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CONVEX ANALYSIS TECHNIQUES FOR HOPF-LAX
FORMULAE IN HAMILTON-JACOBI EQUATIONS∗

CYRIL IMBERT

Abstract. The purpose of the present paper is to prove, solely using Con-
vex (and Nonsmooth) analysis techniques, that Hopf-Lax formulae provide
explicit solutions for Hamilton-Jacobi equations with merely lower semicon-
tinuous initial data. The substance of these results appears in [1] but the
proofs are fundamentally different (we do not use the comparison principle)
and a distinct notion of discontinuous solutions is used. Moreover we give a
maximum principle for the Lax function. This approach permits us to fully
understand the role of the convexity of the data.
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Introduction

The Lax and the Hopf functions are explicit solutions of:
{

∂u
∂t

+ H(Du) = 0 in R
n × (0; +∞),

u(., 0) = g(.) in R
n,

(1)

(where Du stands for the derivative of u with respect to the space variable
x) when either H or g is convex. We recall their definition:

uLax(x, t) = inf
y∈Rn

sup
q∈Rn

{g(x − y) + 〈y, q〉 − tH(q)} , (2)

uHopf(x, t) = sup
q∈Rn

inf
y∈Rn

{g(x − y) + 〈y, q〉 − tH(q)} . (3)

∗Paru dans Journal of Convex and Nonlinear Analysis, Vol 2, no 3 (décembre 2001)
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These functions have been intensively studied (see for instance [15, 3, 16,
4]) and the latest contribution is [1]. It is proved that for merely lower
semicontinuous (lsc for short) and possibly infinite initial data g, the Lax
function is a lsc solution of (1) (in the sense of [5]) when the hamiltonian H is
convex. It is also proved that the Hopf function is the minimal supersolution
of (1) when the initial condition g is convex. In [1], the proofs rely on
the famous comparison principle of viscosity sub and supersolutions and on
regularization procedures. The aim of the present paper is to use tools from
Convex analysis to prove these results, without relying on PDE techniques.
Moreover, we show that the Lax function verifies a “maximum principle”,
that is to say it is the maximal lsc (sub)solution of the Cauchy problem. Note
that the definition of lsc solutions we use in this paper is slightly different
from [5]. It first appeared in [20]. See also [12] for further results concerning
these discontinuous solutions.

1 Preliminaries

This section is devoted to definitions and results that are use in the present
paper.

Discontinuous functions are considered throughout. A solution u of (1)
is merely lower semicontinuous (lsc) and it can take the value +∞. It is said
to be extended real-valued. We refer to the set

{(x, t) ∈ R
n × R : u(x, t) < +∞}

as the domain of u and we denote it dom u. If dom u is nonempty, u is said to
be proper. For such nonsmooth functions, various concepts of subdifferentials
were introduced to replace the classical notion of Fréchet derivative. One of
them is the Fréchet subdifferential ; it is defined at any point (x, t) of the
domain of u by:

∂F u(x, t) = {(ζ, α) ∈ R
n × R, α(s − t) + 〈ζ, y − x〉

≤ u(y, s) − u(x, t) + o(|y − x| + |t − s|)},

where o(.) is a function such that o(x)
|x|

→ 0 as x → 0.
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1.1 Lsc solutions

Since Crandall and Lions introduced the concept of continuous viscosity so-
lutions of Hamilton-Jacobi equations, these generalized solutions have been
intensively studied [9]. For the reader convenience, we recall the definition
of a continuous viscosity solution of (1).

Definition 1. Let u : R
n × [0; +∞) → R be a continuous function.

• It is a (viscosity) supersolution of (1) if for all (x, t) ∈ R
n ×R and for

all (ζ, α) ∈ ∂F u(x, t),

α + H(ζ) ≥ 0 and u(x, 0) ≥ g(x).

• It is a (viscosity) subsolution of (1) if for all (x, t) ∈ R
n × R and for

all (ζ, α) ∈ −∂F (−u)(x, t),

α + H(ζ) ≤ 0 and u(x, 0) ≤ g(x).

• It is a continuous viscosity solution of (1) if it is a super and a subso-
lution of (1).

In 1990, Barron and Jensen [6] introduced (real-valued) lsc solutions for
Hamilton-Jacobi equations of evolution type which hamiltonians H(t, x, u, p)
are convex in p. It has been shown that for such hamiltonians, a continuous
solution of a Hamilton-Jacobi equation can be completely characterized by
its subgradients which should satisfy the relation

α + H(t, x, u, ζ) = 0 ∀(ζ, α) ∈ ∂F u(x, t) ∀(x, t).

It has remarkable resemblance with a classical smooth solution concept of
Hamilton-Jacobi equations. In [5], Barron extended this definition by au-
thorizing lsc solutions u to be extended real-valued. In [6, 5], the initial
condition is not achieved pointwise but in the following way:

g(x) = lim inf
y→x,s→0+

u(y, s) for all x ∈ R
n.

Analogous results have been obtained by Frankowska [10] for particular
hamiltonians. She also provided an equivalent definition of such solutions in
terms of directional derivatives and suggested a pointwise interpretation of

3



the initial condition coupled with a one-sided infinitesimal condition on u at
t = 0.

Soravia [20] introduced a concept of discontinuous viscosity solutions to
Dirichlet problems for Hamilton-Jacobi equations with convex hamiltonians.
The definition of lsc solutions for Cauchy problems that is given below is
(more or less) a special case of it.

Definition 2. Let u : R
n × [0; +∞) → (−∞; +∞] be a lsc and proper func-

tion.

• It is a supersolution of (1) if for all (x, t) ∈ dom u, t > 0, and all
(ζ, α) ∈ ∂F u(x, t) :

α + H(ζ) ≥ 0 (4)

and for all x ∈ R
n :

u(x, 0) ≥ g(x). (5)

• It is a lsc subsolution of (1) if for all (x, t) ∈ dom u and all (ζ, α) ∈
∂F u(x, t) :

α + H(ζ) ≤ 0 (6)

and for all x ∈ R
n :

u(x, 0) ≤ g(x). (7)

• It is a lsc solution of (1) if it is a super and a subsolution of (1), that
is for all (x, t) ∈ dom u and all (ζ, α) ∈ ∂F u(x, t) :

α + H(ζ) = 0 if t > 0,

α + H(ζ) ≤ 0 if t = 0,

and for all x ∈ R
n :

u(x, 0) = g(x).

In [12], these lsc solutions are characterized in terms of directional deriva-
tives and of approximate decrease properties.
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1.2 Definitions and results from convex analysis

In this subsection we present basic tools and classical results of Convex anal-
ysis. The interested reader is referred to [19, 11] for a complete presentation
of them.

We first recall some definitions. The Legendre-Fenchel conjugate of a
proper function f : R

n → (−∞; +∞] is defined by the following formula:

for all q ∈ R
n, f∗(q) = sup

x∈Rn

{〈x, q〉 − f(x)}.

The function (f ∗)∗, that we simply denote by f ∗∗, is called the closed convex
hull of f. If f is lsc and convex, it coincides with f. The subdifferential from
Convex analysis of f : R

n → (−∞; +∞] at x ∈ dom f is the set

∂f(x) = {ζ ∈ R
n : ∀y ∈ R

n, 〈y − x, ζ〉 ≤ f(y) − f(x)} .

When the function f is convex, the two subdifferentials ∂F f(x) and ∂f(x)
coincide at any point x of R

n. The following characterization holds:

ζ ∈ ∂f(x) ⇔ f(x) + f ∗(ζ) = 〈x, ζ〉.

It is known as Fenchel’s equality, while Fenchel’s inequality

f ∗(ζ) + f(x) ≥ 〈x, ζ〉

always holds true. The indicator function of a subset A ⊂ R
n is denoted

by ιA and is defined by: ιA(z) = 0 if z ∈ A, ιA(z) = +∞ if z /∈ A. Given
two functions g, h : R

n → (−∞; +∞], the epi-sum of g and h is denoted by
g +

e
h and is defined for all x ∈ R

n by:

g +
e

h(x) = inf
y∈Rn

{g(x − y) + h(y)}. (8)

The notion of epi-sum is also known as the inf-convolution operation. But
it has the following equivalent definition: g +

e
h is the only function f such

that its strict epigraph (i.e. the set of all points (y, r) ∈ R
n × R such that

f(y) < r) is the Minkowski sum of the strict epigraph of g and the strict
epigraph of h.

A straightforward calculation yields, for all t > 0 and x ∈ R
n :







uLax(x, t) = g +
e

(tH)∗(x)

uHopf(x, t) = (g∗ + tH)∗(x)
(9)
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(the Legendre-Fenchel conjugates and the epi-sum are calculated with re-
spect to the x variable). Since we want to prove that uLax is a lsc solution
of the Cauchy problem (1), the Fréchet subdifferential of an epi-sum must
therefore be studied. Existing results about convex subdifferentials of epi-
sums of convex functions (such as stated in [14, 2] for instance) suggested
the following lemma.

Lemma 1. Consider three functions f, g, h : R
n → (−∞; +∞] and a point

x ∈ R
n and assume that f is the epi-sum of g and h. If there exists y ∈ R

n

such that f(x) = g(x − y) + h(y), then:

∂F f(x) ⊂ ∂F g(x − y) ∩ ∂F h(y).

The proof is elementary and we omit it.
We next recall the statement of the so-called multidirectional mean value

inequality. We do not give the most general version but we adapt it to our
framework. The closed unit ball of R

n is denoted by B and for any subset
Y ⊂ R

n, [x, Y ] refers to the convex hull of {x} ∪ Y.

Theorem 1 ([8, p. 116-117]). Let Y be a compact convex subset of R
n and

let x ∈ dom f where f : R
n → (−∞; +∞] is a lsc proper function. Then for

any r < infy∈Y {f(y) − (x)} and any ǫ > 0, there exists z ∈ [x, Y ] + ǫB and
ζ ∈ ∂F f(z) such that, for all y ∈ Y,

r < 〈ζ, y − x〉.

In [7], the authors studied the subdifferential of the closed convex hull
of an extended real-valued function f. They exhibit a formula linking the
subdifferential of f ∗∗ and the subdifferential of f. In order to state their main
result, we must introduce two other notions.

Definition 3 ([7, Prop 4.5, p. 1669]). Consider f : R
n → (−∞; +∞]

that is lsc, proper and bounded from below by an affine function. Then we
say that f is epi-pointed if the domain of the Legendre-Fenchel conjugate of
f has a nonempty interior.

Definition 4 ([7, Prop 4.4, p. 1668]). Consider f : R
n → (−∞; +∞].

Under assumptions of Definition 3, the analytical definition of the so-called
asymptotic function f∞ of f is:

f∞(d) = lim inf
t→0+,d′→d

tf

(

d′

t

)

.
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If f is convex, f∞ has an alternative analytical definition.

Proposition 1 ([19, p. 66]). If f is convex, the following equality holds
true for all d ∈ R

n:

f∞(d) = sup
u∈dom f

{f(d + u) − f(u)} .

Observe that in this case the asymptotic function is sublinear and vanishes
at 0. We now state the main result of [7].

Theorem 2 ([7, p. 1669]). Let f : R
n → (−∞; +∞] be a lsc, proper and

epi-pointed function. Then the following holds:
(i) For all x ∈ dom f ∗∗, there are points x1, . . . , xp ∈ dom f, positive numbers
λ1, . . . , λp (p ≥ 1), and possibly points y1, . . . , yq in dom f∞\{0} such that:











































p
∑

i=1

λi = 1,

x =

p
∑

i=1

λixi +

q
∑

j=1

yj,

f ∗∗(x) =

p
∑

i=1

λif(xi) +

q
∑

j=1

f∞(yj).

(ii) For any decomposition of the type described in (i), we have

∂f ∗∗(x) = [∩p
i=1∂f(xi)] ∩

[

∩q
j=1∂f∞(yj)

]

.

Remark 1. Even if f is not convex, we can define the subdifferential of f
in the sense of Convex analysis. In general, it is empty, but by Theorem 2,
∂f(xi) is nonempty. This implies (see [14, p. 350]) that f(xi) = f ∗∗(xi).

2 The Lax function

The present section is devoted to the proof of Theorem 3 stated below. We
say that the Lax function is regular if it is lsc and if the infimum defining
the real number uLax(x, t) is attained for any (x, t) ∈ dom uLax.

Theorem 3. Let H : R
n → R be convex and let g be lsc and proper. Then

if the Lax function is regular, it is a lsc solution of (1) (in the sense of
Definition 2). Moreover, it is the maximal lsc subsolution of (1).
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Remark 2. If the infimum defining uLax(x, t) is taken on a bounded set for
all (x, t), uLax is regular. It is the case when g is bounded from below by
−C(1 + |x|) for some constant C > 0. This assumption appears in [1].

Remark 3. For the sake of simplicity, we assume that uLax is regular. But if
the lsc closure of uLax is extended real-valued, it may be proved that it is a
lsc solution of our Cauchy problem. Such considerations appear in [13, 17]
in an infinite dimensional setting.

Before proving the theorem, we try to explain how we proceed. In or-
der to prove that the Lax function verifies (1), we apply Lemma 1. If it
is applied using representation (9), we only get a description of the partial
Fréchet subdifferential of uLax with respect to x. Though we try to establish
α + H(ζ) = 0 for all (ζ, α) in the subdifferential of uLax, we loose the in-
terdependence between x and t. This is the reason why we rewrite the Lax
function as an epi-sum of two functions with respect to the couple of vari-
ables (x, t). This idea is inspired by a theorem from [18]. The author proves
that uLax is a classical solution of our problem under strong assumptions.
He uses tools from Convex analysis such as Legendre-Fenchel conjugates and
epi-sums. Besides, even if the formula does not appear explicitly, he writes
uLax under the following form:

Lemma 2.
uLax = G +

e
H∗ on [0; +∞) × R

n,

with
{

G(y, s) = g(y) + ι{0}(s),
H(y, s) = ιR−(H(y) + s).

Here the epi-sum and the Legendre-Fenchel conjugate are calculated with re-
spect to the couple (y, s).

Proof of Lemma 2. We calculate the Legendre-Fenchel conjugate of H:

H∗(y, s) = sup
α,ζ

{αs + 〈ζ, y〉 − ιR−(α + H(ζ))}

= sup
ζ

sup
α≤−H(ζ)

{αs + 〈ζ, y〉}.

If s < 0, H∗(y, s) = +∞. Otherwise: H∗(y, s) = supζ{〈ζ, y〉 − sH(ζ)} =
(sH)∗(y).

8



For t ≥ 0, this yields:

(

G +
e
H∗
)

(x, t) = inf
s,y

{g(x − y) + ι{0}(t − s) + H∗(y, s)}

= inf
y
{g(x − y) + (tH)∗(y)} = uLax(x, t).

Proof of Theorem 3. The initial condition is trivially satisfied. Consider any
point (x, t) ∈ dom uLax and any (ζ, α) ∈ ∂F uLax(x, t). Since we assumed that
uLax is regular, there exists (y, s) such that:

uLax(x, t) = g(x − y) + (tH)∗(y) = G(x − y, t − t) + H∗(y, t).

We can therefore apply Lemma 1: (ζ, α) ∈ ∂FH
∗(y, t) ∩ ∂FG(x− y, 0). Since

H∗ is convex, it follows that (ζ, α) ∈ ∂H∗(y, t). Using the convex duality, we
get:

(y, t) ∈ ∂H(ζ, α).

This implies that (ζ, α) lies in the domain of H. We therefore obtain:

α + H(ζ) ≤ 0.

Suppose now that t > 0. Fenchel’s equality yields:

〈ζ, y〉 + αt = H(ζ, α) + H∗(y, t) = 0 + (tH)∗(y) = tH∗
(y

t

)

.

Use now Fenchel’s inequality and get: α = H∗
(

y

t

)

− 〈ζ, y

t
〉 ≥ −H(ζ).

It remains to prove that the Lax function is the maximal lsc subsolution
of (1). Consider any lsc subsolution w. For any x ∈ R

n : w(x, 0) ≤ g(x) =
uLax(x, 0). It therefore remains to prove that for any (x, t) ∈ R

n × (0; +∞)
and any y ∈ dom H∗ :

w(x, t) ≤ g(x − ty) + tH∗(y).

Suppose it is false. There then exists (x, t) ∈ R
n × (0; +∞), y ∈ dom H∗

such that:

w(x, t) > g(x − ty) + tH∗(y) ≥ w(x − ty, 0) + tH∗(y).
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Apply Theorem 1 to the lsc function w between the two points (x, t) and
(x − ty, 0) : for any ǫ > 0, there exists (z, r) ∈ [(x, t), (x − ty, 0)] + ǫB and
(x∗, t∗) ∈ ∂F w(z, r) such that:

tt∗ + 〈ty, x∗〉 > tH∗(y)

⇒ t∗ + 〈y, x∗〉 − H∗(y) > 0.

Since w is a lsc subsolution, t∗ + H(x∗) ≤ 0. We conclude that:

〈y, x∗〉 − H∗(y) − H(x∗) > 0.

The last inequality is in contradiction with Fenchel’s inequality.

3 The Hopf function

In this section, we prove Theorem 4 stated below. We did not recall the
definition of a continuous viscosity solution but it can be found, as we already
mentioned it, in [9].

Theorem 4. If H : R
n → R is continuous and g : R

n → (−∞; +∞] is
lsc, proper and convex, then the Hopf function is a supersolution and it is a
continuous viscosity solution of (1) on the interior of dom uHopf .

If, moreover, H is bounded from above by a Lipschitz function, then uHopf

is the minimal supersolution of (1).

It is well known that uHopf is convex with respect to the couple of variables
(x, t). But it is a remarkable fact that it can be expressed with the same
extended real-valued functions we used to rewrite the Lax function (namely
G and H).

Lemma 3.
uHopf = (G∗ + H)∗ on R

n × [0; +∞)

where Legendre-Fenchel conjugates are calculated with respect to the couple
(y, s).

Proof. First, we calculate G∗:

G∗(ζ, α) = sup
s,y

{

αs + 〈ζ, y〉 − g(y) − ι{0}(s)
}

= sup
y

{〈ζ, y〉 − g(y)} = g∗(ζ).
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For t ≥ 0 :

(G∗ + H)∗ (x, t) = sup
α,ζ

{αt + 〈x, ζ〉 − G∗(ζ, α) −H(ζ, α)}

= sup
ζ

sup
α≤−H(ζ)

{αt + 〈x, ζ〉 − g∗(ζ)}

= sup
ζ

{〈x, ζ〉 − u∗
0(ζ) − tH(ζ)} = uHopf(x, t).

Remark 4. The reader may observe that uHopf is lsc on R
n × [0; +∞).

Proof of Theorem 4. Let us set v := G∗ +H. Lemma 3 asserts that the Hopf
function is the Legendre-Fenchel conjugate of v. The closed convex hull of v,
denoted by v∗∗, is used throughout the proof.

We first prove that uHopf is a supersolution of (1).
Fix (x, t) ∈ dom uHopf , t > 0. Then consider (ζ, α) ∈ ∂uHopf(x, t) = ∂v∗(x, t).
This implies that (ζ, α) lies in the domain of v∗∗ (the closed convex hull of
v), and that (x, t) ∈ ∂v∗∗(ζ, α).

• First case: if v∗∗(ζ, α) = v(ζ, α).

Then the convex subdifferential ∂v∗∗(ζ, α) coincides with the convex subd-
ifferential ∂v(ζ, α) (see [14]). In particular, (x, t) ∈ ∂v(ζ, α). Hence for all
β ∈ R and all ξ ∈ R

n :

t(β − α) + 〈x, ξ − ζ〉 ≤ v(ξ, β) − v(ζ, α)

≤ g∗(ξ) + ιR−(H(ξ) + β) − g∗(ζ) − ιR−(H(ζ) + α). (10)

Setting ξ = ζ and β = −H(ζ), we get: t(−H(ζ) − α) ≤ −ιR−(H(ζ) + α).
Thus, ιR−(H(ζ) + α) = 0 i.e. H(ζ) + α ≤ 0 and:

t(−H(ζ) − α) ≤ 0

⇔ H(ζ) + α ≥ 0.

Finally, we conclude that, in this case, H(ζ) + α = 0.

• Second case: if v∗∗(ζ, α) < v(ζ, α).

We remark that v ≥ g∗, hence g∗ ≤ v∗∗ ≤ v.
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If α + H(ζ) ≤ 0, v(ζ, α) = g∗(ζ), and using the previous inequality, we
obtain:

v∗∗(ζ, α) = v(ζ, α).

We conclude that, in this second case, α + H(ζ) > 0.

Finally, in both cases, α + H(ζ) ≥ 0; we thus have proved that uHopf is a
supersolution of (1).

We continue the proof of Theorem 4 by proving that it is a continu-
ous viscosity solution of (1) on the interior of dom uHopf . We therefore as-
sume that this set is nonempty. Remember that the Hopf function is the
Legendre-Fenchel conjugate of v. We conclude that v is epi-pointed (see Def-
inition 3). Consider now any point (x, t) ∈ int(dom uHopf), and any Fréchet
supergradient (ζ, α) ∈ ∂F uHopf(x, t). Since uHopf is convex, we know that
∂uHopf(x, t) = ∂F uHopf(x, t) is nonempty. We conclude that uHopf is differen-
tiable at (x, t). This means that there is one and only one (ζ, α) ∈ ∂uHopf(x, t).
There then exists a unique couple (ζ, α) such that:

(x, t) ∈ ∂v∗∗(ζ, α).

We now show that v∗∗(ζ, α) = v(ζ, α). Applying Theorem 2 to v, there exists
points (ζ1, α1), . . . , (ζp, αp) and possibly points (ξ1, β1), . . . , (ξq, βq) such that
∑p

i=1 λi = 1 and:
(x, t) ∈ ∂v∗∗(ζi, αi).

This implies that p = 1, α1 = α and ζ1 = ζ and
∑q

j=1(ξj, βj) = 0. Hence, the
following equality holds true:

v∗∗(ζ, α) = v(ζ, α) +

q
∑

j=1

v∞(ξj, βj)

≥ v(ζ, α) + v∞

(

q
∑

j=1

(ξj, βj)

)

= v(ζ, α) ≥ v∗∗(ζ, α).

We used the fact that v∞ is sublinear and equals 0 at 0. Since v∗∗(ζ, α) =
v(ζ, α), we proved above that α + H(ζ) = 0 ≤ 0. We conclude that uHopf is
a continuous viscosity solution of (1) on int(dom uHopf).
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To achieve the proof of Theorem 4, we must prove that the Hopf function
is the minimal supersolution of (1). Consider a supersolution w of (1), and
let us prove that w ≥ uHopf . By assumption, H is bounded from above by
a Lipschitz function. There then exists a Lipschitz function H1 such that w
is a supersolution of (1) with H = H1. We can therefore assume that H is
Lipschitz. Remember that uHopf(x, t) = supζ{〈ζ, x〉 − g∗(ζ)− tH(ζ)}. Let us
consider some ζ0 ∈ dom g∗, and define a new function w1 as follows:

w1(x, t) = w(x, t) − 〈ζ0, x〉 + g∗(ζ0) + tH(ζ0).

We have to prove that w1 ≥ 0. We first remark that w1 is a supersolution of
the following Cauchy problem:

∂w
∂t

+ G(Dw) = 0 in R
n × (0; +∞), (11)

w(., 0) = 0 in R
n, (12)

where G denotes the new Hamiltonian defined for all ζ by G(ζ) = H(ζ +
ζ0) − H(ζ0). Indeed,

w1(0, x) = w(0, x) − 〈ζ0, x〉 + g∗(ζ0) ≥ g(x) − 〈ζ0, x〉 + g∗(ζ0) ≥ 0.

Moreover, for all (x, t) ∈ dom w1, for all (ζ, α) ∈ ∂F w1(x, t) :

(ζ, α) = (ζ1, α1) + (−ζ0, H(ζ0)),

with α1 + H(ζ1) ≥ 0. Hence

α + G(ζ) = α + H(ζ + ζ0) − H(ζ0) = α1 + H(ζ1) ≥ 0.

The reader may remark that G(0) = 0 and that G is a Lipschitz function.
We denote by K a Lipschitz constant of G.

Suppose that there exists some (x̄, t̄) such that w1(x̄, t̄) ≤ −∆ < 0. Let
us fix R > 0 and let B(x̄, R) denote the closed ball centered at x̄ of radius R.
The lower semicontinuity of w1 implies that there exists t ∈]0, t̄[, such that
for all x ∈ B(x̄, R) :

0 ≤ w1(x, t) +
∆

2
. (13)

Combining (13) with w1(x̄, t̄) ≤ −∆, we obtain:

∆

2
≤ w1(x, t) − w1(x̄, t̄),

13



for all x ∈ B(x̄, R). We next apply the mean value Theorem 1 to the lsc
function w1 with Y = B(x̄, R) × {t} as the closed convex set on which w1 is
bounded from below.

∀ǫ > 0,∃(z, τ) ∈ [(x̄, t̄), Y ] + ǫB(0, 1),∃(ζ, α) ∈ ∂F w1(z, τ) /

∀x ∈ B(x̄, R),
∆

3
≤ 〈(ζ, α), (x, t) − (x̄, t̄)〉 . (14)

Observe that τ ∈ [t − ǫ, t̄ + ǫ]. We therefore choose ǫ < t in order to ensure
τ > 0. Since w1 is a supersolution of (11)-(12): α + G(ζ) ≥ 0. Now (14)
yields

∆

3
≤ α(t − t̄) − R|ζ| ≤ G(ζ)(t̄ − t) − R|ζ|.

Since G is Lipschitz and G(0) = 0, we conclude that:

∆

3
≤ (K(t̄ − t) − R)|ζ| ≤ (Kt̄ − R)|ζ|.

This yields a contradiction for all R large enough. The proof of Theorem 4
is therefore complete.
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