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Résumé.

Etant donné F : O ⊂ IR n → IR m localement lipschitzienne et J F (x) sa jacobienne généralisée (au sens de Clarke) en x ∈ O, nous déterminons la fonction d'appui de J F (x), c'est-à-dire : max{< < X, M > > | X ∈ J F (x)} pour tout M ∈ M m,n (IR). L'enveloppe plénière de J F (x) est définie par {X ∈ M m,n (IR) | Xu ∈ J F (x)u pour tout u ∈ IR n }; c'est un convexe compact dont nous déterminons également la fonction d'appui.

The support functions of Clarke's generalized jacobian matrix and of its plenary hull

Abstract.

Given a locally Lipschitz mapping F : O ⊂ IR n → IR m and its generalized jacobian matrix J F (x) at x ∈ O (in Clarke's sense), we determine the support fonction of J F (x), that is : max{< < X, M > > | X ∈ J F (x)} for all M ∈ M m,n (IR). The plenary hull of J F (x) is defined as {X ∈ M m,n (IR) | Xu ∈ J F (x)u for all u ∈ IR n }; it is a compact and convex set whose support function is also determined.

1 Notations et préliminaires (2) 

∂f (x) = co{lim ∇f (x k ) : x k → x, x k ∈ D f }, où ∇f (x k ) désigne
∂f 1 (x) × • • • × ∂f m (x) := {X ∈ M m,n ( 
IR) : la j-ème ligne de X est dans ∂f j (x)

pour tout j = 1, . . . , m}, (3) 
car il prend en compte l'interdépendance éventuelle des fonctions-composantes f i . Sont connus à propos de J F (x) : le fait (démontré par Warga, Yomdin, Fabian et Preiss) que sa définition est "insensible aux ensembles de mesure nulle" (i.e. on ne modifie pas J F (x) en imposant dans (1) que x k / ∈ N 0 , où N 0 est de mesure de Lebesgue nulle) ; la fonction d'appui de ses images J F (x)u, u ∈ IR n ; son rôle dans des résultats d'Analyse non-différentiable comme le théorème des fonctions inverses ( [START_REF] Clarke | On the inverse function theorem[END_REF][START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]).

1.2

Soit A ⊂ M m,n (IR). La connaissance de Au, u ∈ IR n , ne détermine pas A, ce qui a conduit Halkin et Sweetser ([7, section3]) à proposer la notion d'ensemble plein : A ⊂ M m,n (IR) est dit plein s'il contient tout B ∈ M m,n (IR) tel que Bu ∈ Au pour tout u ∈ IR n . L'enveloppe plénière de A, notée plenA, est le plus petit ensemble plein contenant A. Dans notre contexte, J F (x) n'est pas toujours plein, excepté lorsque m ou n vaut 1 ; donc plenJ F (x) est un nouvel objet, convexe et compact, intermédiaire entre J F (x) et ∂f 1 (x) × • • • × ∂f m (x), dont les images (de u ∈ IR n ) sont les mêmes que celles de J F (x) néanmoins.

La fonction d'appui de la jacobienne généralisée

Le résultat principal de ce paragraphe concerne l'évaluation de

σ J F (x) (M ) := max{< < X, M > > | X ∈ J F (x)} pour tout M ∈ M m,n (IR). Théorème 2.1 Soit F : O ⊂ IR n → IR m localement lipschitzienne et M ∈ M m,n (IR).
On désigne par P ǫ (x) l'hypercube de IR n de sommet x dont les arêtes issues de x sont les éléments de la base canonique, i.e. P ǫ (x) := {x + ǫt 1 e 1 + • • • + ǫt n e n : t i ∈ [0, 1] pour tout i}, f rP ǫ (x) sa frontière, n(y) le vecteur normal sortant en y ∈ P ǫ (x), et σ la mesure (de surface) de Lebesgue sur f rP ǫ (x), c'est-à-dire sur les faces de l'hypercube. Alors pour n ≥ 2 :

(4) σ J F (x) (M ) = lim sup x→x,ǫ→0 + 1 ǫ n f rPǫ(x) < F (y), M n(y) > dσ(y).
Dans le cas où n = 1 :

(5)

σ J F (x) (v) = (< v, F >) • (x; 1), où (< v, F >)
• désigne la dérivée directionnelle généralisée (au sens de Clarke) de la fonction "scalarisée" < v, F >.

La démonstration se fait en trois étapes :

(1). On se ramène à m = n et M = I n (matrice identité) en posant G = M T F ; alors σ J F (x) (M ) = σ J G(x) (I n ).
(2). On démontre (c'est l'étape-clé) :

(6) σ J G(x) (I n ) = lim sup x→x,ǫ→0 + 1 ǫ n Pǫ(x) div G(y)dµ(y),
où div note la divergence et µ la mesure de Lebesgue sur IR n .

(3). On applique la formule de Green-Stokes à la fonction localement lipschitzienne G sur l'hypercube P ǫ (x) pour n ≥ 2.

Remarques. 1. La frontière de l'hypercube P ǫ (x) est la réunion de 2n faces que l'on paramètre par [0, 1] n-1 . Si l'on note ti = t 1 e 1 + . . . + t n-1 e n , somme dans laquelle n'intervient pas e i , alors

F + i := {x + ǫe i + ǫ ti : (t 1 , . . . , t n-1 ) ∈ [0, 1] n-1 } et F - i := {x + ǫ ti : (t 1 , . . . , t n-1 ) ∈ [0, 1] n-1 }
sont deux faces dont les vecteurs normaux sortant sont e i et -e i respectivement. On décrit ainsi les 2n faces de P ǫ (x) quand i parcourt {1, . . . , n}. Par changement de variables dans (4) on obtient

σ J f (x 0 ) (M ) = lim sup x→x 0 ,ǫ→0 + n i=1 [0,1] n-1 < f (x + ǫe i + ǫ ti ) -f (x + ǫ ti ), M e i > ǫ dt 1 . . . dt n-1 . (7) 
Cette forme technique ne fait intervenir que des quotients différentiels et nous permet de travailler plus facilement avec la fonction d'appui. 2. Lorsque n = 1, l'intégrale de surface disparaît dans [START_REF] Sweetser | A minimal set-valued strong derivative for vector-valued Lipschitz functions[END_REF], ce qui conduit à (5), résultat qui avait déjà été établi dans [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF].

Le Théorème 2.1 permet d'accéder à la règle de composition pour les jacobiennes généralisées (la plus générale)

J (F 1 • F 2 )(x) ⊂ co{J F 1 (F 2 (x)) • J F 2 (x
)} ; le seul endroit à notre connaissance où cette règle a été établie dans toute sa généralité est [START_REF] Clarke | Analyse non lisse et optimisation[END_REF].

3 La fonction d'appui de l'enveloppe plénière de la jacobienne généralisée

Pour u ∈ IR n et v ∈ IR m , on note u⊗v la matrice (de rang 1) représentant l'application linéaire x ∈ IR n →< u, x > v dans les bases canoniques. La fonction d'appui de J F (x) ou de plenJ F (x) dans les directions particulières M = u ⊗ v est connue depuis [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF] : (< v i , F >) • (x; u i ) :

σ J F (x) (u ⊗ v) = (< v, F >) • (x;
k i=1 u i ⊗ v i = M }.
Un corollaire immédiat de ce théorème est : si on considère u, u 1 , . . . , u k ∈ IR n , v, v 1 , . . . , v k ∈ IR m tels que u

⊗ v = u 1 ⊗ v 1 + • • • + u k ⊗ v k , alors (9) (< v, f >) • (x 0 ; u) ≤ (< v 1 , f >) • (x 0 ; u 1 ) + • • • + (< v k , f >) • (x 0 ; u k ),
ce qui constitue le résultat principal (le Théorème 7) de [START_REF] Zs | Generalized Hessian for C 1,1 functions in infinite dimensional normed spaces[END_REF]. Par ailleurs, les cas où l'infimum est atteint dans l'expression (8) est élucidé dans [START_REF] Imbert | Les fonctions d'appui de la jacobienne généralisée de Clarke et de son enveloppe plénière[END_REF].

Théorème 3 . 1

 31 u) ; le résultat qui suit généralise cette expression au cas de M quelconque. Sous les mêmes hypothèses que celles du théorème 2.1 :(8) σ plenJ F (x) (M ) = inf{ k i=1

  JF (x k ) : x k → x, x k ∈ D F },où D F désigne l'ensemble des points de O en lesquels F est différentiable, et JF (x k ) est la matrice jacobienne de F en x

	compact non vide de M m,n (IR) défini comme suit ([1]) :
	(1)	J F (x) := co{lim
	1.1 On note <, > le produit scalaire canonique de IR n et < <, > > celui dans l'espace
	matriciel M m,n (IR) (c'est-à-dire < < A, B > >:= tr(A T B)). Si O est un ouvert de IR n et
	F = (f 1 , . . . , f m ) : O → IR m une fonction (vectorielle) localement lipschitzienne sur O,
	la (matrice) jacobienne généralisée au sens de Clarke de F en x est l'ensemble convexe
		1

k . Lorsqu'il s'agit d'une fonction à valeurs réelles f : O ⊂ IR n → IR, le gradient (ou sous-différentiel) généralisé au sens de Clarke de f en x ∈ O est le convexe compact non vide de IR n défini comme :

  le vecteur gradient de f en x k . Cet objet ∂f a été énormément étudié, généralisé, et utilisé depuis son introduction par Clarke en 1973. Il n'en est pas de même de J F (x) (pour les fonctions à valeurs vectorielles F) et l'une des raisons est le manque d'une formule explicite de la fonction d'appui de J F (x), analogue à (ou généralisant)

celle connue pour ∂f (x) depuis son introduction il y a vingt cinq ans. L'objet J F (x) pour F = (f 1 , . . . , f m ) est plus précis que (i.e. contenu dans)