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On vectorial Hamilton-Jacobi equations

We consider the generalized Hopf and Lax functions associated with a vector-valued hamiltonian and we prove that they still provide lower semicontinuous solutions for the corresponding vectorial Hamilton-Jacobi equation in a very general context. Uniqueness of these generalized solutions is also investigated.

Introduction

We are concerned with Hamilton-Jacobi equations

D t u(x, t) + H(D x u(x, t)) = 0 in X × T + u(x, 0) = g(x) in X (1.1)
in which the variable t is not real but vectorial and the hamiltonian H is a vector-valued mapping. For instance, multitime Hamilton-Jacobi equations introduced by Lions and Rochet [START_REF] Lions | Hopf formula and multitime Hamilton-Jacobi equations[END_REF] enter into this framework. Let X, T be two real Banach spaces. Their respective topological duals are denoted by X * , T * . Consider a closed convex cone T + ⊂ T and define a vectorial preorder on T in the following way: for any s, t ∈ T, s t ⇔ ts ∈ T + .

(1.

2)

The bilinear couplings between X and X * and between T and T * are both denoted by •, • . The set of all continuous linear forms defined on X which are nonnegative on T + is denoted by T * + :

T * + = {t * ∈ T * : ∀t ∈ T + , t, t * 0}.
The w * -closed convex cone T * + coincides with the set of continuous linear forms defined on T that are nondecreasing with respect to (1.2). Moreover T * + induces a vectorial preorder on T * : for any s * , t * ∈ T * , s * * t * ⇔ t *s * ∈ T * + .

(1.3)

Let us introduce a mapping H defined on a nonempty subset dom H of X * with values in T * : H : dom H ⊂ X * -→ T * (1.4) and a lower semicontinuous (lsc for short) proper function g : X -→ R ∪ {+∞}.

One says that H is T * + -convex if dom H is convex and if for any x * , y * ∈ dom H, λ ∈ [0, 1], one has

H(λx * + (1 -λ)y * ) * λH(x * ) + (1 -λ)H(y * ).
Defining the epigraph of H by epi H = {(x * , t * ) ∈ X * × T * : t * * H(x * )}, the T * + -convexity of H is equivalent to the convexity of its epigraph. Before making precise in which sense (1.1) is solved, we need to recall what a subgradient is. For a given function u :

X × T + → R ∪ {+∞}, a couple of vectors (x * , t * ) ∈ X * × T * is a so-called Fréchet subgradient of u at a point (x, t) ∈ X × T + if for any (y, s) ∈ X × T + , y -x, x * + s -t, t * u(y, s) -u(x, t) + o(|(y, s) -(x, t)|) (1.5)
where o(•) is a function such that o(x)/|x| → 0 as x → 0. The couple (x * , t * ) ∈ X * × T * is said to be a subgradient in the sense of convex analysis if (1.5) is true with o(•) ≡ 0. The set of all Fréchet subgradients (resp. subgradients in the sense of convex analysis) is referred to as the Fréchet subdifferential (resp. subdifferential in the sense of convex analysis) of u at (x, t) and is denoted by ∂ F u(x, t) (resp. ∂u(x, t)). Generalized solutions of (1.1) are defined by adapting Crandall-Lions' notion of viscosity solution [START_REF] Crandall | Viscosity solutions of Hamilton-Jacobi equations[END_REF] or some extensions of it [START_REF] Barron | Semicontinuous viscosity solutions of Hamilton-Jacobi equations with convex hamiltonians[END_REF][START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacolbi-Bellman equations[END_REF]. A lsc proper function u :

X×T + → R∪{+∞} is a subsolution of (1.1) if for any (x, t) ∈ X×T + , any (x * , t * ) ∈ ∂ F u(x, t), one has t * + H(x * ) * 0 and if u(x, 0) g(x) for any x ∈ X. The function u is a supersolution of (1.1) if for any (x, t) ∈ X ×int T + , any (x * , t * ) ∈ ∂ F u(x, t), one has t * + H(x * ) * 0 and if u(x, 0) g(x)
for any x ∈ X. The function u is a solution of (1.1) if it is both a subsolution and a supersolution. Note that the concept of supersolution is inoperative if the topological interior of the ordering convex cone T + is empty.

The reader may observe that if int T + is nonempty, then the dual cone T * + is pointed so that T * is partially ordered instead of partially preordered. Therefore any solution u of (1.1) satisfies for any (x * , t * ) ∈ ∂ F u(x, t) with t ∈ int T + : t * = -H(x * ). A referee kindly pointed out to us that the previous observation remains valid if one extends the concept of supersolution by replacing the topological interior of T + with

T i + = {t ∈ T : ∀t * ∈ T * + \ {0}, t, t * > 0}.
Nevertheless, although many results of the paper can be stated with this concept of supersolution, our proof of Proposition 7 requires the topological interior of T + to be nonempty.

The paper is organized as follows. In Section 2, we introduce the generalized Hopf function and describe its subdifferential (Proposition 3). When g and epi H are convex, we prove that u Hopf is a solution of (1.1) (Theorem 1). The generalized Lax function is considered in Section 3. Under a regularity assumption we prove that u Lax is a solution of (1.1) (Theorem 2). Next we prove that the lsc convex hull of u Lax coincides with u Hopf (Theorem 3). The uniqueness of the solution of (1.1) is studied in Section 4; we prove that u Lax and u Hopf are respectively the greatest lsc subsolution and the lowest weakly lsc supersolution (Theorems 4,[START_REF] Borwein | Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity[END_REF][START_REF] Borwein | Convex analysis and nonlinear optimization[END_REF]. Several examples are presented in Section 5.

The remaining of the section is devoted to definitions and notations that are used throughout.

Let Z denote an arbitrary Banach space and consider a function f : Z → R ∪ {+∞}. The Legendre-Fenchel conjugate of f is denoted by f * and is defined on Z * by the following formula:

f * (z * ) = sup z∈Z { z * , z -f (z)}.
The function f * * =(f * ) * defined on Z instead of Z * * turns out to be the greatest lsc and convex function bounding f from below. It is known as the lsc convex hull of f while the lsc hull of f is denoted by f and is defined by:

f(z) = lim inf y→z f (y).
As usual Γ 0 (Z) denotes the set of lsc proper convex functions defined on Z and Γ 0 (Z * ) denotes the set of weakly-⋆ lsc proper convex functions defined on Z * . Subgradients (in the sense of convex analysis) z * ∈ ∂f (z) are characterized by the so-called Fenchel's equality:

z * , z = f (z) + f * (z * ),
while Fenchel's inequality holds true for any z * , z :

z * , z f (z) + f * (z * ).
Consider two arbitrary sets A, B ⊂ Z. Then [A, B] denotes the convex hull of A ∪ B. To finish with, the indicator function of A is denoted by ι A and is defined by

setting ι A (z) = 0 if z ∈ A and ι A (z) = +∞ if z / ∈ A.

The generalized Hopf function

In this section, we assume that g is lsc and proper and we consider a mapping H as in (1.4). For any t ∈ T + , let us define the composite function

(t • H)(x * ) = t, H(x * ) if x * ∈ dom H, +∞ if not. Observe that t•H is convex if H is T * + -convex.
The generalized Hopf function is defined as a certain Legendre-Fenchel conjugate with respect to the x variable: for any (x, t)

∈ X × T + , u Hopf (x, t) = (g * + t • H) * (x) (2.1)
that is to say

u Hopf (x, t) = sup x * ∈dom g * ∩dom H x, x * -g * (x * ) -t, H(x * ) . (2.2)
In order to ensure that u Hopf does not equal -∞, we assume that

dom g * ∩ dom H = ∅. (2.3) 
Throughout, some functions u are only defined on X × T + (as u Hopf ). It is convenient to set u(x, t) = +∞ for (x, t) / ∈ X × T + so that u is defined on the whole space X × T.

Proposition 1. The Hopf function belongs to Γ 0 (X × T ) and one has u Hopf (., 0) g.

(2.4)

Equality holds true in (2.4) if g is convex and if dom g * ⊂ dom H.
Proof. From (2.2), we get that u Hopf is the supremum of a family of continuous linear functions on X × T. Moreover, one has

u Hopf (x, 0) = (g * + ι dom H ) * (x) g(x).
This implies that u Hopf is proper and that u Hopf (., 0) = g * * = g whenever dom g * ⊂ dom H and g is convex.

We now explain how to rewrite u Hopf as a Legendre-Fenchel conjugate with respect to the (x, t) variable (see [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF] for the scalar case). Let us define a function Φ ∈ Γ 0 (X * × T * ) by

Φ(x * , t * ) = g * (x * ), (2.5) 
and let us introduce the symmetrical of the epigraph of H with respect to the X * -axis:

epi H = {(x * , t * ) ∈ X * × T * : H(x * ) * -t * },
We claim that

Proposition 2. u Hopf = (Φ + ι c epi H ) * .
The following corollary provides upper and lower estimates of the Legendre-Fenchel conjugate of u Hopf . For an arbitrary set A, co A denotes the w * -closed convex hull of A. Remark 1. In the scalar case (T = R), when dom g * ⊂ dom H, (2.9), (2.10) and Proposition 3 entail that u Hopf is a supersolution of (1.1) (see [START_REF] Alvarez | Hopf-Lax formulas for semicontinuous data[END_REF]).

Corollary 1. Φ + ι co c epi H u * Hopf Φ + ι c epi H . Let us
In view of (2.8), it seems interesting to investigate what happens when the epigraph of H is w * -closed and convex.

Theorem 1. Assume that g is lsc and proper, that epi H is w * -closed and convex, and that (2.3) holds. Then for any (x * , t * ) ∈ ∂ F u Hopf (x, t), t ∈ T + (resp. t ∈ int T + ), we have t * + H(x * ) * 0 (resp. t * + H(x * ) = 0). In particular, u Hopf is a subsolution of (1.1). Moreover, if dom g * ⊂ dom H and g is convex, then u Hopf is a solution of (1.1).

Proof. Let (x * , t * ) ∈ ∂ F u Hopf (x, t) = ∂u Hopf (x, t).
As epi H is w * -closed and convex, (2.8) reads H(x * ) * -t * and, since u Hopf (., 0) g, u Hopf is a subsolution. Moreover, by (2.10), one has t, H(x * ) + t * 0. Now since H(x * ) + t * * 0, the linear form s → s, H(x * ) + t * is nonpositive on T + . Therefore, if t belongs to int T + , then t is a local maximum of the linear form, so that H(x * ) + t * = 0. Consequently, when dom g * ⊂ dom H, u Hopf is a solution of (1.1).

The study of the Hopf function when g = ι {0} will be useful in the following. In this case, g * = 0, Φ = 0 and we have (see Proposition 2)

u Hopf (x, t) = ι * c epi H (x, t) = (t • H) * (x) if (x, t) ∈ X × T + +∞ if not.
It therefore follows from Theorem 1 that Corollary 2. Assume that epi H is w * -closed and convex and consider a point (x, t) ∈ X × T + . Then for any (x * , t * ) ∈ ∂ι * c epi H (x, t), one has

t * + H(x * ) * 0.
If, moreover, t belongs to int T + , then t * + H(x * ) = 0.

The generalized Lax function

Let g : X → R ∪ {+∞} be a lsc proper function and assume that epi H is nonempty, w * -closed and convex. The generalized Lax function is defined as a certain infimal convolution (denoted by ) with respect to the x variable:

u Lax (x, t) = [g (t • H) * ](x) if (x, t) ∈ X × T + +∞ if not.
For any (x, t) ∈ X × T + one has by definition,

u Lax (x, t) = inf y∈X [g(x -y) + (t • H) * (y)]. (3.1)
The infimal convolution defining u Lax is said to be exact if the infimum in (3.1) is attained.

If no further assumptions are made, u Lax is neither convex nor lsc. Observe that u Lax (., 0) = g ι * dom H g, which implies that u Lax is not identically equal to +∞. But u Lax may take the value -∞. As in the scalar case [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF], the generalized Lax function can be expressed as an infimal convolution of two functions defined on X × T by using the following function

G(x, t) = g(x) if t = 0, +∞ if not. Proposition 4. u Lax = G ι * c epi H . Corollary 3. If g is convex, so is u Lax .
We know from Theorem 1 that u Hopf is a subsolution of (1.1). In order to prove that so is u Lax , a regularity condition is required. As in [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF], the generalized Lax function is said to be regular if it is lsc, proper and if the infimal convolution in (3.1) is exact when finite. Such a condition holds true under assumptions of Proposition 5 and in Examples 5.1 and 5.2 below. In the scalar case, several sufficient conditions can be found in [START_REF] Penot | Explicit solutions to Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF], Prop. 3.1.

Theorem 2. Let g be lsc and proper and assume that epi H is nonempty, w * -closed and convex. Moreover, assume that u Lax is regular. Then it is a subsolution of (1.1). If, moreover, dom H = X * or if dom g * ⊂ dom H and g ∈ Γ 0 (X), then u Lax is a solution of (1.1).

Proof. Let (x * , t * ) ∈ ∂ F u Lax (x, t). As u Lax is regular, the infimal convolution in (3.1) is exact. It therefore follows from Proposition 4 and the well-known subdifferential calculus rule (see e.g. Lemma 5 in [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF]) that there exists y ∈ X such that

(x * , t * ) ∈ ∂ F G(x -y, 0) ∩ ∂ F ι * c epi H (y, t).
Since epi H is convex, (x * , t * ) ∈ ∂ι * c epi H (y, t) and by Corollary 2, one has H(x * ) * -t * , that is to say u Lax is a subsolution. If, moreover, t belongs to int T + , then Corollary 2 implies that H(x * ) = -t * ; it follows that u Lax is a solution of (1.1) provided that g ι * dom H g holds true. Such an inequality is verified if dom H = X * or if dom g * ⊂ dom H and g ∈ Γ 0 (X). Proposition 6. Let u be a lsc subsolution of (1.1); then u u Lax .

Proof. According to (3.1) we have to prove that for any x, y ∈ X and any t ∈ T + , one has u(x, t) g(xy) + (t • H) * (y).

As u(., 0) ≤ g it suffices to prove that

u(x, t) u(x -y, 0) + (t • H) * (y). (4.1) 
If u(xy, 0) = +∞, it is clear. If not, choose r < u(x, t)u(xy, 0). By the multidirectional Mean Value Inequality due to Clarke and Ledyaev [7, p. 117], there exists a point (z, s) ∈ [(x, t), (xy, 0)] + B and a subgradient (x * , t * ) ∈ ∂ F u(z, s) such that r < y, x * + t, t * . Using the fact that u is a subsolution, we know that H(x * ) * -t * , and since t ∈ T + , we finally obtain

r < y, x * -t, H(x * ) (t • H) * (y).
As r < u(x, t)u(xy, 0) is arbitrary, we get (4.1).

Theorem 4. Let g be lsc and proper, let epi H be closed and convex and let u Lax be regular. Then u Lax is the greatest lsc subsolution of (1.1).

Proof. Apply Theorem 2 and Proposition 6.

When g and epi H are convex, we obtain (see [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF] for the scalar case):

Theorem 5. Assume that g ∈ Γ 0 (X), that epi H is closed and convex and that (2.3) holds. Then u Hopf is the greatest lsc subsolution of (1.1).

Proof. By Theorem 1, u Hopf is a subsolution. Theorem 3 ensures that u Hopf is the lsc hull of u Lax . It then follows from Proposition 6 that u Hopf is the greatest lsc subsolution of (1.1).

From Proposition 1, we know that u Hopf is convex and lsc. It follows that u Hopf is also weakly lsc. In the next result, we show that u Hopf bounds from below any weakly lsc supersolution of (1.1). As in the scalar case [START_REF] Imbert | Convex analysis techniques for Hopf-Lax formulae in Hamilton-Jacobi equations[END_REF] the proof relies on the Mean Value Inequality. Proposition 7. Assume that H is Lipschitz continuous on its domain and that g is lsc and proper. Then for any weakly lsc supersolution u of (1.1) one has u Hopf u in X × int T + .

Proof. Let y * ∈ dom g * ∩ dom H and define w(x, t) = u(x, t)x, y * + g * (y * ) + t, H(y * ) .

Observe that w is weakly lsc and w(., 0) 0. We have to prove that w 0 in X × int T + . Assume the contrary: there exists (x, t) ∈ X × int T + such that w(x, t) = -α with α > 0. For any r > 0 we claim that there exists t in the line ]0, t[ such that w(x, t) -α 2 for all x ∈ B(x, r).

(4.2)
If such a t does not exist, then for any integer n 1 there exists a point

x n ∈ B(x, r) such that w(x n , 1 n t) < -α 2 .
Considering a weakly convergent subsequence x p ⇀ x, we therefore obtain the following contradiction:

0 w(x, 0) lim inf p→+∞ w x p , 1 p t - α 2 .
Let us set Y := B(x, r) × {t}. From (4.2) we get

∀(x, t) ∈ Y, w(x, t) -w(x, t) α 2 .
By the Mean Value Inequality [7, p. 117], for any ǫ > 0, there exists a point (x, t) ∈ [(x, t), Y ] + ǫB and a subgradient (x * , t * ) ∈ ∂ F w(x, t) such that

xx, x * + tt, t * α 3 for all x ∈ B(x, r).

Looking at the definition of w, we observe that (x * + y * , t * -H(y * )) ∈ ∂ F u(x, t). Next, ǫ > 0 is chosen small enough in order to ensure that t ∈ int T + and, consequently, H(x * + y * ) = H(y * )t * . We then have

xx, x * + t -t, H(x * + y * ) -H(y * ) α 3 for all x ∈ B(x, r).

If K denotes a Lipschitz constant of H, the previous inequality yields

-r|x * | + K| t||x * | α 3 .
A contradiction is obtained by choosing r = K| t|. Hence w(x, t) 0 and u Hopf u in X × int T + .

From Theorems 1 and 5 and Proposition 7, we obtain the following uniqueness result. Theorem 6. Assume that H is Lipschitz continuous on its domain, that epi H is closed and convex and that g ∈ Γ 0 (X) with dom g * ⊂ dom H. Then u Hopf is a weakly lsc solution of (1.1) and any weakly lsc solution of the vectorial Hamilton-Jacobi equation (1.1) coincides with u Hopf on (X × int T + ) ∪ X × {0}.

The Hopf function is given by u Hopf (x, t) = g * * (x -A * (t)). If g ∈ Γ 0 (X) then u Hopf (x, t) = g(x -A * (t)) is the unique weakly lsc solution of (5.1) (see Theorem 6).

Schur vectorial order

Let us consider the Schur vectorial order on R n which is associated with the nonnegative convex cone

S = {y ∈ R n : k i=1 y i 0, 1 k < n, n i=1 y i = 0}. Given a, b ∈ R n , a S b means b -a ∈ S. The nonnegative polar cone of S is R n = {t ∈ R n : t 1 . . . t n }.
Given x ∈ R n , we denote by [x] the element of R n whose components are those of x arranged in nondecreasing order. It turns out that the mapping

[ ] : R n → R n , x → [x]
is S-convex (in fact sublinear; see for instance [6, p. 26]). The corresponding vectorial Hamilton-Jacobi equation is

D t u(x, t) + [D x u(x, t)] = 0 in R n × R n u(x, 0) = g(x) in R n , (5.2) 
where g is a lsc proper function defined on R n . Denoting by [x] i the i th greatest component of x, one has for any (x, t) ∈ R n × R n :

u Hopf (x, t) = g * + n i=1 t i [ ] i * (x).
In order to explicit the Lax function we need a lemma. We denote by Q the compact convex set of n × n bistochastic matrices. Let us first recall the Hardy-Littlewood-Polya Theorem (see [4, p. 191 for any M ∈ S n and any t = (t 1 , . . . , t n ) ∈ R n .

In order to explicit the Lax function, we need a lemma.

Lemma 2. For any (M, t) ∈ S n × R n one has

(t • λ)(M ) = sup{ M, N : (N, Q) ∈ S n × Q, λ(N ) = Qt}.
Proof. Let (N, Q) ∈ S n × Q with λ(N ) = Qt. From (5.3) one has λ(N ) S t.

Since λ(M ) ∈ R n it follows that λ(N ), λ(M ) t, λ(M ) . Since M, N λ(M ), λ(N ) (see [6, p. 10] for instance) we get the inequality in Lemma 2.

Conversely, there exists an orthonormal matrix P such that P -1 M P = diag λ(M ), where, for a given vector y ∈ R n , diag (y) denotes the diagonal matrix whose entries are y 1 , . . . , y n . One has M, diag t = P diag λ(M )P -1 , P diag t P -1

= λ(M ), t = (t • λ)(M ).

The proof of the lemma is therefore achieved.

As the set {N ∈ S n : ∃Q ∈ Q, λ(N ) = Qt} is closed and convex, it follows from Lemma 2 that the Legendre-Fenchel conjugate of the support function t• λ coincides with the indicator function of this set, so that the Lax function can be expressed as follows. 

. 3 ) 1 .

 31 ]): ∀a, b ∈ R n : a S b ⇔ ∃Q ∈ Q : a = Qb.(5Lemma For any (y, t) ∈ R n × R n one has: t, [y] = sup{ x, y : (x, Q) ∈ R n × Q, x = Qt}.The Hopf function associated with (5.4) turns out to be u Hopf (M, t) = g * +

Proposition 9 .

 9 ∀(M, t) ∈ S n × R n , u Lax (M, t) = inf{g(M -N ) : (N, Q) ∈ S n × Q, λ(N ) = Qt}.

  study the Fréchet subdifferential of the Hopf function. Consider an arbitrary point (x, t) ∈ X × T + and an arbitrary subgradient (x * , t * ) ∈ ∂ F u Hopf (x, t) = ∂u Hopf (x, t). By Corollary 1 and (2.5), we know that x * ∈ dom g

	)	(2.7)
	Combining (2.6) and (2.7), we finally obtain that	
	0 t, t one has	
	(x * , t * ) ∈ co epi H	(2.8)
	x * ∈ dom g *	(2.9)
	t, t	

* and (x * , t * ) ∈ co epi H. Using Fenchel's equality, we get x, x * + t, t * u Hopf (x, t) + g * (x * ). (2.6) Besides, we notice that x * ∈ ∂u Hopf (., t)(x). Hence Fenchel's equality and (2.1) yield x, x * = u Hopf (x, t) + (g * + t • H) * * (x * ) u Hopf (x, t) + g * (x * ) + (t • H)(x * * + (t • H)(x * ). Let us gather what we just proved in the following proposition. Proposition 3. For any (x, t) ∈ X × T + and any (x * , t * ) ∈ ∂ F u Hopf (x, t), * + (t • H)(x * ) 0 (2.10)
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The next result enlights an interesting link between the two functions u Hopf and u Lax . Theorem 3. Let g be lsc and proper and suppose that epi H is w * -closed and convex. Assume moreover that dom g * ∩ dom H = ∅.

Then u Lax is proper and u * Lax = u * Hopf so that u Hopf is the lsc convex hull of u Lax .

If moreover g is convex, then u Hopf is the lsc hull of u Lax .

Proof. Observe that G * = Φ (see (2.5)). Using Propositions 4 and 2, we get

We then obtain u * * Lax = u Hopf and since u Hopf is proper, u Lax does not take the value -∞. If g is convex, u Lax is also convex and the lsc hull of u Lax coincides with u * * Lax = u Hopf . We just have seen that when g is convex u Lax and u Hopf are very close. Let us give a condition under which they coincide. Proposition 5. Assume that X, T are reflexive spaces, that g ∈ Γ 0 (X) and that cone (dom g *dom H) is a closed linear space. Then u Lax is regular and it coincides with u Hopf .

Proof. By Attouch-Brezis Theorem [START_REF] Attouch | Duality for the sum of convex functions in general Banach spaces[END_REF] one has

whenever cone (dom Φepi H) is a closed linear space. Moreover, the infimal convolution G ι * c epi H is exact. Looking at the definition of Φ, (2.5), one can see that dom Φ = dom g * × T * so that dom Φepi H = (dom g *dom H) × T * and the required condition holds.

Bounds for subsolutions and supersolutions

In this section, we prove that any lsc subsolution of (1.1) is lower than or equal to u Lax and that any weakly lsc supersolution is greater than or equal to u Hopf . As in the scalar case, proofs are based on Clarke-Ledyaev's mean value inequalities. To avoid theoretical complications, we assume in this section that X and T are Hilbert spaces (see [START_REF] Borwein | Viscosity solutions and viscosity subderivatives in smooth Banach spaces with applications to metric regularity[END_REF][START_REF] Penot | Explicit solutions to Hamilton-Jacobi equations under mild continuity and convexity assumptions[END_REF] for possible extensions to more general spaces). Under appropriate assumptions we obtain that u Hopf is the unique solution of (1.1). Unless specified otherwise g is just a lsc proper function defined on X and H : dom H ⊂ X * → T * is just a mapping. In the following, B denotes the unit ball of any spaces (X, T, X × T etc.).

Examples

Multitime Hamilton-Jacobi equations

In order to apply the results of the previous sections to multitime Hamilton-Jacobi equations introduced by Lions and Rochet [START_REF] Lions | Hopf formula and multitime Hamilton-Jacobi equations[END_REF], we consider the space X = R n , the two convex cones T = R n = T * , T + = R n + = T * + and the n functions H 1 , . . . , H n : R n → R ∪ {+∞} and g : R n → R ∪ {+∞}. The corresponding multitime Hamilton-Jacobi equation is

Such a system may be written as in (1.1) by defining the mapping H as follows:

. . , n, then epi H is closed and convex.

Linear vectorial Hamilton-Jacobi equations

Assume that X, T are Hilbert spaces, that A : X → T is continuous and linear and denote by A * : T → X the associated transposed linear mapping. Let also g be a lsc proper function defined on X and consider the following linear vectorial Hamilton-Jacobi equation

in X.

(5.1)

Here H = A is continuous and linear so that its graph is a closed linear space.

Choosing T + = T one has T * + = {0} so that the epigraph of H with respect to T * + coincides with the graph of A and one has

It follows that u Lax (x, t) = g(x -A * (t)) for all (x, t) ∈ X × T and it is regular. By Theorem 2 it is a lsc solution of the linear vectorial Hamilton-Jacobi equation (5.1). By Theorem 5 it is the greatest lsc subsolution of (5.1).

Proof. Let (x, Q) ∈ R n × Q with x = Qt. There exists a permutation matrix P such that [x] = P x and we have [x] = (P Q)t with P Q bistochastic. By (5.3) 

. Now it is known (see [6, p. 10]) that x, y

[x], [y] . Therefore the inequality holds in Lemma 1.

Conversely there is a permutation matrix M such that [y] = M y; taking x = M -1 t one has x, y = M -1 t, y = t, M y so that the inequality holds in Lemma 1.

As the set ∪ Q∈Q Qt is compact and convex, it follows from Lemma 1 that the Legendre-Fenchel conjugate of the support function t • [ ] coincides with the indicator function of this set. The Lax function can be written under the following form:

The Lax function is regular; it is therefore the greatest lsc subsolution of (5.2).

Vectorial Hamilton-Jacobi equations in matrix spaces

In this subsection, X is the Euclidian space S n of n×n real symmetric matrices equipped with the scalar product M, N = trace (M N ) and the two cones T and T * coincide with the finite dimensional space R n equipped with the canonical scalar product ., . . Let us consider the spectral mapping H = λ that associates with any N ∈ S n its eigenvalues λ(N ) = (λ 1 (N ), . . . , λ n (N )) in such a way that λ 1 (N ) . . . λ n (N ). Observe that λ(S n ) = R n . An important property of the mapping λ = H : S n → R n is that it is continuous and sublinear with respect to S [6, p. where g is a lsc proper function defined on S n .