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Introduction

Let O be an open subset of R n and consider a locally Lipschitz function f : O → R. In order to tackle the first order behaviour of such non-differentiable functions, Clarke [START_REF] Clarke | Generalized gradients and applications[END_REF] introduced the notion of generalized gradients. A vector of R n is a generalized gradient of f at x 0 if it is an element of:

∂f (x 0 ) = co {lim ∇f (x i ) : x i → x 0 , x i ∈ D f } (1) 
where D f denotes the set of all the points where f is differentiable and where ∇f (x i ) denotes the gradient of f at x i . The set defined by ( 1) is referred to as the Clarke subdifferential. It is nonempty, compact and convex.

This object has been intensively studied, generalized and used since Clarke introduced it in 1973. Perhaps one reason for this is that he was able to calculate its support function; he found what is now known as the generalized directional derivative:

f • (x 0 ; u) = lim sup x→x 0 ,ǫ→0 + f (x + ǫu) -f (x) ǫ . (2) 
Clarke naturally generalized this object to vector-valued locally Lipschitz functions.

Definition 1. Consider a locally Lipschitz function F : O → R m and fix x 0 ∈ O. The (Clarke) generalized jacobian of F at x 0 is the following set of m × n matrices:

J F (x 0 ) = co {lim JF (x i ) : x i → x 0 , x i ∈ D f }
where JF (x i ) stands for the classical jacobian matrix of F at x i .

It is nonempty, convex and compact. We next denote the set of all the m × n matrices by M m,n (R). It is an Euclidian space when equipped with the canonical scalar product for matrices: A, B = tr A T B . The canonical scalar product of R n is denoted by ., . . This mathematical object has not been thoroughly investigated and exploited. Until now, there was no analytic expression of its support function, although this is an essential tool for studying it. Our first main result fills this gap. The support function of the generalized jacobian turns out to be a "generalized directional divergence". Theorem 1. Let M ∈ M m,n (R). Consider P ǫ (x), the hypercube in R n of vertex x, whose edges issued from x are directed by vectors of the canonical basis of R n :

P ǫ (x) := {x + ǫt 1 e 1 + • • • + ǫt n e n : t i ∈ [0, 1] for all i},
∂P ǫ (x) its boundary, n(y) the outer normal vector at y ∈ P ǫ (x), and σ the surface Lebesgue measure on ∂P ǫ (x), that is to say on the faces of the hypercube. If n ≥ 2, then the support function of J F (x 0 ) in the direction M equals:

lim sup x→x 0 ,ǫ→0 + 1 ǫ n ∂Pǫ(x)
f (y), M n(y) dσ(y).

(3)

If n = 1, it equals ( M, F ) • (x 0 ; 1).
Some results of J F were already known. First, the generalized jacobian is more exact than (i.e. is a subset of) the cartesian product ∂f 1 (x 0 ) × • • •×∂f m (x 0 ), because the possible "interdepence"of the component functions has been taken into account. Secondly, Warga, Yomdin, Fabian, Preiss and others [START_REF] Warga | Fat homeomorphisms and derivate unbounded containers[END_REF] proved that the generalized jacobian is "blind to null sets" (i.e. its definition is not modified if one specifies in (1) that x i / ∈ N 0 , if N 0 has a null Lebesgue measure). Finally, Hiriart-Urruty [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF] determined the support function of the images of J F (x 0 ) : J F (x 0 )u, u ∈ R n . Unfortunately, a set is not uniquely determined by its images in general. This led Halkin and Sweetser [START_REF] Sweetser | A minimal set-valued strong derivative for vector-valued Lipschitz functions[END_REF] to introduce the notion of a plenary set: A ⊂ M m,n (R) is plenary if it contains all the matrices A verifying: Au ∈ Au for any u ∈ R n . The plenary hull of A, denoted by plenA, is the smallest plenary set containing A. The generalized jacobian is not necessarily plenary, unless m = 1 or n = 1. Hence, plenJ F (x 0 ) is a new set, that is still convex and compact. It contains J F (x 0 ) and has the same images. This object is also still more precise than ∂f 1 (x 0 )ו • •×∂f m (x 0 ). Our second goal is to calculate its support function in all directions.

Theorem 2. Under assumptions of Theorem 1, the support function of the plenary hull of J F (x 0 ) in the direction M ∈ M m,n (R) equals:

inf k i=1 ( v i , F ) o (x 0 ; u i ) : k i=1 u i ⊗ v i = M , (4) 
where u ⊗ v denotes the matrix vu T for any u ∈ R n and v ∈ R m .

The contents of the present paper are organized as follows: in the first section, we give notations, definitions and results that are used throughout; Section 2 is devoted to the proof of Theorem 1 and to a technical expression of the support function of J F (x 0 ) in terms of difference quotients; in Section 3, we first prove Theorem 2 and then derive a corollary; we conclude by determining whether the infimum in (4) is attained; in Section 4, the results we previously obtained are applied to the second order differentiation theory. We conclude this paper by giving some examples and by re-examining some known results.

Preliminaries

This section is devoted to notations, definition and results used in the paper. We denote the support function of a subset A ⊂ M m,n (R) in the direction

M ∈ M m,n (R) by σ A (M ). We recall that σ A (M ) = sup{ ζ, M : ζ ∈ A}.
If R n is equipped with the Lebesgue measure µ, L 1 loc (R n , R) denotes the set of all locally µ-integrable numerical functions defined on R n . The closed ball of radius r centered at x is denoted by B(x, r). For a given h

∈ L 1 loc (R n , R), a point x ∈ R n is a so-called Lebesgue point of h if: h(x) = lim lim r→0 + 1 µ(B(x, r)) B(x,r)
h(y) dµ(y).

The set of the Lebesgue points of h is denoted by L h .

Theorem 3 ([9]). Let h ∈ L 1 loc (R n , R). Then µ-almost every point in R n is a Lebesgue point of h.
A sequence {R i } i of Borel sets in R n is said to shrink to x nicely if there is a number α > 0 with the following property: there is a sequence of balls B(x, r i ) with lim

r i = 0 such that R i ⊂ B(x, r i ) and µ(R i ) ≥ αµ(B(x, r i )). Proposition 1 ([9]). Let h ∈ L 1 loc (R n , R) and x ∈ L h .
If a sequence {R i } i≥1 shrinks to x nicely, then the following holds:

h(x) = lim i→∞ 1 µ(R i ) R i h(y) dµ(y). (5) 
Example 1. The sequence {P ǫ (x)} ǫ>0 shrinks to x nicely. Hiriart-Urruty stated and proved the following result [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF].

Proposition 2. σ J F (x 0 ) (vu T ) = σ J F (x 0 )u (v) = ( v, F ) • (x 0 ; u).
The next lemma gives a characterization of the plenary hull of a convex and compact subset of M m,n (R).

Lemma 1 ([7]

). Let A be a convex and compact subset of M m,n (R). Then A ∈ plenA is plenary if and only if for any u ∈ R n and any v ∈ R m :

A, vu T ≤ σ A (vu T ).
The matrix vu T represents the linear mapping, denoted by u ⊗ v, that assigns to any x ∈ R N the vector u, x v ∈ R m . Throughout, we identify the linear mapping and its representative matrix. If u = 0 and v = 0, u ⊗ v is of rank 1. Conversely, any rank-1 matrix can be represented by u ⊗ v for some u, v. Moreover for any M ∈ M m,n (R) :

M, u ⊗ v = M u, v .
Thus, in Proposition 2, the support function of J F (x 0 ) is calculated in the directions of the rank-1 matrices. Combining it with Lemma 1, we obtain:

Lemma 2. A matrix ζ ∈ M m,n (R) is an element of plenJ F (x 0 ) if and only if, for any u ∈ R n and any v ∈ R m : ζu, v ≤ ( v, F ) • (x 0 ; u).
2 The support function of the generalized jacobian

Proof of Theorem 1

Proof. By setting G = M T F, the problem is reduced to the case m = n and M = Id where Id is the identity matrix of M n (R). The key part of the proof of Theorem 1 is the following claim.

Claim 1. σ J G(x 0 ) (Id) = lim sup x→x 0 ,ǫ→0 + 1 ǫ n Pǫ(x) divG(y) dµ(y), (6) 
where divG(y) stands for JG(y), Id = tr(JG(y)) (it is the divergence of the function G).

Proof. The function divG is a locally integrable function. The set of its Lebesgue points, denoted by L divG , is therefore of full measure (Theorem 3).

We already mentioned that the definition of the generalized jacobian is "blind to null sets". Hence, we can impose in (1) that x i lies in L divG . It follows that the support function of J G(x 0 ) equals:

σ J G(x 0 ) (M ) = lim sup x→x 0 ,x∈D G ∩L divG divG(x) = lim sup x→x 0 ,x∈D G ∩L divG lim ǫ→0 + 1 ǫ n Pǫ(x) divG(y) dµ(y) ≤ lim sup x→x 0 lim ǫ→0 + 1 ǫ n Pǫ(x) divG(y) dµ(y) (7) 
≤ lim sup

x→x 0 ,ǫ→0 + 1 ǫ n Pǫ(x)
divG(y) dµ(y).

(we mentioned in Example 1 that {P ǫ (x)} ǫ shrinks to x nicely. We therefore applied Proposition 1). Let us prove the reverse inequality. Let L denote the right hand side of [START_REF] Hiriart-Urruty | Generalized Hessian matrix and second-order optimality conditions for problems with C 1,1 data[END_REF]. There exist two sequences x p → x 0 and ǫ p → 0 + such that L = lim p→∞ L p , where

L p := 1 ǫ n p Pǫ p (xp)
div G(y) dµ(y).

We define the integral of a matrix with integrable entries as the matrix of the integrals of entries. For instance, JG(y) is matrix defined almost everywhere, due to Rademacher's theorem:

JG(y) = ∂G i ∂x j (y) . i∈{1,...,m},j∈{1,...,n}
Because G is locally Lipschitz, so are its component functions G i ; hence, their partial derivatives ∂G i ∂x j are locally bounded and JG is a matrix that can be integrated on the bounded domain P ǫp (x p ):

ζ p := 1 ǫ n p Pǫ p (xp)
JG(y) dµ(y) exists and

L p = ζ p , Id .
We claim that 

ζ p ∈ co{J G(P ǫp (x p ))}. (8) First, J G(P ǫp (x p )) is a compact set of M m,n (R) : it is closed (J G is closed in the sense of [
co{J G(P ǫp (x p ))} = co{J G(P ǫp (x p )).
Let N ∈ M m,n (R):

ζ p , N = 1 ǫ n p Pǫ p (xp)
JG(y), N dµ(y)

≤ 1 ǫ n p Pǫ p (xp) σ co{J G(Pǫ p (xp))} (N )dµ(y) = σ co{J G(Pǫ p (xp))} (N ).
This is true for an arbitrary N , thus (8) holds true. By Carathéodory's theorem, there exist

ζ 0 p , . . . , ζ n 2 p ∈ J G(P ǫp (x p )), λ 0 p , . . . , λ n 2 p ≥ 0 with λ 0 p + • • • + λ n 2 p = 1, such that ζ p = λ 0 p ζ 0 p + • • • + λ n 2 p ζ n 2 p . (9) 
We may assume that λ i p -→λ i as p → ∞. Since for each i, {ζ i p } p is a bounded sequence, we may also assume that

ζ i p → ζ i . Invoking Proposition 2.6.2 of [2, p.70], ζ i ∈ J G(x 0 )
, for all i. Therefore:

L = lim p→∞ λ 0 p ζ 0 p , Id + • • • + λ n 2 p ζ n 2 p , Id = λ 0 ζ 0 , Id + • • • + λ n 2 ζ n 2 , Id ≤ n 2 i=0 λ i σ J G(x 0 ) (Id) = σ J G(x 0 ) (Id).
Claim 1 is therefore proved.

If n = 1, we obtain:

σ J F (x 0 ) (M ) = lim sup x→x 0 ,ǫ→0 + 1 ǫ x+ǫ x ( M, F ) ′ (y)dµ(y) = lim sup x→x 0 ,ǫ→0 + M, F (x + ǫ) -M, F (x) ǫ = ( M, F ) • (x 0 ; 1).
If n ≥ 2, apply a Green-Stockes formula to the locally Lipschitz function G. Eventually, we get:

σ J G(x 0 ) = lim sup x→x 0 ,ǫ→0 + 1 ǫ n ∂Pǫ(x)

G(y), n(y) dσ(y).

Since G = M T F, proof of Theorem 1 is complete.

Remark 1. In view of [START_REF] Hiriart-Urruty | Existence et caractérisation de différentielles généralisées d'applications localement lipschitziennes d'un espace de Banach séparable dans un espace de Banach réflexif séparable[END_REF], We have also proved:

lim sup x→x 0 ,ǫ→0 + 1 ǫ n Pǫ(x) F (y), M n(y) dµ(y) = lim sup x→x 0 lim ǫ→0 + 1 ǫ n Pǫ(x) F (y), M n(y) dµ(y). (10) 

A technical formulation

The boundary of the hypercube, ∂P ǫ (x), is composed of 2n faces that can be parameterized by [0, 1] n-1 . Denote the sum in which e i does not appear by ti = t 1 e 1 + . . . + t n-1 e n . We then define:

F + i := {x + ǫe i + ǫ ti : (t 1 , . . . , t n-1 ) ∈ [0, 1] n-1 } and F - i := {x + ǫ ti : (t 1 , . . . , t n-1 ) ∈ [0, 1] n-1 }.
Outer normal vectors of those two faces are e i and -e i respectively. We now get a complete description of ∂P ǫ (x) when i describes {1, . . . , n}. Through a change of variables in (3), we get:

σ J F (x 0 ) (M ) = lim sup x→x 0 ,ǫ→0 + 1 ǫ n n i=1 F + i F (y), M e i dσ(y) - F - i F (y), M e i dσ(y) = lim sup x→x 0 ,ǫ→0 + n i=1 [0,1] n-1 F (x + ǫe i + ǫ ti ) -F (x + ǫ ti ), M e i ǫ dt 1 . . . dt n-1 . ( 11 
)
3 Application: a new proof for a Clarke jacobian Chain Rule

Known results about chain rules for generalized Jacobians were first established when one of the function was C 1 or real-valued. A general result about images appears in [2, p.83]. To the best of our knowledge, the following result only appears in [START_REF] Clarke | Analyse non lisse et optimisation[END_REF].

Theorem 4. Let O be an open subset of R n and consider two vector-valued functions F : O ⊂ R n → R p and G : R p → R m . We assume that F and G are locally Lipschitz. Then:

J (G • F )(x 0 ) ⊂ co{J G(F (x 0 )) • J F (x 0 )}. ( 12 
)
Proof. These two sets are closed and convex. Thus, to get (12), we shall prove the following inequality, dealing with support functions:

σ J (G•F )(x 0 ) (M ) ≤ max X∈J G(F (x 0 )) σ J F (x 0 ) (X T M ). (13) 
Let η > 0. Since J G is an upper semicontinuous set-valued mapping, there exists δ > 0 such that for any y ∈ F (x 0 ) + δB :

J G(y) ⊂ J G(F (x 0 )) + δB, (14) 
G is Lipschitz continuous on F (x 0 ) + δB.

Choose x and ǫ small enough that:

F (P ǫ (x)) ⊂ F (x 0 ) + δB, (15) 
F is Lipschitz continuous on P ǫ (x).

Denote by K a Lipschitz constant of F. Define a function g i : R p → R by g i (x) = G(x), M e i for any x ∈ R p . Using the technical expression we obtained in Subsection 2.2, rewrite σ J (G•F )(x 0 ) (M ) as:

lim sup x→x 0 ,ǫ→0 + n i=1 [0,1] n-1 g i (F (x + ǫ ti + ǫe i )) -g i (F (x + ǫ ti )) ǫ dt 1 . . . dt n-1 .
(16) Apply Lebourg's mean value theorem (see [2, Thm 2.3.7,p.41]) to g i between F (x+ǫ ti ) and F (x+ǫ ti +ǫe i ). There then exist y i ∈ [F (x+ǫ ti ); F (x+ǫ ti +ǫe i )] and p i ∈ ∂g i (y i ) such that:

g i (F (x + ǫ ti + ǫe i )) -g i (F (x + ǫ ti )) ǫ = F (x + ǫ ti + ǫe i ) -F (x + ǫ ti ), p i ǫ .
By definition of g i , there exists

ζ i ∈ J G(y i ) such that p i = ζ T i M e i . Conse- quently, σ J (G•F )(x 0 ) (M ) equals: lim sup x→x 0 ,ǫ→0 + n i=1 [0,1] n-1 F (x + ǫ ti + ǫe i ) -F (x + ǫ ti ), ζ T i M e i ǫ dt 1 . . . dt n-1 .
(17) Observe that y i ∈ coF (P ǫ (x)); it follows from (15) that y i ∈ F (x 0 ) + δB. By (14), we conclude that ζ i ∈ J G(F (x 0 )) + ηB. There then exist X i ∈ J G(F (x 0 )) and Y i ∈ ηB such that ζ i = X i + Y i . It therefore follows from (17) that:

σ J (G•F )(x 0 ) (M ) ≤ max X∈J G(x 0 ) lim sup x,ǫ F (. . . ) -F (. . . ), X T M e i ǫ dt + max Y ∈J G(x 0 ) lim sup x,ǫ F (. . . ) -F (. . . ), Y T M e i ǫ dt ≤ max X∈J G(x 0 ) σ J F (x 0 ) (X T M ) + nK|M |η.
Equality (13) follows by letting η → 0 + .

4 The support function of plenJ F (x 0 ).

In this section, we first prove Theorem 2. We next give a straightforward corollary. We conclude the section by determining whether the infimum in (4) is attained.

Proof of Theorem 2. Let us define a mapping Φ : M m,n (R) → R by the following formula:

Φ(M ) = inf k i=1 ( v i , F ) o (x 0 ; u i ) : k i=1 u i ⊗ v i = M .
We must prove that σ plenJ F (x 0 ) = Φ. We observe that Φ is real-valued, sublinear and positively homogenous of degree 1. We therefore conclude that Φ is the support function of some compact and convex set Σ of M m,n (R). We must prove that Σ = plenJ F (x 0 ). Let ζ ∈ plenJ F (x 0 ) and consider any decomposition of M in sum of rank-1 matrices:

M = u 1 ⊗ v 1 + • • • + u k ⊗ v k .
Proof. The "only if" part is straightforward. In order to prove the "if" part,

let ζ ∈ plenJ F (x 0 ), such that σ plenJ F (x 0 ) (M ) = ζ, M . ∀i, ζu i , v i ≤ ( v i , F ) o (x 0 , u i ), k i=1 ζu i , v i = k i=1 ( v i , F ) o (x 0 ; u i ).
We conclude that ζu i ,

v i = ( v i , F ) o (x 0 ; u i ) for all i.
The first part of Proposition 3 remains to be demonstrated. We recall a more general result about the normal cone to a convex set defined by inequality constraints. 

ζ 0 ∈ C, N (C, ζ 0 ) = cone{s λ , λ ∈ Λ 0 }
where Λ 0 denotes the set of all λ such that ζ 0 , s λ = ρ λ .

Proof. Let E λ = {ζ : ζ, s λ ≤ ρ λ }. Then:

T (C, ζ 0 ) = cone{C -ζ 0 } = cone λ∈Λ {E λ -ζ 0 } = λ∈Λ 0 {E λ -ζ 0 } = {ζ : ζ, s λ ≤ 0, ∀λ ∈ Λ 0 } = {s λ , λ ∈ Λ 0 } o .
We apply this result to the family R 1 of rank-1 matrices and to the corresponding family of real numbers {( v, F ) • (x 0 ; u)} u⊗v∈R 1 . Lemma 2 implies that C = plenJ F (x 0 ). Hence, Lemma 4 implies the first part of Proposition 3. Its proof is therefore complete.

Remark 3. The question of whether cone{u ⊗ v : ζu, v = ( v, F ) • (x 0 ; u)} is closed remains unanswered.

Application to Second-Order Differentiation Theory

Second-order differentiation theory provides tools that help in the understanding of optimality; in particular it permits the formulation of sufficient conditions for local optimality. Generalized Hessians, that is to say Hessians for non-differentiable functions, are the cornerstone of this theory. Various Hessians have been introduced for C 1,1 functions, i.e. differentiable functions whose gradients are locally Lipschitz continuous. They are very often closed and convex and we have already pointed out that the support function of a closed convex set is an important tool for studying it. The purpose of this subsection is to give analytical expressions of the support functions of three such sets. Hiriart-Urruty, Strodiot and Hien Nguyen [START_REF] Hiriart-Urruty | Generalized Hessian matrix and second-order optimality conditions for problems with C 1,1 data[END_REF] introduced a Hessian in the sense of Clarke for C 1,1 functions defined in a finite dimensional setting. For 

f : O ⊂ R n → R, C 1,1 , they defined: ∂ 2 H f (x 0 ) := J (Jf )(x 0 ).
σ ∂ 2 H f (x 0 ) (M ) = lim sup x→x 0 ,ǫ→0 + 1 ǫ n f rPǫ(x)
Jf (y), M n(y) dσ(y).

In an infinite dimensional setting, Cominetti and Correa [START_REF] Cominetti | A generalized second-order derivative in nonsmooth optimization[END_REF] defined a generalized Hessian as a set-valued function. Let X denote a Banach space and let X * denote its topological dual. For a

C 1,1 function f : X → R, ∂ 2 f (x 0 ) : X ⇒ X * is defined by: ∀u ∈ X, ∂ 2 f (x 0 )(u) = {x ∈ X * : x, v ≤ f ∞ (x 0 ; u, v)},
where f ∞ is the following second-order directional derivative:

f ∞ (x 0 ; u, v) = lim sup x→x 0 , ǫ→0 + ,δ→0 + f (x + ǫu + δv) -f (x + ǫu) -f (x + δv) + f (x)
ǫδ .

They proved that for X = R n :

f ∞ (x 0 ; u, v) = ( v, ∇f ) • (x 0 ; u) and ∂ 2 f (x 0 )(u) = ∂ 2 H f (x 0 )u. ( 20 
)
Palés and Zeidan [START_REF] Zs | Generalized Hessian for C 1,1 functions in infinite dimensional normed spaces[END_REF] introduced another generalized Hessian. They considered ∂ 2 ∞ f (x 0 ), the family of bounded linear operators A : X → X * that satisfy Au ∈ ∂ 2 f (x 0 )(u) for all u ∈ X. It follows from (20) that for X = R n :

∂ 2 ∞ f (x 0 ) = plen ∂ 2 H f (x 0 ).
By applying Theorem 2 and using (20), we obtain:

Proposition 5. Let f : O ⊂ R n → R be a C 1,1 function. Then for all M ∈ M n (R): σ ∂ 2 ∞ f (x 0 ) (M ) = inf k i=1 f ∞ (x 0 ; u i , v i ) : M = k i=1 u i ⊗ v i .
A third generalized Hessian were introduced by Palés and Zeidan [START_REF] Zs | Generalized Hessian for C 1,1 functions in infinite dimensional normed spaces[END_REF]:

∂ 2 f (x 0 ) := {B ∈ B(X) : B(u, v) ≤ ( v, ∇f ) • (x 0 ; u)}.
where B(X) denotes the set of symmetric bilinear forms on X. In the finite dimensional setting, B(X) can be identified with S n , the set of symmetric n × n matrices. In view of Lemma 2, it is therefore obvious that when

X = R n : ∂ 2 f (x 0 ) = plen ∂ 2 H f (x 0 ) ∩ S n . (21) 
2 can be applied to prove the next result.

Theorem 5.

σ ∂ 2 f (x 0 ) (M ) = inf k i=1 ( v i , ∇f ) o (x 0 ; u i ) : k i=1 v i u T i = M + M T 2 . (22) 
Proof. The right hand side of ( 22) is precisely

σ plen ∂ 2 H f (x 0 ) M +M T 2
. It is clear that this function of M is sublinear, positively homogenous and realvalued. Hence, this is the support function of a compact convex set Σ of M n (R). We are going to prove that Σ = ∂ 2 f (x 0 ). Due to (21), it is sufficent to prove that Σ = plen ∂ 2 H f (x 0 ) ∩ S n . First, we observe that

σ Σ (M ) ≤ 1 2 σ plen ∂ 2 H f (x 0 ) (M ) + 1 2 σ plen ∂ 2 H f (x 0 ) (M T ).
The first equality in (20) implies that ( v, ∇f

) • (x 0 ; u) = ( u, ∇f ) • (x 0 ; v). Consequently, σ plen ∂ 2 H f (x 0 ) (M ) = σ plen ∂ 2 H f (x 0 ) (M T ), and σ Σ (M ) ≤ σ plen ∂ 2 H f (x 0 ) (M ) follows.
Hence Σ is a subset of plen ∂ 2 H f (x 0 ). Moreover, if A is an antisymmetric matrix, σ Σ (A) = 0 and σ Σ (-A) = 0. This implies that for any ζ ∈ Σ and any antisymmetric matrix A, ζ, A = 0. Using the fact that the space which is orthogonal to S n is the space of antisymmetric matrices, we can claim that Σ is a subset of S n .

Conversely,

σ ∂ 2 f (x 0 ) (M ) = max{ ζ, M : ζ ∈ plen ∂ 2 H f (x 0 ) ∩ S n } = max{ ζ, M + M T 2 + ζ, M -M T 2 : ζ ∈ plen ∂ 2 H f (x 0 ) ∩ S n } = max{ ζ, M + M T 2 : ζ ∈ plen ∂ 2 H f (x 0 ) ∩ S n } ≤ σ plen ∂ 2 H f (x 0 ) M + M T 2 .
We used the fact that M -M T 2 is an antisymmetric matrix and that, consequently, it is orthogonal to symmetric ones. The proof is therefore complete.

6 Connections with known results; examples 6.1 The special cases m = 1 and n = 1

If n = 1 or m = 1, then J F (x 0 ) is plenary: as all m × 1 and 1 × n matrices are of rank less than or equal to 1, this is a straightforward consequence of Lemma 2. Proposition 6 ( [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF][START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]). Let f : O ⊂ R n → R m be a locally Lipschitz function.

• If n = 1 and M ∈ M m,1 (R), then there exists v ∈ R m such that M = 1 ⊗ v and σ J F (x 0 ) (1 ⊗ v) = ( v, F ) • (x 0 ; 1). • If m = 1 and M ∈ M 1,n (R), then there exists u ∈ R n such that M = u ⊗ 1 and σ J F (x 0 ) (u ⊗ 1) = F • (x 0 ; u).
In the case m = 1, the connexion between (3) and F • is not clear. The reason is that the problem must not be reduced to the case m = n but to n = m (see the beginning of the proof of Theorem 1). We therefore have two different analytic expressions of the support function of σ J F (x 0 ) .

plenJ

F (x 0 ) is a subset of ∂f 1 (x 0 ) × • • • × ∂f m (x 0 ).
Considering a particular rank-1 matrices decomposition of a m × n matrix, one can easily prove that the plenary hull of the Clarke generalized jacobian is a subset of the cartesian product of the subdifferentials of the component functions. The following result is more precise than [2, Prop 2.6.2,p.70]. Moreover, the proof is new. Proposition 7 ( [START_REF] Hiriart-Urruty | Characterizations of the plenary hull of the generalized Jacobian matrix[END_REF]). Under assumptions of Theorem 1, consider x 0 ∈ O and F = (f 1 , . . . , f m ) : O → R. Then:

J F (x 0 ) ⊂ plenJ F (x 0 ) ⊂ ∂f 1 (x 0 ) × • • • × ∂f m (x 0 ).
Proof. The first inclusion is straightforward. Let M be any m × n matrix.

Consider its row decomposition:

  u T 1 • • • u T m   = u 1 ⊗ e 1 + • • • + u m ⊗ e m , u i ∈ R n .
Theorem 2 yields:

σ plenJ F (x 0 ) (M ) ≤ ( e 1 , F ) • (x 0 ; u 1 ) + • • • + ( e m , F ) • (x 0 ; u m ) = σ ∂f 1 (x 0 )ו••×∂fm(x 0 ) (M ).

A nonconvex plenary set

This example comes from [START_REF] Sweetser | A minimal set-valued strong derivative for vector-valued Lipschitz functions[END_REF]. Let us consider the following nonconvex set:

A = co 0 0 0 0 , 1 0 0 0 co 0 0 0 0 , 0 0 0 1 .

This set is plenary.

To 6.4 J F (x 0 ) can be strictly smaller than plenJ F (x 0 )

Let {M i } k i=1 be m × n matrices. Consider P = {ζ : ζ, M i ≤ ρ i , i = 1, . . . , k}.

Such an intersection of closed half-spaces is precisely what is called a convex polyhedra. Assume that k is minimal in the following sense: each intersection of less than k considered half-spaces is larger.

Proposition 8. Under the assumptions and notations above, P is plenary if and only if M i is of rank lower or equal to 1, for i = 1, . . . , k.

It is therefore easy to construct functions whose generalized jacobians are not plenary. Considering a piecewise affine function, one can get a generalized jacobian that is polyhedral:

A = co 1 0 -2 -1 , 1 0 2 -1 , -1 -2 0 1 -1 2 0 1 .
This set can be viewed as the intersection of { I 2 , . = 0} with others halfspaces. Since rank(I 2 ) = 2, Proposition 8 implies that the general jacobian A is not plenary.

Lemma 4 .

 4 Consider a family {s λ } λ∈Λ of vectors of R n , and a family {ρ λ } λ∈Λ of real numbers. Define a convex set C by λ∈Λ {ζ : ζ, s λ ≤ ρ λ }. Then for any

Theorem 1

 1 enables us to give the support function of this nonempty compact convex set. Proposition 4.

  prove it, one considers a generic matrix A = a b c d such that Au ∈ Au for all u. Choosing successively u c = 0, b = 0, ad = 0 and a, d ∈ [0, 1]. This implies that A ∈ A.
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It follows from Lemma 2 that:

Then ζ, M ≤ Φ(M ) for any M ∈ M m,n (R). This implies that ζ ∈ Σ. Now let ζ ∈ Σ and consider any u ∈ R n and any v ∈ R m :

Lemma 2 implies that ζ ∈ plenJ F (x 0 ). The proof is complete.

Corollary 1. Under the assumptions of Theorem 2, for any vectors

the following holds:

Remark 2. In the next subsection, we study the case when equality holds in (18).

Study of the infimum in (4)

We would like to know whether the infimum in (4) is attained. We will see that the answer is "yes except for a few matrices".

Moreover, the infimum defining σ plenJ F (x 0 ) (M ) is attained if and only if

Proof. We first derive a necessary and sufficient condition that ensures that the infimum defining σ plenJ F (x 0 ) (M ) is attained.

if and only if there exists ζ ∈ plenJ F (x 0 ) such that ∀i ∈ {1, . . . , k}, ( v i , F ) o (x 0 ; u i ) = ζu i , v i .