
HAL Id: hal-00176540
https://hal.science/hal-00176540

Submitted on 3 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On vectorial Hamilton-Jacobi equations
Cyril Imbert, Michel Volle

To cite this version:
Cyril Imbert, Michel Volle. On vectorial Hamilton-Jacobi equations. Control and Cybernetics, 2002,
31 (3), pp.493-506. �hal-00176540�

https://hal.science/hal-00176540
https://hal.archives-ouvertes.fr


Control and Cybernetics, Vol 31, no 3 (2002), pp. 493-503

On vectorial Hamilton-Jacobi equations

Cyril Imbert1 and Michel Volle2

Abstract

We consider the generalized Hopf and Lax functions associated
with a vector-valued hamiltonian and we prove that they still provide
lower semicontinuous solutions for the corresponding vectorial Hamil-
ton-Jacobi equation in a very general context. Uniqueness of these
generalized solutions is also investigated.

1 Introduction

We are concerned with Hamilton-Jacobi equations
{

Dtu(x, t) + H(Dxu(x, t)) = 0 in X × T+

u(x, 0) = g(x) in X
(1.1)

in which the variable t is not real but vectorial and the hamiltonian H is a
vector-valued mapping. For instance, multitime Hamilton-Jacobi equations
introduced by Lions and Rochet [11] enter into this framework.

Let X, T be two real Banach spaces. Their respective topological duals
are denoted by X∗, T ∗. Consider a closed convex cone T+ ⊂ T and define a
vectorial preorder on T in the following way: for any s, t ∈ T,

s 4 t ⇔ t − s ∈ T+. (1.2)

The bilinear couplings between X and X∗ and between T and T ∗ are both
denoted by 〈·, ·〉. The set of all continuous linear forms defined on X which
are nonnegative on T+ is denoted by T ∗

+ :

T ∗
+ = {t∗ ∈ T ∗ : ∀t ∈ T+, 〈t, t∗〉 > 0}.

The w∗−closed convex cone T ∗
+ coincides with the set of continuous linear

forms defined on T that are nondecreasing with respect to (1.2). Moreover
T ∗

+ induces a vectorial preorder on T ∗ : for any s∗, t∗ ∈ T ∗,

s∗ 4∗ t∗ ⇔ t∗ − s∗ ∈ T ∗
+. (1.3)
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Let us introduce a mapping H defined on a nonempty subset dom H of X∗

with values in T ∗ :
H : dom H ⊂ X∗ −→ T ∗ (1.4)

and a lower semicontinuous (lsc for short) proper function

g : X −→ R ∪ {+∞}.

One says that H is T ∗
+-convex if dom H is convex and if for any x∗, y∗ ∈

dom H, λ ∈ [0, 1], one has

H(λx∗ + (1 − λ)y∗) 4∗ λH(x∗) + (1 − λ)H(y∗).

Defining the epigraph of H by

epi H = {(x∗, t∗) ∈ X∗ × T ∗ : t∗ <∗ H(x∗)},

the T ∗
+-convexity of H is equivalent to the convexity of its epigraph.

Before making precise in which sense (1.1) is solved, we need to recall
what a subgradient is. For a given function u : X × T+ → R ∪ {+∞}, a
couple of vectors (x∗, t∗) ∈ X∗ ×T ∗ is a so-called Fréchet subgradient of u at
a point (x, t) ∈ X × T+ if for any (y, s) ∈ X × T+,

〈y − x, x∗〉 + 〈s − t, t∗〉 6 u(y, s) − u(x, t) + o(|(y, s) − (x, t)|) (1.5)

where o(·) is a function such that o(x)/|x| → 0 as x → 0. The couple (x∗, t∗) ∈
X∗ × T ∗ is said to be a subgradient in the sense of convex analysis if (1.5)
is true with o(·) ≡ 0. The set of all Fréchet subgradients (resp. subgradients
in the sense of convex analysis) is referred to as the Fréchet subdifferential
(resp. subdifferential in the sense of convex analysis) of u at (x, t) and is
denoted by ∂F u(x, t) (resp. ∂u(x, t)).

Generalized solutions of (1.1) are defined by adapting Crandall-Lions’ no-
tion of viscosity solution [8] or some extensions of it [3, 9]. A lsc proper func-
tion u : X×T+ → R∪{+∞} is a subsolution of (1.1) if for any (x, t) ∈ X×T+,
any (x∗, t∗) ∈ ∂F u(x, t), one has t∗ +H(x∗) 4∗ 0 and if u(x, 0) 6 g(x) for any
x ∈ X. The function u is a supersolution of (1.1) if for any (x, t) ∈ X×int T+,
any (x∗, t∗) ∈ ∂F u(x, t), one has t∗ + H(x∗) <∗ 0 and if u(x, 0) > g(x) for
any x ∈ X. The function u is a solution of (1.1) if it is both a subsolution
and a supersolution. Note that the concept of supersolution is inoperative if
the topological interior of the ordering convex cone T+ is empty.

The reader may observe that if int T+ is nonempty, then the dual cone
T ∗

+ is pointed so that T ∗ is partially ordered instead of partially preordered.
Therefore any solution u of (1.1) satisfies for any (x∗, t∗) ∈ ∂F u(x, t) with
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t ∈ int T+ : t∗ = −H(x∗). A referee kindly pointed out to us that the previous
observation remains valid if one extends the concept of supersolution by
replacing the topological interior of T+ with

T i
+ = {t ∈ T : ∀t∗ ∈ T ∗

+ \ {0}, 〈t, t∗〉 > 0}.

Nevertheless, although many results of the paper can be stated with this
concept of supersolution, our proof of Proposition 7 requires the topological
interior of T+ to be nonempty.

The paper is organized as follows. In Section 2, we introduce the general-
ized Hopf function and describe its subdifferential (Proposition 3). When g
and epi H are convex, we prove that uHopf is a solution of (1.1) (Theorem 1).
The generalized Lax function is considered in Section 3. Under a regularity
assumption we prove that uLax is a solution of (1.1) (Theorem 2). Next we
prove that the lsc convex hull of uLax coincides with uHopf (Theorem 3). The
uniqueness of the solution of (1.1) is studied in Section 4; we prove that
uLax and uHopf are respectively the greatest lsc subsolution and the lowest
weakly lsc supersolution (Theorems 4, 5, 6). Several examples are presented
in Section 5.

The remaining of the section is devoted to definitions and notations that
are used throughout.

Let Z denote an arbitrary Banach space and consider a function f : Z →
R ∪ {+∞}. The Legendre-Fenchel conjugate of f is denoted by f ∗ and is
defined on Z∗ by the following formula:

f ∗(z∗) = sup
z∈Z

{〈z∗, z〉 − f(z)}.

The function f ∗∗=(f ∗)∗ defined on Z instead of Z∗∗ turns out to be the
greatest lsc and convex function bounding f from below. It is known as the
lsc convex hull of f while the lsc hull of f is denoted by f and is defined by:

f(z) = lim inf
y→z

f(y).

As usual Γ0(Z) denotes the set of lsc proper convex functions defined on
Z and Γ0(Z

∗) denotes the set of weakly-⋆ lsc proper convex functions de-
fined on Z∗. Subgradients (in the sense of convex analysis) z∗ ∈ ∂f(z) are
characterized by the so-called Fenchel’s equality :

〈z∗, z〉 = f(z) + f ∗(z∗),
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while Fenchel’s inequality holds true for any z∗, z :

〈z∗, z〉 > f(z) + f ∗(z∗).

Consider two arbitrary sets A, B ⊂ Z. Then [A, B] denotes the convex hull
of A ∪ B. To finish with, the indicator function of A is denoted by ιA and is
defined by setting ιA(z) = 0 if z ∈ A and ιA(z) = +∞ if z /∈ A.

2 The generalized Hopf function

In this section, we assume that g is lsc and proper and we consider a
mapping H as in (1.4). For any t ∈ T+, let us define the composite function

(t ◦ H)(x∗) =

{
〈t,H(x∗)〉 if x∗ ∈ dom H,
+∞ if not.

Observe that t◦H is convex if H is T ∗
+-convex. The generalized Hopf function

is defined as a certain Legendre-Fenchel conjugate with respect to the x
variable: for any (x, t) ∈ X × T+,

uHopf(x, t) = (g∗ + t ◦ H)∗(x) (2.1)

that is to say

uHopf(x, t) = sup
x∗∈dom g∗∩dom H

〈x, x∗〉 − g∗(x∗) − 〈t,H(x∗)〉. (2.2)

In order to ensure that uHopf does not equal −∞, we assume that

dom g∗ ∩ dom H 6= ∅. (2.3)

Throughout, some functions u are only defined on X × T+ (as uHopf). It is
convenient to set u(x, t) = +∞ for (x, t) /∈ X × T+ so that u is defined on
the whole space X × T.

Proposition 1. The Hopf function belongs to Γ0(X × T ) and one has

uHopf(., 0) 6 g. (2.4)

Equality holds true in (2.4) if g is convex and if dom g∗ ⊂ dom H.

Proof. From (2.2), we get that uHopf is the supremum of a family of contin-
uous linear functions on X × T. Moreover, one has

uHopf(x, 0) = (g∗ + ιdom H)∗(x) 6 g(x).

This implies that uHopf is proper and that uHopf(., 0) = g∗∗ = g whenever
dom g∗ ⊂ dom H and g is convex.
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We now explain how to rewrite uHopf as a Legendre-Fenchel conjugate
with respect to the (x, t) variable (see [10] for the scalar case). Let us define
a function Φ ∈ Γ0(X

∗ × T ∗) by

Φ(x∗, t∗) = g∗(x∗), (2.5)

and let us introduce the symmetrical of the epigraph of H with respect to
the X∗-axis:

êpi H = {(x∗, t∗) ∈ X∗ × T ∗ : H(x∗) 4∗ −t∗},

We claim that

Proposition 2. uHopf = (Φ + ιcepi H
)∗.

The following corollary provides upper and lower estimates of the Legen-
dre-Fenchel conjugate of uHopf . For an arbitrary set A, co A denotes the
w∗-closed convex hull of A.

Corollary 1. Φ + ι
co cepi H

6 u∗
Hopf 6 Φ + ιcepi H

.

Let us study the Fréchet subdifferential of the Hopf function. Consider
an arbitrary point (x, t) ∈ X × T+ and an arbitrary subgradient (x∗, t∗) ∈
∂F uHopf(x, t) = ∂uHopf(x, t). By Corollary 1 and (2.5), we know that x∗ ∈

dom g∗ and (x∗, t∗) ∈ co êpi H. Using Fenchel’s equality, we get

〈x, x∗〉 + 〈t, t∗〉 > uHopf(x, t) + g∗(x∗). (2.6)

Besides, we notice that x∗ ∈ ∂uHopf(., t)(x). Hence Fenchel’s equality and
(2.1) yield

〈x, x∗〉 = uHopf(x, t) + (g∗ + t ◦ H)∗∗(x∗)

6 uHopf(x, t) + g∗(x∗) + (t ◦ H)(x∗) (2.7)

Combining (2.6) and (2.7), we finally obtain that

0 6 〈t, t∗〉 + (t ◦ H)(x∗).

Let us gather what we just proved in the following proposition.

Proposition 3. For any (x, t) ∈ X × T+ and any (x∗, t∗) ∈ ∂F uHopf(x, t),
one has

(x∗, t∗) ∈ co êpi H (2.8)

x∗ ∈ dom g∗ (2.9)

〈t, t∗〉 + (t ◦ H)(x∗) > 0 (2.10)
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Remark 1. In the scalar case (T = R), when dom g∗ ⊂ dom H, (2.9), (2.10)
and Proposition 3 entail that uHopf is a supersolution of (1.1) (see [1]).

In view of (2.8), it seems interesting to investigate what happens when
the epigraph of H is w∗-closed and convex.

Theorem 1. Assume that g is lsc and proper, that epi H is w∗-closed and
convex, and that (2.3) holds. Then for any (x∗, t∗) ∈ ∂F uHopf(x, t), t ∈ T+

(resp. t ∈ int T+), we have t∗ + H(x∗) 4∗ 0 (resp. t∗ + H(x∗) = 0). In
particular, uHopf is a subsolution of (1.1). Moreover, if dom g∗ ⊂ dom H
and g is convex, then uHopf is a solution of (1.1).

Proof. Let (x∗, t∗) ∈ ∂F uHopf(x, t) = ∂uHopf(x, t). As epi H is w∗-closed and
convex, (2.8) reads H(x∗) 4∗ −t∗ and, since uHopf(., 0) 6 g, uHopf is a
subsolution. Moreover, by (2.10), one has 〈t,H(x∗) + t∗〉 > 0. Now since
H(x∗) + t∗ 4∗ 0, the linear form s 7→ 〈s, H(x∗) + t∗〉 is nonpositive on T+.
Therefore, if t belongs to int T+, then t is a local maximum of the linear
form, so that H(x∗) + t∗ = 0. Consequently, when dom g∗ ⊂ dom H, uHopf is
a solution of (1.1).

The study of the Hopf function when g = ι{0} will be useful in the fol-
lowing. In this case, g∗ = 0, Φ = 0 and we have (see Proposition 2)

uHopf(x, t) = ι∗cepi H
(x, t) =

{
(t ◦ H)∗(x) if (x, t) ∈ X × T+

+∞ if not.

It therefore follows from Theorem 1 that

Corollary 2. Assume that epi H is w∗-closed and convex and consider a
point (x, t) ∈ X × T+. Then for any (x∗, t∗) ∈ ∂ι∗

cepi H
(x, t), one has

t∗ + H(x∗) 4∗ 0.

If, moreover, t belongs to int T+, then t∗ + H(x∗) = 0.

3 The generalized Lax function

Let g : X → R∪{+∞} be a lsc proper function and assume that epi H is
nonempty, w∗-closed and convex. The generalized Lax function is defined as
a certain infimal convolution (denoted by �) with respect to the x variable:

uLax(x, t) =

{
[g � (t ◦ H)∗](x) if (x, t) ∈ X × T+

+∞ if not.
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For any (x, t) ∈ X × T+ one has by definition,

uLax(x, t) = inf
y∈X

[g(x − y) + (t ◦ H)∗(y)]. (3.1)

The infimal convolution defining uLax is said to be exact if the infimum in
(3.1) is attained.

If no further assumptions are made, uLax is neither convex nor lsc. Ob-
serve that

uLax(., 0) = g � ι∗dom H 6 g,

which implies that uLax is not identically equal to +∞. But uLax may take
the value −∞. As in the scalar case [10], the generalized Lax function can
be expressed as an infimal convolution of two functions defined on X ×T by
using the following function

G(x, t) =

{
g(x) if t = 0,
+∞ if not.

Proposition 4. uLax = G � ι∗
cepi H

.

Corollary 3. If g is convex, so is uLax.

We know from Theorem 1 that uHopf is a subsolution of (1.1). In order
to prove that so is uLax, a regularity condition is required. As in [10], the
generalized Lax function is said to be regular if it is lsc, proper and if the
infimal convolution in (3.1) is exact when finite. Such a condition holds true
under assumptions of Proposition 5 and in Examples 5.1 and 5.2 below. In
the scalar case, several sufficient conditions can be found in [12], Prop. 3.1.

Theorem 2. Let g be lsc and proper and assume that epi H is nonempty,
w∗-closed and convex. Moreover, assume that uLax is regular. Then it is a
subsolution of (1.1). If, moreover, dom H = X∗ or if dom g∗ ⊂ dom H and
g ∈ Γ0(X), then uLax is a solution of (1.1).

Proof. Let (x∗, t∗) ∈ ∂F uLax(x, t). As uLax is regular, the infimal convolution
in (3.1) is exact. It therefore follows from Proposition 4 and the well-known
subdifferential calculus rule (see e.g. Lemma 5 in [10]) that there exists
y ∈ X such that

(x∗, t∗) ∈ ∂F G(x − y, 0) ∩ ∂F ι∗cepi H
(y, t).

Since epi H is convex, (x∗, t∗) ∈ ∂ι∗
cepi H

(y, t) and by Corollary 2, one has

H(x∗) 4∗ −t∗, that is to say uLax is a subsolution. If, moreover, t belongs to
int T+, then Corollary 2 implies that H(x∗) = −t∗; it follows that uLax is a
solution of (1.1) provided that g � ι∗dom H > g holds true. Such an inequality
is verified if dom H = X∗ or if dom g∗ ⊂ dom H and g ∈ Γ0(X).
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The next result enlights an interesting link between the two functions
uHopf and uLax.

Theorem 3. Let g be lsc and proper and suppose that epi H is w∗-closed
and convex. Assume moreover that

dom g∗ ∩ dom H 6= ∅.

Then uLax is proper and u∗
Lax = u∗

Hopf so that uHopf is the lsc convex hull of
uLax.

If moreover g is convex, then uHopf is the lsc hull of uLax.

Proof. Observe that G∗ = Φ (see (2.5)). Using Propositions 4 and 2, we get
u∗

Lax = Φ + ιcepi H
= u∗

Hopf . We then obtain u∗∗
Lax = uHopf and since uHopf is

proper, uLax does not take the value −∞. If g is convex, uLax is also convex
and the lsc hull of uLax coincides with u∗∗

Lax = uHopf .

We just have seen that when g is convex uLax and uHopf are very close.
Let us give a condition under which they coincide.

Proposition 5. Assume that X, T are reflexive spaces, that g ∈ Γ0(X) and
that cone (dom g∗ − dom H) is a closed linear space. Then uLax is regular
and it coincides with uHopf .

Proof. By Attouch-Brezis Theorem [2] one has

uHopf = (Φ + ιcepi H
)∗ = G � ι∗cepi H

= uLax

whenever cone (dom Φ − êpi H) is a closed linear space. Moreover, the
infimal convolution G � ι∗

cepi H
is exact. Looking at the definition of Φ,

(2.5), one can see that dom Φ = dom g∗ × T ∗ so that dom Φ − êpi H =
(dom g∗ − dom H) × T ∗ and the required condition holds.

4 Bounds for subsolutions and supersolutions

In this section, we prove that any lsc subsolution of (1.1) is lower than or
equal to uLax and that any weakly lsc supersolution is greater than or equal to
uHopf . As in the scalar case, proofs are based on Clarke-Ledyaev’s mean value
inequalities. To avoid theoretical complications, we assume in this section
that X and T are Hilbert spaces (see [5, 12] for possible extensions to more
general spaces). Under appropriate assumptions we obtain that uHopf is the
unique solution of (1.1). Unless specified otherwise g is just a lsc proper
function defined on X and H : dom H ⊂ X∗ → T ∗ is just a mapping. In the
following, B denotes the unit ball of any spaces (X, T, X × T etc.).
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Proposition 6. Let u be a lsc subsolution of (1.1); then u 6 uLax.

Proof. According to (3.1) we have to prove that for any x, y ∈ X and any
t ∈ T+, one has

u(x, t) 6 g(x − y) + (t ◦ H)∗(y).

As u(., 0) ≤ g it suffices to prove that

u(x, t) 6 u(x − y, 0) + (t ◦ H)∗(y). (4.1)

If u(x − y, 0) = +∞, it is clear. If not, choose r < u(x, t) − u(x − y, 0). By
the multidirectional Mean Value Inequality due to Clarke and Ledyaev [7,
p. 117], there exists a point (z, s) ∈ [(x, t), (x − y, 0)] + B and a subgradient
(x∗, t∗) ∈ ∂F u(z, s) such that r < 〈y, x∗〉 + 〈t, t∗〉. Using the fact that u is a
subsolution, we know that H(x∗) 4∗ −t∗, and since t ∈ T+, we finally obtain

r < 〈y, x∗〉 − 〈t,H(x∗)〉 6 (t ◦ H)∗(y).

As r < u(x, t) − u(x − y, 0) is arbitrary, we get (4.1).

Theorem 4. Let g be lsc and proper, let epi H be closed and convex and let
uLax be regular. Then uLax is the greatest lsc subsolution of (1.1).

Proof. Apply Theorem 2 and Proposition 6.

When g and epi H are convex, we obtain (see [10] for the scalar case):

Theorem 5. Assume that g ∈ Γ0(X), that epi H is closed and convex and
that (2.3) holds. Then uHopf is the greatest lsc subsolution of (1.1).

Proof. By Theorem 1, uHopf is a subsolution. Theorem 3 ensures that uHopf

is the lsc hull of uLax. It then follows from Proposition 6 that uHopf is the
greatest lsc subsolution of (1.1).

From Proposition 1, we know that uHopf is convex and lsc. It follows that
uHopf is also weakly lsc. In the next result, we show that uHopf bounds from
below any weakly lsc supersolution of (1.1). As in the scalar case [10] the
proof relies on the Mean Value Inequality.

Proposition 7. Assume that H is Lipschitz continuous on its domain and
that g is lsc and proper. Then for any weakly lsc supersolution u of (1.1)
one has

uHopf 6 u in X × int T+.
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Proof. Let y∗ ∈ dom g∗ ∩ dom H and define

w(x, t) = u(x, t) − 〈x, y∗〉 + g∗(y∗) + 〈t,H(y∗)〉.

Observe that w is weakly lsc and w(., 0) > 0. We have to prove that w > 0
in X × int T+.

Assume the contrary: there exists (x̄, t̄) ∈ X × int T+ such that w(x̄, t̄) =
−α with α > 0. For any r > 0 we claim that there exists t in the line ]0, t̄[
such that

w(x, t) > −
α

2
for all x ∈ B(x̄, r). (4.2)

If such a t does not exist, then for any integer n > 1 there exists a point
xn ∈ B(x̄, r) such that w(xn,

1
n
t̄) < −α

2
. Considering a weakly convergent

subsequence xp ⇀ x, we therefore obtain the following contradiction:

0 6 w(x, 0) 6 lim inf
p→+∞

w

(
xp,

1

p
t̄

)
6 −

α

2
.

Let us set Y := B(x̄, r) × {t}. From (4.2) we get

∀(x, t) ∈ Y,w(x, t) − w(x̄, t̄) >
α

2
.

By the Mean Value Inequality [7, p. 117], for any ǫ > 0, there exists a point
(x, t) ∈ [(x̄, t̄), Y ] + ǫB and a subgradient (x∗, t∗) ∈ ∂F w(x, t) such that

〈x − x̄, x∗〉 + 〈t̄ − t, t∗〉 >
α

3
for all x ∈ B(x̄, r).

Looking at the definition of w, we observe that (x∗ + y∗, t∗ − H(y∗)) ∈
∂F u(x, t). Next, ǫ > 0 is chosen small enough in order to ensure that t ∈
int T+ and, consequently, H(x∗ + y∗) = H(y∗) − t∗. We then have

〈x − x̄, x∗〉 + 〈t − t̄, H(x∗ + y∗) − H(y∗)〉 >
α

3
for all x ∈ B(x̄, r).

If K denotes a Lipschitz constant of H, the previous inequality yields

−r|x∗| + K|t̄||x∗| >
α

3
.

A contradiction is obtained by choosing r = K|t̄|. Hence w(x̄, t̄) > 0 and
uHopf 6 u in X × int T+.

From Theorems 1 and 5 and Proposition 7, we obtain the following
uniqueness result.

Theorem 6. Assume that H is Lipschitz continuous on its domain, that
epi H is closed and convex and that g ∈ Γ0(X) with dom g∗ ⊂ dom H.
Then uHopf is a weakly lsc solution of (1.1) and any weakly lsc solution of
the vectorial Hamilton-Jacobi equation (1.1) coincides with uHopf on (X ×
int T+) ∪ X × {0}.
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5 Examples

5.1 Multitime Hamilton-Jacobi equations

In order to apply the results of the previous sections to multitime Hamil-
ton-Jacobi equations introduced by Lions and Rochet [11], we consider the
space X = R

n, the two convex cones T = R
n = T ∗, T+ = R

n
+ = T ∗

+ and the
n functions H1, . . . , Hn : R

n → R ∪ {+∞} and g : R
n → R ∪ {+∞}. The

corresponding multitime Hamilton-Jacobi equation is

∂u
∂ti

+ Hi(Dxu) = 0 in R
n × R+, 1 6 i 6 n,

u(x, 0) = g(x) in R
n.

Such a system may be written as in (1.1) by defining the mapping H as
follows:

H(x∗) = (H1(x
∗), . . . , Hn(x∗)) for all x∗ ∈ ∩n

i=1dom Hi.

We then have for any x ∈ R
n and any t = (t1, . . . , tn) ∈ R

n
+ :

uHopf(x, t) = (g∗ +
∑n

i=1 tiHi)
∗(x)

uLax(x, t) = g � (
∑n

i=1 tiHi)
∗(x)

Observe that if Hi ∈ Γ0(R
n) for i = 1, . . . , n, then epi H is closed and convex.

5.2 Linear vectorial Hamilton-Jacobi equations

Assume that X, T are Hilbert spaces, that A : X → T is continuous and
linear and denote by A∗ : T → X the associated transposed linear mapping.
Let also g be a lsc proper function defined on X and consider the following
linear vectorial Hamilton-Jacobi equation

Dtu(x, t) + A(Dxu(x, t)) = 0 in X × T,
u(x, 0) = g(x) in X.

(5.1)

Here H = A is continuous and linear so that its graph is a closed linear space.
Choosing T+ = T one has T ∗

+ = {0} so that the epigraph of H with respect
to T ∗

+ coincides with the graph of A and one has

(t ◦ H)∗(y) =

{
0 if A∗(t) = y
+∞ if not

It follows that uLax(x, t) = g(x − A∗(t)) for all (x, t) ∈ X × T and it is
regular. By Theorem 2 it is a lsc solution of the linear vectorial Hamilton-
Jacobi equation (5.1). By Theorem 5 it is the greatest lsc subsolution of (5.1).

11



The Hopf function is given by uHopf(x, t) = g∗∗(x−A∗(t)). If g ∈ Γ0(X) then
uHopf(x, t) = g(x − A∗(t)) is the unique weakly lsc solution of (5.1) (see
Theorem 6).

5.3 Schur vectorial order

Let us consider the Schur vectorial order on R
n which is associated with

the nonnegative convex cone

S = {y ∈ R
n :

k∑

i=1

yi > 0, 1 6 k < n,
n∑

i=1

yi = 0}.

Given a, b ∈ R
n, a 6S b means b− a ∈ S. The nonnegative polar cone of S is

R
n
> = {t ∈ R

n : t1 > . . . > tn}.

Given x ∈ R
n, we denote by [x] the element of R

n whose components are
those of x arranged in nondecreasing order. It turns out that the mapping

[ ] : R
n → R

n, x 7→ [x]

is S-convex (in fact sublinear; see for instance [6, p. 26]). The corresponding
vectorial Hamilton-Jacobi equation is

Dtu(x, t) + [Dxu(x, t)] = 0 in R
n × R

n
>

u(x, 0) = g(x) in R
n,

(5.2)

where g is a lsc proper function defined on R
n. Denoting by [x]i the ith greatest

component of x, one has for any (x, t) ∈ R
n × R

n
> :

uHopf(x, t) =

(
g∗ +

n∑

i=1

ti[ ]i

)∗

(x).

In order to explicit the Lax function we need a lemma. We denote by Q
the compact convex set of n× n bistochastic matrices. Let us first recall the
Hardy-Littlewood-Polya Theorem (see [4, p. 191]):

∀a, b ∈ R
n
> : a 6S b ⇔ ∃Q ∈ Q : a = Qb. (5.3)

Lemma 1. For any (y, t) ∈ R
n × R

n
> one has:

〈t, [y]〉 = sup{〈x, y〉 : (x, Q) ∈ R
n ×Q, x = Qt}.
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Proof. Let (x, Q) ∈ R
n ×Q with x = Qt. There exists a permutation matrix

P such that [x] = Px and we have [x] = (PQ)t with PQ bistochastic. By
(5.3) it follows that [x] 6S t. Since [y] ∈ R

n
> one has: 〈[x], [y]〉 6 〈t, [y]〉. Now

it is known (see [6, p. 10]) that 〈x, y〉 6 〈[x], [y]〉. Therefore the inequality >

holds in Lemma 1.
Conversely there is a permutation matrix M such that [y] = My; taking

x = M−1t one has 〈x, y〉 = 〈M−1t, y〉 = 〈t,My〉 so that the inequality 6

holds in Lemma 1.

As the set ∪Q∈QQt is compact and convex, it follows from Lemma 1 that
the Legendre-Fenchel conjugate of the support function t ◦ [ ] coincides with
the indicator function of this set. The Lax function can be written under the
following form:

Proposition 8. For any (x, t) ∈ R
n × R

n
> :

uLax(x, t) = min
Q∈Q

g(x − Qt).

The Lax function is regular; it is therefore the greatest lsc subsolution of
(5.2).

5.4 Vectorial Hamilton-Jacobi equations

in matrix spaces

In this subsection, X is the Euclidian space Sn of n×n real symmetric ma-
trices equipped with the scalar product 〈〈M, N〉〉 = trace (MN) and the two
cones T and T ∗ coincide with the finite dimensional space R

n equipped with
the canonical scalar product 〈., .〉. Let us consider the spectral mapping H =
λ that associates with any N ∈ Sn its eigenvalues λ(N) = (λ1(N), . . . , λn(N))
in such a way that λ1(N) > . . . > λn(N). Observe that λ(Sn) = R

n
>. An im-

portant property of the mapping λ = H : Sn → R
n is that it is continuous

and sublinear with respect to S [6, p. 10, 108]. In particular

epi λ = {(N, y) ∈ Sn × R
n : y − λ(N) ∈ S}

is a closed convex cone. Let us consider the underlying Hamilton-Jacobi
equation

Dtu(M, t) + λ(DMu(M, t)) = 0 in Sn × R
n
>,

u(M, 0) = g(M) in Sn,
(5.4)

where g is a lsc proper function defined on Sn.
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The Hopf function associated with (5.4) turns out to be

uHopf(M, t) =

(
g∗ +

n∑

i=1

λiti

)∗

(M)

for any M ∈ Sn and any t = (t1, . . . , tn) ∈ R
n
>.

In order to explicit the Lax function, we need a lemma.

Lemma 2. For any (M, t) ∈ Sn × R
n
> one has

(t ◦ λ)(M) = sup{〈〈M, N〉〉 : (N, Q) ∈ Sn ×Q, λ(N) = Qt}.

Proof. Let (N, Q) ∈ Sn ×Q with λ(N) = Qt. From (5.3) one has λ(N) 6S t.
Since λ(M) ∈ R

n
> it follows that 〈λ(N), λ(M)〉 6 〈t, λ(M)〉. Since 〈〈M, N〉〉 6

〈λ(M), λ(N)〉 (see [6, p. 10] for instance) we get the inequality > in Lemma 2.
Conversely, there exists an orthonormal matrix P such that P−1MP =

diag λ(M), where, for a given vector y ∈ R
n, diag (y) denotes the diagonal

matrix whose entries are y1, . . . , yn. One has

〈〈M, diag t〉〉 = 〈〈Pdiag λ(M)P−1, P diag t P−1〉〉

= 〈λ(M), t〉 = (t ◦ λ)(M).

The proof of the lemma is therefore achieved.

As the set {N ∈ Sn : ∃Q ∈ Q, λ(N) = Qt} is closed and convex, it follows
from Lemma 2 that the Legendre-Fenchel conjugate of the support function
t◦λ coincides with the indicator function of this set, so that the Lax function
can be expressed as follows.

Proposition 9. ∀(M, t) ∈ Sn × R
n
>,

uLax(M, t) = inf{g(M − N) : (N, Q) ∈ Sn ×Q, λ(N) = Qt}.
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