} \). The approximation (5.1a)-(5.1b)-(5.1c) for the Cauchy problem (i.e. when \(\Omega = \mathbb{R}^n \)) was first considered by Perthame and Tadmor [29]. They proved that the “hydrodynamic limit” as \(\varepsilon \to 0 \) is precisely the entropy solution of the initial value problem (1.1a)-(1.1b). Their study relies on the fact that the right-hand side of (5.1a) can be written as the derivative of a measure: \(\partial_t m_\varepsilon \). This is a consequence of the following observation:

Lemma 5.1 ([18]). Let \(g \in L^1(\mathbb{R}) \) satisfy \(0 \leq \text{sgn}(\xi) g(\xi) \leq 1 \) a.e. Then the function \(m_\varepsilon : \xi \mapsto \int_{-\infty}^{\xi} (\chi_{u_\varepsilon} - g)(\zeta) d\zeta \) is non-negative.

As \(\varepsilon \) goes to 0, the measure \(m_\varepsilon \) converges to the entropy defect measure \(m \). This kinetic model has been adapted by Nouri, Omrane and Vila [22, 23] to take into account boundary conditions. In [22, 23], data at equilibrium as well as general kinetic ones are considered. The convergence of the kinetic model is proved and, particularly in the non-equilibrium case, the boundary conditions satisfied by the limit such obtained are discussed and compared to the BLN condition. In the present paper, we restrict ourselves to the case of data at equilibrium and we show how the concept of boundary defect measures can help in the understanding of the “hydrodynamic limit”; more precisely, we define approximate boundary defect measures and we prove that they converge to \(\delta_0 \) (See Subsection 3.2). As in [28], we intend to show how a concept of generalized kinetic solution can be used to prove the convergence of the kinetic model associated with (1.1) without “strong” (for instance BV) a priori estimates.

5.1. Solution of the kinetic model

We suppose that \(\Omega \) is convex. The problem (5.1) admits an integral representation and is therefore solved by a fixed point method. The characteristic of the partial differential operator \(\partial_t + a(\xi) \partial_x \) arriving at \((t, x) \in Q \) is the line of equation \(X(\tau) = a(\xi)(\tau - t) + x \). If \(u_\varepsilon \in C(0, T; L^1(\Omega)) \), the solution \(f_\varepsilon \) of the linear equation \(\partial_t f_\varepsilon + a(\xi) \cdot \nabla f_\varepsilon + \frac{1}{\varepsilon} f_\varepsilon = \frac{1}{\varepsilon} \chi_{u_\varepsilon} \), satisfies

\[f_\varepsilon(t, x, \xi) = f_\varepsilon(\tau, X(\tau), \xi) e^{\frac{s - \tau}{\varepsilon}} + \int_{\tau}^{\tau} \frac{1}{\varepsilon} \chi_{u_\varepsilon(x, t)}(\xi) e^{\frac{s - \tau}{\varepsilon}} ds \]
(5.2)

for any \(\tau < t \) such that \(X([\tau, t]) \subset \Omega \). Using the boundary condition (5.1d), we see that the computation of the value \(f_\varepsilon(t, x, \xi) \) depends on the point of intersection of the characteristic line with the parabolic boundary:

- if \(X([0, t]) \subset \Omega \), the characteristic starts from \(\{0\} \times \Omega \) at \(\tau = 0 \) and we put \(f_\varepsilon(\tau, X(\tau), \xi) = f^0(x - ta(\xi), \xi) \) in (5.2);
- if there exists \(\tau^* \in [0, t] \) such that \(X([\tau^*, t]) \subset \Omega \) and \(X(\tau^* - 0) \notin \Omega \), the characteristic starts from the boundary \(\Sigma \) at \(\tau = \tau^* \) and we put \(f_\varepsilon(\tau, X(\tau), \xi) = f^0(\tau^*, X(\tau^*), \xi) \) in (5.2).

Thanks to the integral representation (5.2), it is therefore possible to build an operator \(T \) from \(C(0, T; L^1(\Omega)) \) to itself which maps \(u \) on \(v : (t, x) \mapsto \int_{\mathbb{R}} f_\varepsilon(t, x, \xi) d\xi \). We then show that this operator is a contracting map and the existence and the uniqueness of the solution \(f_\varepsilon \) of (5.1) follows [29, 22, 28]. This solution satisfies additional properties:
Proposition 5.2 ([29, 22, 28]). Suppose that \(\Omega \) is convex. Let \(\varepsilon > 0 \) and let \(f_\varepsilon \in C(0,T;L^1(\Omega \times \mathbb{R}_\xi)) \) be the solution of (5.1). Under the hypotheses of Section 2, we have:
1. \(f_\varepsilon \) satisfies
 \[0 \leq \text{sgn}(\xi) f_\varepsilon(t,x,\xi) \leq 1 \text{ for a.e. } (t,x,\xi) \in Q \times \mathbb{R}_\xi; \]
2. there exists a nonnegative function \(m_\varepsilon \) such that
 \[\frac{\chi_{u_\varepsilon} - f_\varepsilon}{\varepsilon} = \partial_\xi m_\varepsilon; \tag{5.3} \]
3. for every convex function \(\eta \in C^2(\mathbb{R}, \mathbb{R}) \) with a bounded derivative \(\eta' \) satisfying \(\eta'(0) = 0 \):
 \[\int_{Q \times \mathbb{R}_\xi} m_\varepsilon(t,x,\xi) \eta''(\xi) d\xi dt \leq \int_{\Omega \times \mathbb{R}_\xi} f^0(\xi) \eta'(\xi) d\xi dx + \int_{\Sigma \times \mathbb{R}_\xi} (-a \cdot n)^+(s,y,\xi) f^b(\xi) \eta'(\xi) d\xi dt; \tag{5.4} \]
4. there exists \(\mu \in L^\infty(\mathbb{R}) \), independent of \(\varepsilon \) and such that \(\mu(\xi) = 0 \) if \(|\xi| \gg 1 \) and:
 \[\int_{Q} m_\varepsilon(t,x,\xi) d\xi dt \leq \mu(\xi); \tag{5.5} \]
5. for a.e. \((t,x,\xi) \in Q \times \mathbb{R}_\xi : f_\varepsilon(t,x,\xi) = 0 \) as soon as \(|\xi| > K \); consequently
 \[\left| \int_{R_\xi} f_\varepsilon(t,x,\xi) d\xi \right| \leq K \text{ for a.e. } (t,x) \in Q. \tag{5.6} \]

Sketch of the proof. The fact that \(f_\varepsilon \) is a kinetic function follows from (5.2). We previously mentioned that (5.3) is a consequence of Lemma 5.1. A rigorous proof of (5.4) relies on the integral representation (5.2). Here is a formal argument: multiply the equation \(\partial_t f_\varepsilon + a(\xi) \partial_\xi f_\varepsilon = \partial_\xi m_\varepsilon \) by \(\eta'(\xi) \), integrate the result with respect to \((t,x,\xi) \) and use the fact that \(\eta'(\xi) f_\varepsilon(t,x,\xi) \geq 0 \) (for \(\text{sgn}(\eta'(\xi)) = \text{sgn}(\xi) \)). Estimate (5.5) is a consequence of (5.4) with \(\eta(\xi) = (\xi - \xi_0)^+ \) if \(\xi_0 > 0 \), \(\eta(\xi) = (\xi - \xi_0)^- \) if \(\xi_0 < 0 \). It leads to the expression \(\mu = \mu^+ + \mu^- \) with
 \[\mu^\pm(\xi) = |\text{sgn}_\pm(\xi)| (\|u_0 - \xi\|^\pm\|_{L^1(\Omega)} + M\|u_b(t,y) - \xi\|^\pm\|_{L^1(\Sigma)}). \]
Eventually, (5.6) is a consequence of (5.2) and of the first point. \(\square \)

5.2. Generalized kinetic solutions. In order to prove the convergence of the model, we need to introduce a very weak notion of solution of (1.1).

Definition 5.3. Consider a kinetic function \(f \in L^\infty(Q \times \mathbb{R}_\xi) \). We say that \(f \) is a generalized kinetic solution of (1.1) if there exists a bounded nonnegative measure \(m \in \mathcal{M}^+(Q \times \mathbb{R}_\xi) \) and two nonnegative measurable functions \(m_{\xi}^+, m_{\xi}^- \in L^\infty(\Sigma \times \mathbb{R}_\xi) \) such that the function \(m_{\xi}^+ \) vanishes for \(\xi \gg 1 \) (resp. the function \(m_{\xi}^- \) vanishes for \(\xi \ll -1 \)) and such that (3.1) holds true.

The kinetic formulation can therefore be stated in the following terms: a function \(u \) is an entropy solution of (1.1) if and only if its associated equilibrium function is a generalized kinetic solution of (1.1).
Theorem 5.4. Any generalized kinetic solution of (1.1) is in fact an equilibrium function associated with an entropy solution of the initial-boundary value problem.

Proof. We just adapt the proof of the Comparison Theorem. Consider a generalized kinetic solution \(f \) of the initial-boundary value problem. We can therefore easily prove that for a.e. \(t > 0 \):

\[
\int_{\Omega \times \mathbb{R}_x} (-f^+ f^-)(t, x, \xi) dx d\xi \leq 0.
\]

Now use the fact that \(f \) is a kinetic function to get that for a.e. \((t, x) \in Q \):

\[
f^- (t, x, \xi) = \nu_{t,x}(-\infty; \xi) \quad \text{and} \quad f^+(t, x, \xi) = \nu_{t,x}(\xi; +\infty).
\]

Consequently: \(\nu_{t,x}(-\infty; \xi) = 0 \) or \(\nu_{t,x}(\xi; +\infty) = 0 \). It follows that \(\nu_{t,x} \) is a Dirac mass. The proof is therefore complete. \(\square \)

5.3. Proof of the convergence. We now state and prove a precise convergence result.

Theorem 5.5. Suppose that \(\Omega \) is convex. Under the hypotheses of Section 2, if \(f_{\varepsilon} \) denotes the solution of (5.1), then the sequence of function \(u_{\varepsilon} \) defined by \(u_{\varepsilon}(t, x) = \int_{\mathbb{R}} f_{\varepsilon}(t, x; \xi) d\xi \) converges as \(\varepsilon \to 0 \) to the entropy solution \(u \) of (1.1) in any \(L^p((0, T) \times \Omega) \), \(1 \leq p < +\infty \).

Proof of Theorem 5.5. Let \(T_{\varepsilon} \) denote the space kinetic trace of \(f_{\varepsilon} \) and consider \(\varphi \in C^\infty_c(\overline{Q} \times \mathbb{R}) \). By integrating the equation \(\partial_t f_{\varepsilon} + a(\xi) \cdot \partial_x f_{\varepsilon} = \partial_t m_{\varepsilon} \) against \(\varphi \) we get:

\[
\int_{Q \times \mathbb{R}_x} f_{\varepsilon} \left(\partial_t \varphi + a \cdot \nabla_x \varphi \right) + \int_{Q \times \mathbb{R}_x} f^0(x, \xi, t = 0) \varphi \bigg|_{\xi = 0} + \int_{\Sigma \times \mathbb{R}_x} (a \cdot n) T_{\varepsilon} \varphi \bigg|_{\xi = 0} = \int_{Q \times \mathbb{R}_x} \partial_t \varphi m_{\varepsilon}.
\]

By analogy with (3.17), define the function \(m^{b_{\varepsilon}}_+ \) by:

\[
m^{b_{\varepsilon}}_+(t, y, \xi) := M(u_0(t, y) - \xi) + \int_{\xi}^{+\infty} (-a \cdot n)(T - \text{sgn}_-)(\kappa) d\kappa,
\]

and get from (5.7):

\[
\int_{Q \times \mathbb{R}_x} f_{\varepsilon} \left(\partial_t \varphi + a \cdot \nabla_x \varphi \right) + \int_{Q \times \mathbb{R}_x} f^0(x, \xi, t = 0) \varphi \bigg|_{\xi = 0} + \int_{\Sigma \times \mathbb{R}_x} (M f^b_+ + (a \cdot n) \text{sgn}_-) \varphi \bigg|_{\xi = 0} = \int_{Q \times \mathbb{R}_x} \partial_t \varphi m^b_{\varepsilon} + \int_{\Sigma \times \mathbb{R}_x} \partial_\xi \varphi d m^b_{\varepsilon}.
\]

Let us check that \(m^{b_{\varepsilon}}_+(t, y, \xi) \) is a nonnegative function. Since \(T_{\varepsilon} \) is a kinetic function, \(T_{\varepsilon} - \text{sgn}_- \) is nonnegative, hence:

\[
m^{b_{\varepsilon}}_+(t, y, \xi) \geq M(u_0(t, y) - \xi) + \int_{\xi}^{+\infty} (-a \cdot n)^+ (T_{\varepsilon}(t, y, \kappa) - \text{sgn}_-(\kappa)) d\kappa
\]

\[
= M(u_0(t, y) - \xi) + \int_{\xi}^{+\infty} (-a \cdot n)^+ (f^b(t, y, \kappa) - \text{sgn}_-(\kappa)) d\kappa
\]

\[
= \int_{\xi}^{+\infty} (M - (-a \cdot n)^+) (f^b(t, y, \kappa) - \text{sgn}_-(\kappa)) d\kappa
\]

\[
\geq 0.
\]
Since f_ε is bounded in L^∞-norm and m_ε is bounded in mass by (5.5), we have, up to subsequences,

$$
\begin{align*}
 f_\varepsilon & \rightharpoonup f \quad \text{in} \quad W - * - L^\infty(Q \times \mathbb{R}_\xi), \\
 \mathcal{T}_\varepsilon & \rightharpoonup \mathcal{T} \quad \text{in} \quad W - * - L^\infty(\Sigma \times \mathbb{R}_\xi), \\
 m_\varepsilon & \rightharpoonup m \quad \text{in} \quad W - * - M^+(Q \times \mathbb{R}_\xi)
\end{align*}
$$

where f and \mathcal{T} are, respectively, functions of $L^\infty(Q \times \mathbb{R}_\xi)$ and $L^\infty(\Sigma \times \mathbb{R}_\xi)$ such that (this property is preserved at the $w - *$-limit): $0 \leq f(\cdot, \xi)\text{sgn}(\xi) \leq 1$ and $0 \leq \mathcal{T}(\cdot, \xi)\text{sgn}(\xi) \leq 1$. We first deduce from Proposition 5.2 that:

$$
\int_{\xi}^{+\infty} (-a \cdot n)(\mathcal{T}(t, y, \kappa) - \text{sgn}_-(\kappa))d\kappa = \int_{\xi}^{K} (-a \cdot n)(\mathcal{T}(t, y, \kappa) - \text{sgn}_-(\kappa))d\kappa.
$$

It follows that $m_+^{b_\varepsilon}(t, y, \xi) \rightharpoonup m_+^b$ where

$$
m_+^b(t, y, \xi) := M(u_0(t, y) - \xi)^+ - \int_{\xi}^{K} (-a \cdot n)(f^T - \text{sgn}_-(\kappa))d\kappa \quad (5.9)
$$

so that, at the limit $\varepsilon \to 0$ in (5.8), we have:

$$
\int_{Q \times \mathbb{R}_\xi} f(\partial_\xi \varphi + a \cdot \nabla_x \varphi) + \int_{Q \times \mathbb{R}_\xi} f^0 \varphi(t=0) + \int_{\Sigma \times \mathbb{R}_\xi} (Mf_+^b + (-a \cdot n)\text{sgn}_-)\varphi
\begin{align*}
&= \int_{Q \times \mathbb{R}_\xi} \partial_\xi \varphi dm + \int_{\Sigma \times \mathbb{R}_\xi} \partial_\xi \varphi dm_+^b. \quad (5.10)
\end{align*}
$$

Besides, it is clear from (5.9) that $m_+^b(t, y, \xi)$ vanishes for $\xi \gg 1$; moreover (5.5) remains true at the limit. Derivating (5.1a) with respect to ξ gives:

$$
\partial_\xi f_\varepsilon = \partial_\xi u_\varepsilon + \alpha_\varepsilon = \delta_0(\xi) - \delta_{u_\varepsilon}(\xi) + \alpha_\varepsilon
$$

where $\alpha_\varepsilon = \varepsilon (\partial_\xi f_\varepsilon + a(\xi)\partial_\xi \varepsilon) \partial_\xi f_\varepsilon$ tends to zero in $\mathcal{D}'(Q \times \mathbb{R}_\xi)$. We then define a Young measure $\nu_{t, x}(\xi)$ as an adherence value of $\delta(\xi - u_\varepsilon(t, x))$ and we obtain that:

$$
\partial_\xi f = \delta_0(\xi) - \nu_{t, x}(\xi) \quad \text{in} \quad \mathcal{D}'(Q \times \mathbb{R}_\xi).
$$

Of course, the same arguments remain valid for m_+^b and consequently f is a generalized kinetic solution of (1.1). In virtue of Theorem 5.4, it is therefore the equilibrium function associated with the unique entropy solution of (1.1). Since f is an equilibrium function, the weak-* convergence of f_ε to f in $L^\infty(Q \times \mathbb{R}_\xi)$ implies the strong convergence of u_ε to u in $L^p(Q)$, $1 \leq p < +\infty$. The proof is therefore complete. \(\Box\)

REFERENCES

18