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Support Functions of the Clarke Generalized

Jacobian and of Its Plenary Hull

Cyril Imbert1

Abstract

This paper studies two important mathematical objects which are
useful in tackling the first-order behaviour of vector-valued locally Lip-
schitz functions in a finite dimensional setting: the Clarke generalized
jacobian and its plenary hull. We aim at giving analytical expressions
of the support functions of these compact convex sets of matrices.
Our study was motivated by earlier works by J.-B. Hiriart-Urruty and
recent papers by Zs. Palés and V. Zeidan. The expressions of the
support functions are applied, for instance, to provide a new proof
of a chain rule on generalized jacobians of composed locally Lipschitz
functions (without further assumptions). Applications of our results
to the second-order behaviour of C1 functions with locally Lipschitz
gradients are considered.

key words: vector-valued functions, generalized jacobian, support function,
plenary hull
2000 Mathematics Subject Classification: 49J52, 49J50, 58C20, 65K10

Introduction

Let O be an open subset of R
n and consider a locally Lipschitz function f :

O → R. In order to tackle the first order behaviour of such non-differentiable
functions, Clarke [1] introduced the notion of generalized gradients. A vector
of R

n is a generalized gradient of f at x0 if it is an element of:

∂f(x0) = co {lim∇f(xi) : xi → x0, xi ∈ Df} (1)

where Df denotes the set of all the points where f is differentiable and where
∇f(xi) denotes the gradient of f at xi. The set defined by (1) is referred to
as the Clarke subdifferential. It is nonempty, compact and convex.
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This object has been intensively studied, generalized and used since Clarke
introduced it in 1973. Perhaps one reason for this is that he was able to cal-
culate its support function; he found what is now known as the generalized
directional derivative:

f ◦(x0; u) = lim sup
x→x0,ǫ→0+

f(x + ǫu) − f(x)

ǫ
. (2)

Clarke naturally generalized this object to vector-valued locally Lipschitz
functions.

Definition 1. Consider a locally Lipschitz function F : O → R
m and fix

x0 ∈ O. The (Clarke) generalized jacobian of F at x0 is the following set of
m × n matrices:

JF (x0) = co {lim JF (xi) : xi → x0, xi ∈ Df}

where JF (xi) stands for the classical jacobian matrix of F at xi.

It is nonempty, convex and compact. We next denote the set of all the
m×n matrices by Mm,n(R). It is an Euclidian space when equipped with the
canonical scalar product for matrices: 〈〈 A, B 〉〉 = tr

(

AT B
)

. The canonical
scalar product of R

n is denoted by 〈., .〉.
This mathematical object has not been thoroughly investigated and ex-

ploited. Until now, there was no analytic expression of its support function,
although this is an essential tool for studying it. Our first main result fills
this gap. The support function of the generalized jacobian turns out to be a
“generalized directional divergence”.

Theorem 1. Let M ∈ Mm,n(R). Consider Pǫ(x), the hypercube in R
n of

vertex x, whose edges issued from x are directed by vectors of the canonical
basis of R

n:

Pǫ(x) := {x + ǫt1e1 + · · · + ǫtnen : ti ∈ [0, 1] for all i},

∂Pǫ(x) its boundary, n(y) the outer normal vector at y ∈ Pǫ(x), and σ the
surface Lebesgue measure on ∂Pǫ(x), that is to say on the faces of the hyper-
cube.
If n ≥ 2, then the support function of JF (x0) in the direction M equals:

lim sup
x→x0,ǫ→0+

1

ǫn

∫

∂Pǫ(x)

〈f(y), Mn(y)〉dσ(y). (3)

If n = 1, it equals (〈M, F 〉)◦ (x0; 1).
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Some results of JF were already known. First, the generalized jacobian
is more exact than (i.e. is a subset of) the cartesian product ∂f1(x0) ×
· · ·×∂fm(x0), because the possible “interdepence”of the component functions
has been taken into account. Secondly, Warga, Yomdin, Fabian, Preiss and
others [11] proved that the generalized jacobian is “blind to null sets” (i.e.
its definition is not modified if one specifies in (1) that xi /∈ N0, if N0 has a
null Lebesgue measure). Finally, Hiriart-Urruty [5] determined the support
function of the images of JF (x0) : JF (x0)u, u ∈ R

n. Unfortunately, a
set is not uniquely determined by its images in general. This led Halkin
and Sweetser [10] to introduce the notion of a plenary set: A ⊂ Mm,n(R)
is plenary if it contains all the matrices A verifying: Au ∈ Au for any
u ∈ R

n. The plenary hull of A, denoted by plenA, is the smallest plenary
set containing A. The generalized jacobian is not necessarily plenary, unless
m = 1 or n = 1. Hence, plenJF (x0) is a new set, that is still convex and
compact. It contains JF (x0) and has the same images. This object is also
still more precise than ∂f1(x0)×· · ·×∂fm(x0). Our second goal is to calculate
its support function in all directions.

Theorem 2. Under assumptions of Theorem 1, the support function of the
plenary hull of JF (x0) in the direction M ∈ Mm,n(R) equals:

inf

{

k
∑

i=1

(〈vi, F 〉)o (x0; ui) :
k
∑

i=1

ui ⊗ vi = M

}

, (4)

where u ⊗ v denotes the matrix vuT for any u ∈ R
n and v ∈ R

m.

The contents of the present paper are organized as follows: in the first
section, we give notations, definitions and results that are used throughout;
Section 2 is devoted to the proof of Theorem 1 and to a technical expression
of the support function of JF (x0) in terms of difference quotients; in Sec-
tion 3, we first prove Theorem 2 and then derive a corollary; we conclude by
determining whether the infimum in (4) is attained; in Section 4, the results
we previously obtained are applied to the second order differentiation theory.
We conclude this paper by giving some examples and by re-examining some
known results.

1 Preliminaries

This section is devoted to notations, definition and results used in the paper.
We denote the support function of a subset A ⊂ Mm,n(R) in the direction
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M ∈ Mm,n(R) by σA(M). We recall that

σA(M) = sup{〈〈 ζ, M 〉〉 : ζ ∈ A}.

If R
n is equipped with the Lebesgue measure µ, L1

loc(R
n, R) denotes the set

of all locally µ-integrable numerical functions defined on R
n. The closed ball

of radius r centered at x is denoted by B(x, r). For a given h ∈ L1
loc(R

n, R),
a point x ∈ R

n is a so-called Lebesgue point of h if:

h(x) = lim lim
r→0+

1

µ(B(x, r))

∫

B(x,r)

h(y) dµ(y).

The set of the Lebesgue points of h is denoted by Lh.

Theorem 3 ([9]). Let h ∈ L1
loc(R

n, R). Then µ-almost every point in R
n is

a Lebesgue point of h.

A sequence {Ri}i of Borel sets in R
n is said to shrink to x nicely if there

is a number α > 0 with the following property: there is a sequence of balls
B(x, ri) with lim ri = 0 such that Ri ⊂ B(x, ri) and µ(Ri) ≥ αµ(B(x, ri)).

Proposition 1 ([9]). Let h ∈ L1
loc(R

n, R) and x ∈ Lh. If a sequence {Ri}i≥1

shrinks to x nicely, then the following holds:

h(x) = lim
i→∞

1

µ(Ri)

∫

Ri

h(y) dµ(y). (5)

Example 1. The sequence {Pǫ(x)}ǫ>0 shrinks to x nicely.

Hiriart-Urruty stated and proved the following result [5].

Proposition 2. σJF (x0)(vuT ) = σJF (x0)u(v) = (〈v, F 〉)◦ (x0; u).

The next lemma gives a characterization of the plenary hull of a convex
and compact subset of Mm,n(R).

Lemma 1 ([7]). Let A be a convex and compact subset of Mm,n(R). Then
A ∈ plenA is plenary if and only if for any u ∈ R

n and any v ∈ R
m :

〈〈 A, vuT 〉〉 ≤ σA(vuT ).

The matrix vuT represents the linear mapping, denoted by u ⊗ v, that
assigns to any x ∈ R

N the vector 〈u, x〉v ∈ R
m. Throughout, we identify the

linear mapping and its representative matrix. If u 6= 0 and v 6= 0, u⊗ v is of
rank 1. Conversely, any rank-1 matrix can be represented by u⊗ v for some
u, v. Moreover for any M ∈ Mm,n(R) :

〈〈 M, u ⊗ v 〉〉 = 〈Mu, v〉.

Thus, in Proposition 2, the support function of JF (x0) is calculated in the
directions of the rank-1 matrices. Combining it with Lemma 1, we obtain:
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Lemma 2. A matrix ζ ∈ Mm,n(R) is an element of plenJF (x0) if and only
if, for any u ∈ R

n and any v ∈ R
m :

〈ζu, v〉 ≤ (〈v, F 〉)◦ (x0; u).

2 The support function of the generalized ja-

cobian

2.1 Proof of Theorem 1

Proof. By setting G = MT F, the problem is reduced to the case m = n and
M = Id where Id is the identity matrix of Mn(R). The key part of the proof
of Theorem 1 is the following claim.

Claim 1.

σJG(x0)(Id) = lim sup
x→x0,ǫ→0+

1

ǫn

∫

Pǫ(x)

divG(y) dµ(y), (6)

where divG(y) stands for 〈〈 JG(y), Id 〉〉 = tr(JG(y)) (it is the divergence of
the function G).

Proof. The function divG is a locally integrable function. The set of its
Lebesgue points, denoted by LdivG, is therefore of full measure (Theorem 3).
We already mentioned that the definition of the generalized jacobian is “blind
to null sets”. Hence, we can impose in (1) that xi lies in LdivG. It follows
that the support function of JG(x0) equals:

σJG(x0)(M) = lim sup
x→x0,x∈DG∩LdivG

divG(x)

= lim sup
x→x0,x∈DG∩LdivG

lim
ǫ→0+

1

ǫn

∫

Pǫ(x)

divG(y) dµ(y)

≤ lim sup
x→x0

lim
ǫ→0+

1

ǫn

∫

Pǫ(x)

divG(y) dµ(y) (7)

≤ lim sup
x→x0,ǫ→0+

1

ǫn

∫

Pǫ(x)

divG(y) dµ(y).

(we mentioned in Example 1 that {Pǫ(x)}ǫ shrinks to x nicely. We therefore
applied Proposition 1). Let us prove the reverse inequality. Let L denote the
right hand side of (6). There exist two sequences xp → x0 and ǫp → 0+ such
that L = lim

p→∞
Lp, where

Lp :=
1

ǫn
p

∫

Pǫp (xp)

div G(y) dµ(y).
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We define the integral of a matrix with integrable entries as the matrix
of the integrals of entries. For instance, JG(y) is matrix defined almost
everywhere, due to Rademacher’s theorem:

JG(y) =

(

∂Gi

∂xj

(y)

)

.
i∈{1,...,m},j∈{1,...,n}

Because G is locally Lipschitz, so are its component functions Gi; hence,
their partial derivatives ∂Gi

∂xj
are locally bounded and JG is a matrix that can

be integrated on the bounded domain Pǫp
(xp):

ζp :=
1

ǫn
p

∫

Pǫp (xp)

JG(y) dµ(y) exists and Lp = 〈〈 ζp, Id 〉〉.

We claim that
ζp ∈ co{JG(Pǫp

(xp))}. (8)

First, JG(Pǫp
(xp)) is a compact set of Mm,n(R) : it is closed (JG is closed

in the sense of [2, prop 2.6.2,p.70] and Pǫp
(xp) is compact) and it is a subset

of the closed ball centered at the origin and of radius K, where K denotes
any Lipschitz constant of G near x0. Therefore:

co{JG(Pǫp
(xp))} = co{JG(Pǫp

(xp)).

Let N ∈ Mm,n(R):

〈〈 ζp, N 〉〉 =
1

ǫn
p

∫

Pǫp (xp)

〈〈 JG(y), N 〉〉dµ(y)

≤
1

ǫn
p

∫

Pǫp (xp)

σco{JG(Pǫp (xp))}(N)dµ(y)

= σco{JG(Pǫp (xp))}(N).

This is true for an arbitrary N , thus (8) holds true.
By Carathéodory’s theorem, there exist ζ0

p , . . . , ζ
n2

p ∈ JG(Pǫp
(xp)),

λ0
p, . . . , λ

n2

p ≥ 0 with λ0
p + · · · + λn2

p = 1, such that

ζp = λ0
pζ

0
p + · · · + λn2

p ζn2

p . (9)

We may assume that λi
p−→λi as p → ∞. Since for each i, {ζ i

p}p is a bounded
sequence, we may also assume that ζ i

p → ζ i. Invoking Proposition 2.6.2 of
[2, p.70], ζ i ∈ JG(x0), for all i. Therefore:

L = lim
p→∞

[

λ0
p〈〈 ζ0

p , Id 〉〉 + · · · + λn2

p 〈〈 ζn2

p , Id 〉〉
]

= λ0〈〈 ζ0, Id 〉〉 + · · · + λn2

〈〈 ζn2

, Id 〉〉

≤

(

n2

∑

i=0

λi

)

σJG(x0)(Id) = σJG(x0)(Id).
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Claim 1 is therefore proved.

If n = 1, we obtain:

σJF (x0)(M) = lim sup
x→x0,ǫ→0+

1

ǫ

∫ x+ǫ

x

(〈M, F 〉)′(y)dµ(y)

= lim sup
x→x0,ǫ→0+

〈M, F (x + ǫ)〉 − 〈M, F (x)〉

ǫ

= (〈M, F 〉)◦(x0; 1).

If n ≥ 2, apply a Green-Stockes formula to the locally Lipschitz function G.
Eventually, we get:

σJG(x0) = lim sup
x→x0,ǫ→0+

1

ǫn

∫

∂Pǫ(x)

〈G(y), n(y)〉dσ(y).

Since G = MT F, proof of Theorem 1 is complete.

Remark 1. In view of (7), We have also proved:

lim sup
x→x0,ǫ→0+

1

ǫn

∫

Pǫ(x)

〈〈 F (y), Mn(y) 〉〉 dµ(y)

= lim sup
x→x0

lim
ǫ→0+

1

ǫn

∫

Pǫ(x)

〈〈 F (y), Mn(y) 〉〉 dµ(y). (10)

2.2 A technical formulation

The boundary of the hypercube, ∂Pǫ(x), is composed of 2n faces that can be
parameterized by [0, 1]n−1. Denote the sum in which ei does not appear by
t̂i = t1e1 + . . . + tn−1en. We then define:

F+
i := {x + ǫei + ǫt̂i : (t1, . . . , tn−1) ∈ [0, 1]n−1}

and
F−

i := {x + ǫt̂i : (t1, . . . , tn−1) ∈ [0, 1]n−1}.

Outer normal vectors of those two faces are ei and −ei respectively. We now
get a complete description of ∂Pǫ(x) when i describes {1, . . . , n}. Through a
change of variables in (3), we get:

σJF (x0)(M)

= lim sup
x→x0,ǫ→0+

1

ǫn

n
∑

i=1

[

∫

F+
i

〈F (y), Mei〉dσ(y) −

∫

F−

i

〈F (y), Mei〉dσ(y)

]

= lim sup
x→x0,ǫ→0+

n
∑

i=1

∫

[0,1]n−1

〈F (x + ǫei + ǫt̂i) − F (x + ǫt̂i), Mei〉

ǫ
dt1 . . . dtn−1. (11)
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3 Application: a new proof for a Clarke ja-

cobian Chain Rule

Known results about chain rules for generalized Jacobians were first estab-
lished when one of the function was C1 or real-valued. A general result about
images appears in [2, p.83]. To the best of our knowledge, the following result
only appears in [3].

Theorem 4. Let O be an open subset of R
n and consider two vector-valued

functions F : O ⊂ R
n → R

p and G : R
p → R

m. We assume that F and G
are locally Lipschitz. Then:

J (G ◦ F )(x0) ⊂ co{JG(F (x0)) ◦ JF (x0)}. (12)

Proof. These two sets are closed and convex. Thus, to get (12), we shall
prove the following inequality, dealing with support functions:

σJ (G◦F )(x0)(M) ≤ max
X∈JG(F (x0))

σJF (x0)(X
T M). (13)

Let η > 0. Since JG is an upper semicontinuous set-valued mapping, there
exists δ > 0 such that for any y ∈ F (x0) + δB :

JG(y) ⊂ JG(F (x0)) + δB, (14)

G is Lipschitz continuous on F (x0) + δB.

Choose x and ǫ small enough that:

F (Pǫ(x)) ⊂ F (x0) + δB, (15)

F is Lipschitz continuous on Pǫ(x).

Denote by K a Lipschitz constant of F. Define a function gi : R
p → R

by gi(x) = 〈G(x), Mei〉 for any x ∈ R
p. Using the technical expression we

obtained in Subsection 2.2, rewrite σJ (G◦F )(x0)(M) as:

lim sup
x→x0,ǫ→0+

n
∑

i=1

∫

[0,1]n−1

gi(F (x + ǫt̂i + ǫei)) − gi(F (x + ǫt̂i))

ǫ
dt1 . . . dtn−1.

(16)
Apply Lebourg’s mean value theorem (see [2, Thm 2.3.7,p.41]) to gi between
F (x+ǫt̂i) and F (x+ǫt̂i+ǫei). There then exist yi ∈ [F (x+ǫt̂i); F (x+ǫt̂i+ǫei)]
and pi ∈ ∂gi(yi) such that:

gi(F (x + ǫt̂i + ǫei)) − gi(F (x + ǫt̂i))

ǫ
=

〈F (x + ǫt̂i + ǫei) − F (x + ǫt̂i), pi〉

ǫ
.
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By definition of gi, there exists ζi ∈ JG(yi) such that pi = ζT
i Mei. Conse-

quently, σJ (G◦F )(x0)(M) equals:

lim sup
x→x0,ǫ→0+

n
∑

i=1

∫

[0,1]n−1

〈F (x + ǫt̂i + ǫei) − F (x + ǫt̂i), ζ
T
i Mei〉

ǫ
dt1 . . . dtn−1.

(17)
Observe that yi ∈ coF (Pǫ(x)); it follows from (15) that yi ∈ F (x0) + δB.
By (14), we conclude that ζi ∈ JG(F (x0)) + ηB. There then exist Xi ∈
JG(F (x0)) and Yi ∈ ηB such that ζi = Xi + Yi. It therefore follows from
(17) that:

σJ (G◦F )(x0)(M) ≤ max
X∈JG(x0)

lim sup
x,ǫ

∑

∫

〈F (. . . ) − F (. . . ), XT Mei〉

ǫ
dt

+ max
Y ∈JG(x0)

lim sup
x,ǫ

∑

∫

〈F (. . . ) − F (. . . ), Y T Mei〉

ǫ
dt

≤ max
X∈JG(x0)

σJF (x0)(X
T M) + nK|M |η.

Equality (13) follows by letting η → 0+.

4 The support function of plenJF (x0).

In this section, we first prove Theorem 2. We next give a straightforward
corollary. We conclude the section by determining whether the infimum in
(4) is attained.

Proof of Theorem 2. Let us define a mapping Φ : Mm,n(R) → R by the
following formula:

Φ(M) = inf

{

k
∑

i=1

(〈vi, F 〉)o (x0; ui) :
k
∑

i=1

ui ⊗ vi = M

}

.

We must prove that σplenJF (x0) = Φ. We observe that Φ is real-valued, sub-
linear and positively homogenous of degree 1. We therefore conclude that Φ
is the support function of some compact and convex set Σ of Mm,n(R). We
must prove that Σ = plenJF (x0).

Let ζ ∈ plenJF (x0) and consider any decomposition of M in sum of
rank-1 matrices:

M = u1 ⊗ v1 + · · · + uk ⊗ vk.
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It follows from Lemma 2 that:

〈〈 ζ, M 〉〉 = 〈〈 ζ, u1 ⊗ v1 〉〉 + · · · + 〈〈 ζ, uk ⊗ vk 〉〉

≤ (〈v1, F 〉)◦ (x0; u1) + · · · + (〈vk, F 〉)◦ (x0; uk).

Then 〈〈 ζ, M 〉〉 ≤ Φ(M) for any M ∈ Mm,n(R). This implies that ζ ∈ Σ.
Now let ζ ∈ Σ and consider any u ∈ R

n and any v ∈ R
m :

〈〈 ζ, u ⊗ v 〉〉 ≤ Φ(u ⊗ v) ≤ (〈v, F 〉)o (x0; u) = σJF (x0)(u ⊗ v).

Lemma 2 implies that ζ ∈ plenJF (x0). The proof is complete.

Corollary 1. Under the assumptions of Theorem 2, for any vectors u, u1, . . . , uk

in R
n and v, v1, . . . , vk in R

m such that

u ⊗ v = u1 ⊗ v1 + · · · + uk ⊗ vk,

the following holds:

(〈v, F 〉)◦(x0; u) ≤ (〈v1, F 〉)◦(x0; u1) + · · · + (〈vk, F 〉)◦(x0; uk). (18)

Remark 2. In the next subsection, we study the case when equality holds in
(18).

4.1 Study of the infimum in (4)

We would like to know whether the infimum in (4) is attained. We will see
that the answer is “yes except for a few matrices”.

Proposition 3. Let M ∈ Mm,n(R) and consider ζ ∈ plenJF (x0) such that
σplenJF (x0)(M) = 〈〈 ζ, M 〉〉. Then:

M ∈ cone{u ⊗ v : 〈ζu, v〉 = (〈v, F 〉)◦(x0; u)}.

Moreover, the infimum defining σplenJF (x0)(M) is attained if and only if

M ∈ cone{u ⊗ v : 〈ζu, v〉 = (〈v, F 〉)◦(x0; u)}.

Proof. We first derive a necessary and sufficient condition that ensures that
the infimum defining σplenJF (x0)(M) is attained.

Lemma 3. Consider a decomposition of M : M = u1 ⊗ v1 + · · · + uk ⊗ vk.

σplenJ f(x0)(M) =
k
∑

i=1

(〈vi, F 〉)o(x0; ui)

if and only if there exists ζ ∈ plenJF (x0) such that

∀i ∈ {1, . . . , k}, (〈vi, F 〉)o(x0; ui) = 〈ζui, vi〉.

10



Proof. The “only if” part is straightforward. In order to prove the “if” part,
let ζ ∈ plenJF (x0), such that σplenJF (x0)(M) = 〈〈 ζ, M 〉〉.

∀i, 〈ζui, vi〉 ≤ (〈vi, F 〉)o(x0, ui),
k
∑

i=1

〈ζui, vi〉 =
k
∑

i=1

(〈vi, F 〉)o(x0; ui).

We conclude that 〈ζui, vi〉 = (〈vi, F 〉)o(x0; ui) for all i.

The first part of Proposition 3 remains to be demonstrated. We recall
a more general result about the normal cone to a convex set defined by
inequality constraints.

Lemma 4. Consider a family {sλ}λ∈Λ of vectors of R
n, and a family {ρλ}λ∈Λ

of real numbers. Define a convex set C by
⋂

λ∈Λ{ζ : 〈ζ, sλ〉 ≤ ρλ}. Then for
any ζ0 ∈ C,

N(C, ζ0) = cone{sλ, λ ∈ Λ0}

where Λ0 denotes the set of all λ such that 〈ζ0, sλ〉 = ρλ.

Proof. Let Eλ = {ζ : 〈ζ, sλ〉 ≤ ρλ}. Then:

T (C, ζ0) = cone{C − ζ0} = cone
⋂

λ∈Λ

{Eλ − ζ0}

=
⋂

λ∈Λ0

{Eλ − ζ0} = {ζ : 〈ζ, sλ〉 ≤ 0,∀λ ∈ Λ0}

= {sλ, λ ∈ Λ0}
o.

We apply this result to the family R1 of rank-1 matrices and to the
corresponding family of real numbers {(〈v, F 〉)◦(x0; u)}u⊗v∈R1

. Lemma 2
implies that C = plenJF (x0). Hence, Lemma 4 implies the first part of
Proposition 3. Its proof is therefore complete.

Remark 3. The question of whether

cone{u ⊗ v : 〈ζu, v〉 = (〈v, F 〉)◦(x0; u)}

is closed remains unanswered.
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5 Application to Second-Order

Differentiation Theory

Second-order differentiation theory provides tools that help in the under-
standing of optimality; in particular it permits the formulation of sufficient
conditions for local optimality. Generalized Hessians, that is to say Hessians
for non-differentiable functions, are the cornerstone of this theory. Various
Hessians have been introduced for C1,1 functions, i.e. differentiable functions
whose gradients are locally Lipschitz continuous. They are very often closed
and convex and we have already pointed out that the support function of a
closed convex set is an important tool for studying it. The purpose of this
subsection is to give analytical expressions of the support functions of three
such sets.

Hiriart-Urruty, Strodiot and Hien Nguyen [6] introduced a Hessian in the
sense of Clarke for C1,1 functions defined in a finite dimensional setting. For
f : O ⊂ R

n → R, C1,1, they defined:

∂2
Hf(x0) := J (Jf)(x0).

Theorem 1 enables us to give the support function of this nonempty compact
convex set.

Proposition 4.

σ∂2
H

f(x0)(M) = lim sup
x→x0,ǫ→0+

1

ǫn

∫

frPǫ(x)

〈Jf(y), Mn(y)〉dσ(y). (19)

In an infinite dimensional setting, Cominetti and Correa [4] defined a
generalized Hessian as a set-valued function. Let X denote a Banach space
and let X∗ denote its topological dual. For a C1,1 function f : X → R,
∂2f(x0) : X ⇒ X∗ is defined by:

∀u ∈ X, ∂2f(x0)(u) = {x ∈ X∗ : 〈x, v〉 ≤ f∞(x0; u, v)},

where f∞ is the following second-order directional derivative:

f∞(x0; u, v) = lim sup
x→x0,

ǫ→0+,δ→0+

f(x + ǫu + δv) − f(x + ǫu) − f(x + δv) + f(x)

ǫδ
.

They proved that for X = R
n :

f∞(x0; u, v) = (〈v,∇f〉)◦(x0; u) and ∂2f(x0)(u) = ∂2
Hf(x0)u. (20)
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Palés and Zeidan [8] introduced another generalized Hessian. They consid-
ered ∂2

∞f(x0), the family of bounded linear operators A : X → X∗ that
satisfy Au ∈ ∂2f(x0)(u) for all u ∈ X. It follows from (20) that for X = R

n :

∂2
∞f(x0) = plen ∂2

Hf(x0).

By applying Theorem 2 and using (20), we obtain:

Proposition 5. Let f : O ⊂ R
n → R be a C1,1 function. Then for all

M ∈ Mn(R):

σ∂2
∞

f(x0)(M) = inf

{

k
∑

i=1

f∞(x0; ui, vi) : M =
k
∑

i=1

ui ⊗ vi

}

.

A third generalized Hessian were introduced by Palés and Zeidan [8]:

∂2f(x0) := {B ∈ B(X) : B(u, v) ≤ (〈v,∇f〉)◦(x0; u)}.

where B(X) denotes the set of symmetric bilinear forms on X. In the finite
dimensional setting, B(X) can be identified with Sn, the set of symmetric
n × n matrices. In view of Lemma 2, it is therefore obvious that when
X = R

n :
∂2f(x0) = plen ∂2

Hf(x0) ∩ Sn. (21)

Theorem 2 can be applied to prove the next result.

Theorem 5.

σ∂2f(x0)(M) = inf

{

k
∑

i=1

(〈vi,∇f〉)o(x0; ui) :
k
∑

i=1

viu
T
i =

M + MT

2

}

. (22)

Proof. The right hand side of (22) is precisely σplen ∂2
H

f(x0)

(

M+MT

2

)

. It is

clear that this function of M is sublinear, positively homogenous and real-
valued. Hence, this is the support function of a compact convex set Σ of
Mn(R). We are going to prove that Σ = ∂2f(x0). Due to (21), it is sufficent
to prove that Σ = plen ∂2

Hf(x0) ∩ Sn.
First, we observe that

σΣ(M) ≤
1

2
σplen ∂2

H
f(x0)(M) +

1

2
σplen ∂2

H
f(x0)(M

T ).

The first equality in (20) implies that (〈v,∇f〉)◦(x0; u) = (〈u,∇f〉)◦(x0; v).
Consequently,

σplen ∂2
H

f(x0)(M) = σplen ∂2
H

f(x0)(M
T ),
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and σΣ(M) ≤ σplen ∂2
H

f(x0)(M) follows. Hence Σ is a subset of plen ∂2
Hf(x0).

Moreover, if A is an antisymmetric matrix, σΣ(A) = 0 and σΣ(−A) = 0.
This implies that for any ζ ∈ Σ and any antisymmetric matrix A, 〈〈 ζ, A 〉〉 =
0. Using the fact that the space which is orthogonal to Sn is the space of
antisymmetric matrices, we can claim that Σ is a subset of Sn.

Conversely,

σ∂2f(x0)(M) = max{〈〈 ζ, M 〉〉 : ζ ∈ plen ∂2
Hf(x0) ∩ Sn}

= max{〈〈 ζ,
M + MT

2
〉〉 + 〈〈 ζ,

M − MT

2
〉〉 : ζ ∈ plen ∂2

Hf(x0) ∩ Sn}

= max{〈〈 ζ,
M + MT

2
〉〉 : ζ ∈ plen ∂2

Hf(x0) ∩ Sn}

≤ σplen ∂2
H

f(x0)

(

M + MT

2

)

.

We used the fact that M−MT

2
is an antisymmetric matrix and that, conse-

quently, it is orthogonal to symmetric ones. The proof is therefore com-
plete.

6 Connections with known results; examples

6.1 The special cases m = 1 and n = 1

If n = 1 or m = 1, then JF (x0) is plenary: as all m × 1 and 1 × n matrices
are of rank less than or equal to 1, this is a straightforward consequence of
Lemma 2.

Proposition 6 ([5, 2]). Let f : O ⊂ R
n → R

m be a locally Lipschitz
function.

• If n = 1 and M ∈ Mm,1(R), then there exists v ∈ R
m such that M =

1 ⊗ v and σJF (x0)(1 ⊗ v) = (〈v, F 〉)◦(x0; 1).

• If m = 1 and M ∈ M1,n(R), then there exists u ∈ R
n such that M =

u ⊗ 1 and σJF (x0)(u ⊗ 1) = F ◦(x0; u).

In the case m = 1, the connexion between (3) and F ◦ is not clear. The
reason is that the problem must not be reduced to the case m = n but to
n = m (see the beginning of the proof of Theorem 1). We therefore have two
different analytic expressions of the support function of σJF (x0).
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6.2 plenJF (x0) is a subset of ∂f1(x0) × · · · × ∂fm(x0).

Considering a particular rank-1 matrices decomposition of a m × n matrix,
one can easily prove that the plenary hull of the Clarke generalized jacobian
is a subset of the cartesian product of the subdifferentials of the component
functions. The following result is more precise than [2, Prop 2.6.2,p.70].
Moreover, the proof is new.

Proposition 7 ([5]). Under assumptions of Theorem 1, consider x0 ∈ O
and F = (f1, . . . , fm) : O → R. Then:

JF (x0) ⊂ plenJF (x0) ⊂ ∂f1(x0) × · · · × ∂fm(x0).

Proof. The first inclusion is straightforward. Let M be any m × n matrix.

Consider its row decomposition:





uT
1

· · ·
uT

m



 = u1 ⊗ e1 + · · ·+um ⊗ em, ui ∈ R
n.

Theorem 2 yields:

σplenJF (x0)(M) ≤ (〈e1, F 〉)◦(x0; u1) + · · · + (〈em, F 〉)◦(x0; um)

= σ∂f1(x0)×···×∂fm(x0)(M).

6.3 A nonconvex plenary set

This example comes from [10]. Let us consider the following nonconvex set:

A = co

{[

0 0
0 0

]

,

[

1 0
0 0

]}

⋃

co

{[

0 0
0 0

]

,

[

0 0
0 1

]}

.

This set is plenary.

To prove it, one considers a generic matrix A =

[

a b
c d

]

such that Au ∈

Au for all u. Choosing successively u =

[

1
0

]

, u =

[

0
1

]

, u =

[

1
1

]

, one

gets c = 0, b = 0, ad = 0 and a, d ∈ [0, 1]. This implies that A ∈ A.

6.4 JF (x0) can be strictly smaller than plenJF (x0)

Let {Mi}
k
i=1 be m × n matrices. Consider

P = {ζ : 〈ζ, Mi〉 ≤ ρi, i = 1, . . . , k}.
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Such an intersection of closed half-spaces is precisely what is called a convex
polyhedra. Assume that k is minimal in the following sense: each intersection
of less than k considered half-spaces is larger.

Proposition 8. Under the assumptions and notations above, P is plenary
if and only if Mi is of rank lower or equal to 1, for i = 1, . . . , k.

It is therefore easy to construct functions whose generalized jacobians are
not plenary. Considering a piecewise affine function, one can get a generalized
jacobian that is polyhedral:

A = co

{[

1 0
−2 −1

]

,

[

1 0
2 −1

]

,

[

−1 −2
0 1

] [

−1 2
0 1

]}

.

This set can be viewed as the intersection of {〈〈 I2, . 〉〉 = 0} with others half-
spaces. Since rank(I2) = 2, Proposition 8 implies that the general jacobian
A is not plenary.

Acknowledgement: The author is indebted to J.-B. Hiriart-Urruty who
proposed the subject of study and supervised it from beginning to end.
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