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We study the regularity of propagating fronts whose motion is anisotropic. We prove that there is at most one normal direction at each point of the front; as an application, we prove that convex fronts are C 1,1 . These results are by-products of some necessary conditions for viscosity solutions of quasilinear elliptic equations. These conditions are of independent interest; for instance they imply some regularity for viscosity solutions of nondegenerate quasilinear elliptic equations.

Introduction

Following [START_REF] Bellettini | Anisotropic motion by mean curvature in the context of Finsler geometry[END_REF][START_REF] Nochetto | Numerical analysis of geometric motion of fronts[END_REF], we study propagating fronts whose velocity field v Φ is given by the following geometric law:

v Φ = (κ Φ + g)n Φ ,
where n Φ and κ Φ are respectively the inward normal direction and the mean curvature associated with a Finsler metric Φ; g denotes a possible (bounded) driving force.

The main result of this paper states that under appropriate assumptions, there is at most one (outward or inward) "normal direction" at each point of the front.

In order to define the front past singularities, we use the level-set approach initiated by Barles [START_REF] Barles | Remark on a flame propagation model[END_REF] and developed by Osher and Sethian [START_REF] Osher | Fronts moving with curvature dependent speed: Algorithms based on hamilton-jacobi equations[END_REF]. This approach consists in describing the front Γ t at time t as the zero level-set of a (continuous or discontinuous) function u : Γ t = {x : u(x, t) = 0}. Choosing first a continuous function u 0 such that the initial front Γ 0 coincides with {x : u 0 (x) = 0} (consider for instance the signed distance function to Γ 0 ), u turns out to be a solution of the following Hamilton-Jacobi equation: where Du and D 2 u denotes the first and second derivative in x of the function u and Φ • denotes the dual metric associated with Φ. This equation is known as the anisotropic mean curvature equation. It is solved by using viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. The function u depends on the choice of u 0 , but not the front Γ t , even not the two families of sets O t = {x : u(x, t) > 0} and I t = {x : u(x, t) < 0} [START_REF] Evans | Motion of level sets by mean curvature, I[END_REF][START_REF] Gang | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF][START_REF] Ishii | Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor[END_REF]. The definition of the front is therefore consistent and the notions of "outside"and "inside" become precise.

The study of the normal directions reduces to the study of the semi-jets of discontinuous semisolutions of (1.1). This latter study is persued by using necessary conditions derived for viscosity solutions of degenerate elliptic and parabolic quasilinear equations. Besides, these conditions are of independent interest. For instance, we derive from them regularity of viscosity solutions of nondegenerate quasilinear elliptic and parabolic equations.

The paper is organized as follows. In Section 2, we first give assumptions and recall definitions that are used in the paper. In particular, the Finsler metric and its dual are introduced and the definition of normal directions and semijets are recalled. In Section 3, we state and prove our main results (Theorem 1 and Corollary 1). Eventually, in Section 4, we present the necessary conditions used in the proof of Theorem 1.

Assumptions and definitions

In this section, we give assumptions and definitions that are used throughout the paper.

2.1. Anisotropic motion. In order to take into account the anisotropy and the inhomogeneity of the environment in which the front propagates, the metric induced by the Euclidian norm is replaced with a so-called Finsler metric. In our context, a Finsler metric Φ is the support function of a given compact set denoted by B Φ • (x) :

Φ(ζ, x) = max{ ζ, ζ * : ζ * ∈ B Φ • (x)}.
The set B Φ • (x) is referred to as the Wulff shape. Here are the assumptions we make concerning Φ and B Φ • (x).

A0. (i) The Wulff shape B Φ • (x) is a compact set that contains the origin in its interior and is symmetric with respect to it; 

(ii) Φ ∈ C 2 (R n \{0} × R n ); (iii) for all x ∈ R n , ζ → [Φ(ζ, x)] 2 is strictly convex. For a given x ∈ R n , the dual metric Φ • is defined as the support function of the set B Φ (x) = {ζ ∈ R n : Φ(ζ,
→ Φ • (ζ, x
) is a support function; indeed, a support function is convex and linear along half-lines issued from the origin. Consequently:

D ζζ Φ • (ζ, x) 0 and ζ ∈ KerD ζζ Φ • (ζ, x),
where denotes the usual order associated with S n , the space of n × n symmetric matrices. A second example of motion is the following: consider a (riemannian

) metric Φ(ζ, x) = Φ(ζ) = Gζ, ζ
where G ∈ S n is definite positive. The associated dual metric turns out to be Φ

• (ζ * ) = G -1 ζ * , ζ * .
Finally, let us give a third example in which the inhomogeneity of the environment is taken into account: Φ(ζ, x) = a(x) Gζ, ζ , where a ∈ C 2 (R n ) and a(x) > 0 for all x ∈ R n . The reader can check that in these three examples the kernel of D ζζ Φ • (ζ, x) coincides with Span{ζ}. We next assume that the Finsler metric verifies such a property.

A1. ∀x ∈ R n , ∀ζ ∈ R n \{0}, KerD ζζ Φ • (ζ, x) = Span{ζ}.
We also need the following additional assumption.

A2. There exists L > 0 such that for all x, y ∈ R n and all

ζ * ∈ R n , |Φ • (ζ * , y) -Φ • (ζ * , x)| L |ζ * | |y -x|.
2.2. Semi-jets, P-subgradients and P-normals. We solve (4.1) and (4.2) by using viscosity solutions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]. In order to ensure the existence of a solution (using for instance results from [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF][START_REF] Nochetto | Numerical analysis of geometric motion of fronts[END_REF]), we assume throughout the paper that the initial front is bounded. Unboundedness of the domain can be handled with results from [START_REF] Barles | Front propagation and phase field theory[END_REF]. The definition of viscosity solutions is based on the notion of semi-jets. Let Ω be a subset of R n and u be a numerical function defined on Ω and x be a point in Ω. A couple (X, p) ∈ S n × R n is a so-called subjet (resp. a superjet) of the function u at x (with respect to Ω) if for all y ∈ Ω :

1 2 X(y -x), y -x + p, y -x u(y) -u(x) + o(|y -x| 2 ) (2.2) resp. 1 2 X(y -x), y -x + p, y -x u(y) -u(x) + o(|y -x| 2 ) , (2.3) 
where o(.) is a function such that o(h)/h → 0 as h → 0 + . The set of all the subjets (resp. superjets) of u at x is denoted by J 2,- Ω u(x) (resp. by J 2,+ Ω u(x)). In order to define viscosity solutions for parabolic equations, one must use so-called parabolic semi-jets P 2,- Ω×[0,T ] u(x, t); see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for their definition.

A vector p that there exists X ∈ S n such that (X, p) ∈ J 2,- Ω u(x) is a so-called P-subgradient [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF] of the function u :

∀y ∈ Ω, p, y -x u(y) -u(x) + O(|y -x| 2 ).
The set of all such vectors is referred to as the proximal subdifferential of the function u and it is denoted by ∂ P u(x). Analogously, a proximal superdifferential (hence P-supergradients) can be defined by ∂ P u(x) = -∂ P (-u)(x). It coincides with the sets of vectors p such that ∃X ∈ S n : (X, p) ∈ J 2,+ Ω u(x). The geometry of a set Ω can be investigated by studying subjets of the function denoted by Zero Ω defined on Ω and that is identically equal to 0. The proximal subdifferential of this function coincides with the proximal normal cone of Ω at x [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]:

N P (Ω, x) = {p ∈ R n : ∀y ∈ Ω, p, y -x O(|y -x| 2 )}.
An element of N P (Ω, x) is referred to as a P-normal. If p is a P-normal of Ω at x and λ is a nonnegative number, then λp is still a P-normal. From the geometrical viewpoint, one can say that N P (Ω, x) is a cone, that is to say it is made of half-lines issued from the origin. Crandall, Ishii and Lions [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] proved that for a set with a C 2 boundary:

J 2,- Ω Zero(x) = {(S(x) -Y, λn(x)) : λ ≥ 0, Y 0},
where n(x) denotes the normal vector and S(x) denotes the second fundamental form extended to R n by setting S = 0 along Span{n(x)}. The proximal normal cone is therefore reduced to R + n(x) = {λn(x) : λ 0}. If Ω is a hyperplan and n = 0 denotes a normal vector from H ⊥ , then N P (Ω, x) is the whole line Span{n}.

Main results

In this section, we state and prove our main results, namely Theorem 1 and Corollary 1. The proof of Theorem 1 rely on necessary conditions verified by solutions of possibly degenerate elliptic and parabolic quasilinear equations; these conditions are presented in Section 4.

Theorem 1. Consider a Finsler metric Φ satisfying A0, A1 and A2. Then the associated propagating front Γ t , t > 0, has at most one "outward normal direction" (resp. "inward normal direction"), that is to say the proximal normal cone at any point of I t ∪ Γ t or at any point of I t (resp. O t ∪ Γ t or O t ) is at most a line.

Remarks. 1. Assumptions A0 and A2 ensure the existence and uniqueness of the solution u of (1.1). Assumption A1 can be seen as a regularity assumption on the Franck diagram.

2. Theorem 1 remains valid if the front "fattens" (see [START_REF] Souganidis | Front propagation: Theory and applications[END_REF] for details about the fattening phenomena).

Theorem 1 implies the regularity of convex fronts. See also Theorem 5.5 in [START_REF] Evans | Motion of level sets by mean curvature, III[END_REF]. Corollary 1. Let the metric Φ be independent of the position and such that A0, A1 are satisfied. Assume that the initial front Γ 0 is convex. Then the associated propagating front Γ t is also convex and is C 1,1 ; more precisely, I t ∪ Γ t and I t are convex and their boundary is C 1,1 .

Let us now prove these two results.

Proof of Theorem 1. Assumptions A0 and A2 ensure that the assumptions of Theorem 4.9 in [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF] are satisfied. Then, there exists a unique solution of (1.1). In order to prove Theorem 1, we must prove that for a given point of the boundary of I t , two P-normals p 1 and p 2 colinear. Let us choose λ such that λp 1 + (1 -λ)p 2 = 0. We know [START_REF] Barles | Front propagation and phase field theory[END_REF] that the function Zero It is a supersolution of (1.1). By applying Proposition 1 (see Section 4), we obtain:

p 1 -p 2 ∈ KerD ζζ Φ • (λp 1 + (1 -λ)p 2 ).
Using Assumption A1, we conclude p 1 -p 2 is colinear with λp 1 + (1 -λ)p 2 . We conclude that p 1 and p 2 are colinear.

We proceed analogously with the sets I t , O t ∪ Γ t and O t .

Proof of Corollary 1. The fact that the front is convex for any time t follows from Theorem 3.1 in [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF]. Choosing for u 0 the opposite of the signed distance function to Γ 0 , we ensure that the initial datum is Lipschitz and concave. Therefore, Theorem 2.1 in [START_REF] Nochetto | Numerical analysis of geometric motion of fronts[END_REF] implies that u is Lipschitz; this ensures that u has a sublinear growth. By applying Theorem 3.1 in [START_REF] Giga | Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains[END_REF], we know that x → u(x, t) is concave, hence I t ∪ Γ t and I t are convex sets. The Hahn-Banach theorem ensures the existence of a normal in the sense of convex analysis. Such a normal is also a P-normal [START_REF] Clarke | Nonsmooth Analysis and Control Theory[END_REF]. Using the fact that Zero It and Zero It∪Γt are supersolutions of (1.1) (see instance [START_REF] Barles | Front propagation and phase field theory[END_REF]), Theorem 1 implies that there is at most one P-normal. Hence there is exactly one normal in the sense of convex analysis and C 1,1 regularity follows.

Necessary conditions for elliptic and parabolic quasilinear equations

In the present section, we state necessary conditions that are verified by viscosity sub-and supersolutions (hence by solutions) of quasilinear elliptic equations on a domain Ω ⊂ R n :

- n i,j=1 a i,j (Du, u, x) ∂ 2 u ∂x i ∂x j + f (Du, u, x) = 0, ∀x ∈ Ω. (4.1) 
These equations may be degenerate and/or singular at Du = 0. We also study the associated parabolic equations on Ω × [0, T ] :

∂u ∂t - n i,j=1 a i,j (Du, u, x, t) ∂ 2 u ∂x i ∂x j + f (Du, u, x, t) = 0, ∀(x, t) ∈ Ω × [0, T ].
(4.2) In the following, the n × n symmetric matrix with entries (a i,j ) is denoted by A. We assume that (4.1) and (4.2) are degenerate elliptic.

(E) For all p, u, x(, t), A(p, u, x(, t)) 0.

In Propositions 1 and 2, we prove that the difference of two P -subgradients (resp. P -supergradients) of a supersolution (resp. of a subsolution) of (4.1) or (4.2) is a degenerate direction, that is to say it lies in the kernel of A.

Proposition 1 (The elliptic case). Consider a supersolution (resp. a subsolution) u of (4.1), a point x ∈ Ω and two subjets (X i , p i ) ∈ J 2,- Ω u(x), i = 1, 2 (resp. two superjets (X i , p i ) ∈ J 2,+ Ω u(x), i = 1, 2). Then for any λ ∈ [0, 1] such that λp 1 + (1 -λ)p 2 = 0, the following holds true:

p 1 -p 2 ∈ KerA(λp 1 + (1 -λ)p 2 , u(x), x).
A straightforward consequence of Proposition 1 is the following result dealing with nondegenerate equations.

Corollary 2. Suppose that the equation (4.1) is nondegenerate, i.e., A(p, u, x)q, q > 0 if q = 0.

Then a solution u : Ω → R of (4.1) has "no corners", that is to say the function u at most one P-subgradient and at most one P-supergradient at any point x ∈ Ω. This corollary applies for instance to the equation associated with the search of minimal surfaces:

div Du 1 + |Du| 2 = 0 ⇔ -∆u + D 2 uDu, Du 1 + |Du| 2 = 0. (4.3)
Before proving Proposition 1, we state its parabolic version.

Proposition 2 (The parabolic case). Consider a supersolution (resp. a subsolution) u of (4.2), a point (x, t) ∈ Ω × [0, T ] and two parabolic subjets (X i , p i , α i ) ∈ P 2,- Ω×[0,T ] u(x, t), i = 1, 2 (resp. two parabolic superjets (X i , p i , α i ) ∈ P 2,+ Ω×[0,T ] u(x, t), i = 1, 2). Then for any λ ∈ [0, 1] such that λp 1 + (1 -λ)p 2 = 0, the following holds true:

p 1 -p 2 ∈ KerA(λp 1 + (1 -λ)p 2 , u(x), x, t).
Corollary 3. Suppose that the equation (4.2) is nondegenerate, i.e., A(p, u, x, t)q, q > 0 if q = 0.

Then a solution u : Ω × [0, T ] → R of (4.1) has "no corners", that is to say the function u has at most one P-subgradient and at most one Psupergradient at any point x ∈ R n .

The Hamilton-Jacobi equation associated with the motion by mean curvature of graphs is an example of nondegenerate quasilinear parabolic equation:

∂u ∂t -∆u + D 2 uDu, Du 1 + |Du| 2 = 0. ( 4.4) 
A class of parabolic equations, including (4.4), is studied by a geometrical approach in [START_REF] Barles | Quasilinear parabolic equations, unbounded solutions and geometrical equations I[END_REF]. The proof of Proposition 1 relies on the following technical lemma.

Lemma 1. Consider an arbitrary set Ω and a function u : Ω → R. Let x be a point in Ω and (X i , p i ), i = 1, 2, be two subjets of u at x. Then for any matrix X ∈ S n such that X X i , i = 1, 2, any λ [0, 1] and any M > 0, the following holds true:

(X + M (p 1 -p 2 ) ⊗ (p 1 -p 2 ), λp 1 + (1 -λ)p 2 ) ∈ J 2,- Ω u(x).

Let us show how Lemma 1 implies Proposition 1.

Proof of Proposition 1. Let X ∈ S n be such that X X i for i = 1, 2 and consider any λ ∈ [0, 1] and any M > 0. By applying Lemma 1 to the supersolution u of (4.1) and by denoting p the vector λp 1 + (1 -λ)p 2 and q the vector p 1 -p 2 , we conclude that: (X + M q ⊗ q, p) ∈ J 2,- Ω u(x). As u is a supersolution of (4.1) and p = 0, the following holds true:

-tr [A(p, u(x), x)(X + M q ⊗ q)] + f (p, u(x), x) 0.

Dividing by M and letting M → +∞ yields: 0

A(p, u(x), x)q, q = tr [A(p, u(x), x)q ⊗ q] 0.

The first inequality follows from the ellipticity of (4.1). We conclude that q ∈ KerA(p, u(x), x).

If the function u is a subsolution, apply the lemma to the function -u and use it analogously.

One can easily give a parabolic version of this lemma and use it to prove Proposition 2. We omit these details and we turn to the proof of Lemma 1.

Proof of Lemma 1. By considering v(y) = u(x+y)-u(x), we may assume that x = 0 and u(x) = 0. Let us denote p = λp 1 + (1 -λ)p 2 and q = p 1 -p 2 . A straightforward calculus shows us that for any real number r such that |r| min( 2λ M , 2(1-λ) M ) : 1 2 M r 2 max{(1 -λ)r, -λr}.

Therefore, for any y such that | q, y | min( 2λ M , 2(1-λ) M ), we get: 1 2 M q, y 2 max{(1 -λ) q, y , -λ q, y }.

Finally, for any y in a neighbourhood of the origin such that x + y ∈ Ω, we get:

1 2 (X + M q ⊗ q)y, y + p, y = 1 2 Xy, y + 1 2 M q, y 2 + p, y

  ∂u ∂t -Φ • (Du, x) tr[D ζζ Φ • (Du, x)D 2 u] + D ζ Φ • (Du, x), Du |Du| +tr[D ζx Φ • (Du, x)] + g(Du, x, t) = 0,(1.1)

supported by the TMR "Viscosity solutions and their applications". 1263

max 1 2 X 1 y, y + (1 -λ) q, y + p, y , 1 2 X 2 y, y -λ q, y + p, y

We have therefore proved that (X + M q ⊗ q, p) ∈ J 2,- Ω-x v(0) = J 2,- Ω u(x). Remark. Using Lemma 1, necessary conditions can be derived for any general nonlinear elliptic equation F (D 2 u, Du, u, x) = 0 if (E) is satisfied and if X → F (X, p, u, x) is positively homogenous.