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VALUATION DOMAINS WHOSE PRODUCTS OF FREE

MODULES ARE SEPARABLE

FRANÇOIS COUCHOT

Abstract. It is proved that if R is a valuation domain with maximal ideal P

and if RL is countably generated for each prime ideal L, then R
R is separable

if and only RJ is maximal, where J = ∩n∈NP
n.

When R is a valuation domain satisfying one of the following two conditions:

(1) R is almost maximal and its quotient field Q is countably generated
(2) R is archimedean

Franzen proved in [2] that RN is separable if and only if R is maximal or discrete
of rank one. In [3, Theorem XVI.5.4], Fuchs and Salce gave a slight generalization
of this result and showed that RN is separable if and only if R is discrete of rank
one, when R is slender. The aim of this paper is to give another generalization of
Franzen’s result by proving Theorem 8 below. If the maximal ideal P is principal,
we get that RR can be separable when R is neither maximal nor discrete of rank one.
This is a negative answer to [3, Problem 59]. For proving his result, Franzen began
by showing that each archimedean valuation domain which is not almost maximal,
possesses an indecomposable reflexive module of rank 2. We use a similar argument
in the proof of Theorem 8. Finally we give an example of a non-archimedean non-
slender valuation domain such that RN is not separable. This is a positive answer
to [3, Problem 58].

In the sequel, R is a commutative unitary ring. An R-module whose submodules
are totally ordered by inclusion, is said to be uniserial. If R is a uniserial R-module,
we say that R is a valuation ring.

The R-topology of R is the linear topology for which each non-zero ideal is
a neighborhood of 0. When R is a valuation ring with maximal ideal P and A
is a proper ideal, then R/A is Hausdorff in the R/A-topology if and only if A 6=
Pa, ∀0 6= a ∈ R. We say that R is (almost) maximal if R/A is complete in the
R/A-topology for each (non-zero) proper ideal A 6= Pa, ∀0 6= a ∈ R.

From now on, R is a valuation domain, P is its maximal ideal and Q is its
field of quotients. Let M be an R-module and let N be a submodule. We say
that N is a pure submodule of M if rN = rM ∩ N, ∀r ∈ R. Let M be a
torsion-free module. We say that M is separable if each pure uniserial submodule
is a summand. Recall that each element x of M is contained in a pure uniserial
submodule U , where U is the inverse image of the torsion submodule of M/Rx by
the canonical map M → M/Rx. Let M be a non-zero R-module. As in [3] we set:

M ♯ = {s ∈ R | sM ⊂ M}.
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Then M ♯ is a prime ideal. We say that an ideal A is archimedean if A♯ = P .

Proposition 1. Let J = ∩n∈NPn. Then, RΛ is separable for each index set Λ if

RJ is maximal.

Proof. If P is not finitely generated then J = P . In this case R is maximal,
whence RΛ is separable by [4, Theorem 51]. Suppose now that P = Rp for some
p ∈ P . Let U be a pure uniserial submodule of RΛ. We must prove that U is a
summand. First assume that U ♯ = P . Then pU 6= U , whence U = Ru for some
u ∈ U \ pU . If u = (uλ)λ∈Λ, there exists µ ∈ Λ such that uµ is a unit because
pU = U ∩ pRΛ. Then in the product RΛ, the µth component can be replaced by
Ru. So, U is a summand. Now assume that U ♯ ⊆ J . It follows that U is a pure
uniserial RJ -submodule of (RΛ)J . Since RJ is maximal, U is a summand of (RΛ)J .
Then U is a summand of RΛ too. �

From Proposition 1 we deduce the following example which gives a negative
answer to [3, Problem 59].

Example 2. Let R = Zp + XQ[[X ]], where p is a prime number and Zp is the
localization of Z at the prime ideal pZ. Then J = XQ[[X ]], R/J ∼= Zp and
RJ

∼= Q[[X ]]. It follows that R is neither maximal nor discrete of rank one, but RJ

is maximal, whence RΛ is separable for each index set Λ by Proposition 1. So, [3,
Exercise XVI.5.5] is wrong.

To prove Theorem 8 some preliminary results are needed.
If M is an R-module, HomR(M, R) is denoted by M∗ and λM : M → M∗∗ is the

canonical map. We say that M is reflexive if λM is an isomorphism. An R-module
F is pure-injective if for every pure exact sequence 0 → N → M → L → 0 of
R-modules, the following sequence

0 → HomR(L, F ) → HomR(M, F ) → HomR(N, F ) → 0

is exact. An R-module B is a pure-essential extension of a submodule A if A
is a pure submodule of B and, if for each submodule K of B, either K ∩ A 6= 0 or
(A + K)/K is not a pure submodule of B/K. We say that B is a pure-injective
hull of A if B is pure-injective and a pure-essential extension of A. By [3, Chapter
XIII] each R-module M has a pure-injective hull and any two pure-injective hulls

of M are isomorphic. For any module M , we denote by M̂ its pure-injective hull. If

S is a maximal immediate extension of R, then S ∼= R̂ by [3, Proposition XIII.5.1].
For each s ∈ S \ R, B(s) = {r ∈ R | s /∈ R + rS} is called the breadth ideal of s.

Proposition 3. Let A be a non-zero archimedean ideal such that A 6= Pa for each

a ∈ R. Assume that R/A is not complete in the R/A-topology. Then there exists

an indecomposable reflexive module of rank 2.

Proof. Since R/A is not complete in the R/A-topology, by [3, Lemma V.6.1]

there exists x ∈ R̂ \ R such that A = B(x). Let U be a pure uniserial submodule

of R̂/R containing x + R and let M be the inverse image of U by the natural map

R̂ → R̂/R. Then M is a pure submodule of R̂. By [3, Example XV.6.1] M is
indecomposable. Since M is a pure extension of R by U then Ext1R(U, R) 6= 0 and
U is torsion-free. Now, we show that U ♯ = P . Let 0 6= s ∈ P . Then A ⊂ s−1A.

Let t ∈ (R ∩ s−1A) \ A. Therefore x = r + ty for some r ∈ R and y ∈ R̂. Since
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M is a pure submodule of R̂, we may assume that y ∈ M . By [5, Lemma 1.3],
B(y) = t−1A. Consequently y + R /∈ sU and U ♯ = P . Since U is a torsion-free
module of rank one and U ♯ 6= 0, U is isomorphic to a proper submodule of Q. So U
is isomorphic to an ideal of R. By [2, Proposition 3.3], the proof is complete. �

Proposition 4. Assume that RΛ is separable for an index set Λ. Then (RL)Λ is

separable for each prime ideal L.

Proof. The assertion is obvious if L = 0. Now suppose L 6= 0 and let 0 6= a ∈ L.
Then RLa is an ideal contained in L. Let U be a pure uniserial submodule of
(aRL)Λ and let V be the inverse image of the torsion submodule of RΛ/U by
the surjection of RΛ onto RΛ/U . Then V is a pure uniserial submodule of RΛ.
Let p be a projection of RΛ onto V and q = p|(aRL)Λ . For each s ∈ R \ aRL

we have (aRL)Λ ⊆ sRΛ. Thus Im q ⊆ sRΛ. Since aRL = ∩s∈R\aRL
sR we get

Im q ⊆ (aRL)Λ. On the other hand U ⊆ Im q and the equality holds because U is
a pure submodule. It is obvious that (aRL)Λ = a(RL)Λ ∼= (RL)Λ. Hence (RL)Λ is
separable. �

Lemma 5. Let L be a prime ideal of R and let A be a proper ideal of RL. If R/A
is complete in the R/A-topology then RL/A is also complete in the RL/A-topology.

Proof. Let (ai + Ai)i∈I be a family of cosets of RL such that ai ∈ aj + Aj if
Ai ⊂ Aj and such that A = ∩i∈IAi. We may assume that Ai ⊆ L, ∀i ∈ I. So,
ai +L = aj +L, ∀i, j ∈ I. Let b ∈ ai +L, ∀i ∈ I. It follows that ai − b ∈ L, ∀i ∈ I.
Since R/A is complete in the R/A-topology, ∃c ∈ R such that c+b−ai ∈ Ai, ∀i ∈ I.
Hence RL/A is complete in the RL/A-topology too. �

Recall that an R-module M is slender if for every morphism f : RN → M , there
exists n0 ∈ N such that f(en) = 0, ∀n ≥ n0, where en = (δn,m)m∈N. In the proof
of Theorem 8 we will use the following result:

Proposition 6. [1, Corollary 21] Let R be a valuation domain such that Q is

countably generated. Then R is slender if and only if R is not complete in the

R-topology.

The following proposition can be easily proved.

Proposition 7. The following conditions are equivalent:

(1) RL is countably generated for each prime ideal L.

(2) For each prime ideal L which is the intersection of the set of primes con-

taining properly L there is a countable subset whose intersection is L.
(3) For each prime ideal L, the quotient field of R/L is countably generated.

Theorem 8. Assume that R satisfies the equivalent conditions of Proposition 7.

Let J = ∩n∈NPn. Then the following conditions are equivalent:

(1) RΛ is separable for each index set Λ;

(2) RR is separable;

(3) RJ is maximal.

Moreover, if each ideal is countably generated then these conditions are equivalent

to: RN is separable.

Proof. It is obvious that (1) ⇒ (2). By Proposition 1, (3) ⇒ (1).
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(2) ⇒ (3). We must prove that RJ/A is complete in the RJ/A-topology for each
ideal A of RJ , where A 6= Jr, ∀0 6= r ∈ R. By Lemma 5 it is enough to show that
R/A is complete in the R/A-topology.

First we assume that A is prime, A ⊂ J . Suppose that R/A is not complete in
the R/A-topology. By [3, Lemma XVI.5.3], (R/A)N is separable. Since R satisfies
the conditions of Proposition 7, the quotient field of R/A is countably generated.
It follows by Proposition 6 that R/A is slender. By [3, Theorem XVI.5.4] R/A is a
discrete valuation domain of rank one . Clearly we get a contradiction. Hence R/A
is complete in the R/A-topology. Suppose that A = rA♯ for some 0 6= r ∈ R where
A♯ ⊂ J . It is easy to deduce the completeness of R/A from that of R/A♯.

Now assume that A 6= rA♯, ∀r ∈ R. First we show that RA♯/A is complete in the
RA♯/A-topology. By way of contradiction, suppose it is not true. We put R′ = RA♯

and N∗ = HomR′(N, R′) if N is an R′-module. Then A is an archimedean ideal
of R′. By Proposition 3 there exists an indecomposable reflexive R′-module M of
rank 2. The map φ : M∗∗ → (R′)M∗

defined by φ(u) = (u(m))m∈M∗ , ∀u ∈ M∗∗, is
a pure monomorphism. Since M∗ has the same cardinal as R, (R′)M∗

is separable
by Proposition 4. It follows that M is separable. This contradicts that M is
indecomposable.

Now we prove that R/A is complete in the R/A-topology. Let (ai + Ai)i∈I be a
family of cosets of R such that ai ∈ aj + Aj if Ai ⊂ Aj and such that A = ∩i∈IAi.
We may assume that A ⊂ Ai ⊆ A♯, ∀i ∈ I. We put A′

i = (Ai)A♯ , ∀i ∈ I. We know
that A = ∩a/∈AA♯a. Consequently, if a /∈ A, there exists i ∈ I such that Ai ⊆ A♯a,
whence A′

i ⊆ A♯a. It follows that A = ∩i∈IA
′
i. Clearly, ai ∈ aj + A′

j if A′
i ⊂ A′

j .

Then there exists c ∈ RA♯ such that c ∈ ai + A′
i, ∀i ∈ I. Since A′

i ⊂ R, ∀i ∈ I,
c ∈ R. From A = ∩j∈IA

′
j and A ⊂ Ai, ∀i ∈ I we deduce that ∀i ∈ I, ∃j ∈ I such

that A′
j ⊂ Ai. We get that c ∈ ai + Ai because c− aj ∈ A′

j ⊆ Ai and aj − ai ∈ Ai.

So, R/A is complete in the R/A-topology.
To prove the last assertion it is enough to observe that M∗ is countably generated

over R′ and consequently M∗∗ is isomorphic to a pure R′-submodule of (R′)N. �

Remark 9. In proving that R/A is complete, we use the hypothesis that R satisfies
the conditions of Proposition 7 only when A is isomorphic to a prime ideal. In the
other case, this result can be obtained with the sole hypothesis that RR is separable.

So, even if R doesn’t satisfy the conditions of Proposition 7 the next proposition
holds:

Proposition 10. Let the notations be as in Theorem 8 and suppose that RR is

separable. Then R satisfies the following conditions:

(1) R/L is not slender for each prime ideal L ⊂ J .

(2) R/A is complete in the R/A-topology for each ideal A which is not isomor-

phic to a prime ideal and such that A♯ ⊆ J .

The following example gives a positive answer to [3, Problem 58].

Example 11. Let T be a non-discrete archimedean valuation domain which is not
complete in the T -topology, let K be its quotient field and let R = T +XK[[X ]]. Let
L = XK[[X ]]. Then Q and RL are countably generated. Moreover R is complete in
the R-topology because RL(∼= K[[X ]]) is maximal and R/L(∼= T ) is not complete
in the R/L-topology. So, R is non-archimedean, RN is not separable and R is not
slender.
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