Frédéric Menous 
email: frederic.menous@math.u-psud.fr
  
Formulas for Birkhoff-(Rota-Baxter) decompositions related to connected bialgebras

In recent years, The usual BPHZ algorithm for renormalization in quantum field theory has been interpreted, after dimensional regularization, as the Birkhoff-(Rota-Baxter) decomposition (BRB) of characters on the Hopf algebra of Feynman graphs, with values in a Rota-Baxter algebra.

We give in this paper formulas for the BRB decomposition in the group C(H, A) of characters on a connected Hopf algebra H, with values in a Rota-Baxter (commutative) algebra A.

To do so we first define the stuffle (or quasi-shuffle) Hopf algebra A st associated to an algebra A. We prove then that for any connected Hopf algebra H = k1H ⊕ H ′ , there exists a canonical injective morphism from H to H ′ st . This morphism induces an action of C(A st , A) on C(H, A) so that the BRB decomposition in C(H, A) is determined by the action of a unique (universal) element of C(A st , A).

1 Introduction.

In this paper we deal with connected bialgebras H = k1 H ⊕ H ′ . As reminded in section 2, such bialgebras are Hopf algebras and the coalgebra structure on H induces a convolution product on the space L(H, A) of linear morphisms from H to an associative algebra A. If A is unital, then the subset U(H, A) of linear morphisms that send 1 H on 1 A is a group for the convolution and, if A is commutative the subset C(H, A) of characters (algebra morphisms) is a subgroup of U(H, A).

In section 3, the target unital algebra A is equipped with a Rota-Baxter operator p + :

1. p 2 + = p + . 2. A = Im p + ⊕ Im p -= A + ⊕ A -(p -= Id -p + ).

3.

A + and A -are subalgebras.

With this hypothesis, It is well-know that there exists a unique Birkhoff-(Rota-Baxter) (or BRB) decomposition of any morphism ϕ ∈ U(H, A)

ϕ - * ϕ = ϕ + ϕ + , ϕ -∈ U(H, A)
where ϕ + (H ′ ) ⊂ A + and ϕ + (H ′ ) ⊂ A -. Moreover, if A is commutative, this decomposition is defined in the subgroup C(H, A). The proof of this result is recursive, using the filtration on H. We propose to give explicit, and in some sense universal, formulas for ϕ + and ϕ -.

2 Reminder about connected bialgebras.

We follow here the notations and definitions given in [START_REF] Figueroa | Combinatorial Hopf algebras in quantum field theory[END_REF] (see also [START_REF] Majid | Foundations of quantum group theory[END_REF] and [START_REF] Sweedler | Hopf algebras[END_REF]). Let k be a commutative field.

Bialgebras and Hopf algebras.

In the sequel, we will work with bialgebras over k:

Definition 1 A bialgebra H is a k-vector space equipped with four linear maps m : H ⊗ H → H (product : m(x ⊗ y) = xy) , u : k → H (unit : u(1 k ) = 1 H ), ∆ : H → H ⊗ H (coproduct) and η : H → k (counit) such that 1. (H, m, u) is a unital associative algebra. This reads :

a) Associativity : m • (m ⊗ Id) = m • (Id ⊗m) : H ⊗ H → H; b) Unit : m • (u ⊗ Id) = m • (Id ⊗u) = Id : k ⊗ H = H ⊗ k = H → H. 2. (H, ∆, η) is a coassociative coalgebra with a counit : a) Coassociativity : (∆ ⊗ Id) • ∆ = (Id ⊗∆) • ∆ : H → H ⊗ H ⊗ H ; b) Counit : (η ⊗ Id) • ∆ = (Id ⊗η) • ∆ = Id : H → H.

The following diagram commutes :

H ⊗ H m ----→ H   ∆⊗∆   m⊗m H ⊗ H ⊗ H ⊗ H Id ⊗τ ⊗Id ------→ H ⊗ H ⊗ H ⊗ H
where τ is the linear map defined by τ (h ⊗ g) = g ⊗ h and

∆(1 H ) = 1 H ⊗ 1 H , η(hg) = η(h)η(g) Note that p = u • η is an idempotent (p ′ = Id -p) and H = Im p ⊕ Ker p = Im u ⊕ Ker η = k1 H ⊕ H ′ .
If ∆h = j h j(1) ⊗ h j(2) , we will sometimes write

∆h = h (1) ⊗ h (2) = h (1) ⊗ h (2) (1) 
For example, coassociativity read

h (1)(1) ⊗ h (1)(2) ⊗ h (2) = h (1) ⊗ h (2)(1) ⊗ h (2)(2) = h (1) ⊗ h (2) ⊗ h (3)
and thanks to coassociativity, we can define recursively and without any ambiguity the linear morphisms ∆ [n] : H → H ⊗ n (n ≥ 1) by ∆ [1] = Id and, for n ≥ 1,

∆ [n+1] = (Id ⊗∆ [n] ) • ∆ = (∆ [n] ⊗ Id) • ∆ = (∆ [k] ⊗ ∆ [n+1-k] ) • ∆ (1 ≤ k ≤ n) (2) 
and write

∆ [n] h = h (1) ⊗ . . . ⊗ h (n) (3) 
On the same way, for n ≥ 1, we define m [n] : H ⊗ n → H by m [1] = Id and

m [n+1] = m • (Id ⊗m [n] ) = m • (m [n] ⊗ Id) (4) 
Such a bialgebra is a Hopf algebra if there exists an antipode S, that is to say a linear map S : H → H such that :

m • (Id ⊗S) • ∆ = m • (S ⊗ Id) • ∆ = u • η : H → H (5) 
From now on, we should focus on connected bialgebras since they are automatically Hopf algebras.

Connected bialgebras.

Definition 2 A bialgebra AE-filtered as a vector space is called a filtered bialgebra when the filtering is compatible with both the algebra an the coalgebra structure; that is, there exist a sequence of subspaces H 0 H 1 . . . such that n≥0 H n = H and

∆H n ⊆ n k=0 H k ⊗ H n-k ; H n H m ⊆ H n+m (6) 
Connected bialgebras are those filtered bialgebras such that H 0 = k1 H = Im u = Im p.

We shall come back in the next section on the fact that the antipode automatically exists. For such a connected bialgebra, if, for all n ≥ 1,

H ′ n = H ′ ∩ H n , then ∀h ∈ H ′ n , ∆h = 1 ⊗ h + h ⊗ 1 + y where y = (p ′ ⊗ p ′ ) • ∆h ∈ n-1 k=1 H ′ k ⊗ H ′ n-k (7) 
and, it will be useful to define the reduced coproduct ∆ ′ on H ′ defined by

∆ ′ h = ∆h -1 ⊗ h -h ⊗ 1 (8) 
Then, recursively, for n ≥ 1, we define ∆ ′

[n] = p ′⊗ n • ∆ [n] : H ′ → H ′⊗ n . We note ∀h ∈ H ′ , ∆ ′[n] h = h ′ (1) ⊗ . . . ⊗ h ′ (n) (9) 
and we have, for h in H, p

′⊗ n • ∆ [n] (h) = ∆ ′[n] • p ′ (h). Moreover, for n ≥ 1 and h ∈ H ′ ∆ ′[n+1] (h) = (∆ ′[k] ⊗ ∆ ′[n+1-k] ) • ∆ ′ (h) (1 ≤ k ≤ n) (10) 
and if h ∈ H ′ k (k ≥ 1) then, for n > k, ∆ ′[n] (h) = 0. Given a connected bialgebra H and an algebra (A, m A , u A ) the coalgebra structure of H induces an associative convolution product on the vector space L(H, A) of k-linear maps :

∀(f, g) ∈ L(H, A) × L(H, A), f * g = m A • (f ⊗ g) • ∆ ( 11 
)
with a unit given by u A • η, such that (L(H, A), * , u A • η) is an associative unital algebra.

2.3

The group (U(H, A), * ).

Proposition 1 Let U(H, A) = {f ∈ L(H, A) ; f (1 H ) = 1 A } (12) 
then U(H, A) is a group for the convolution product.

Proof U(H, A) is obviously stable for the convolution product and following [START_REF] Figueroa | Combinatorial Hopf algebras in quantum field theory[END_REF] we should remind why any element f ∈ U(H, A) as a unique inverse f * -1 in U(H, A). There are two ways to define this inverse.

Since

H = H 0 ⊕ H ′ it is sufficient to define recursively f * -1 on H ′ n for n ≥ 1 (f -1 (1 H ) = 1 A ). For n ≥ 1 and h ∈ H ′ n , we have ∆h = 1 ⊗ h + h ⊗ 1 + h ′ (1) ⊗ h ′ (2) 
where

h ′ (1) ⊗ h ′ (2) ∈ n-1 k=1 H ′ k ⊗ H ′ n-k thus f * -1 * f (h) = u A (η(a)) = 0 = f * -1 (h) + f (h) + f * -1 (h ′ (1) )f (h ′ (2) ) (13) 
and this defines f * -1 recursively. On the other hand, we can write

f * -1 = (u A • η -(u A • η -f )) * -1 = u A • η + k≥1 (u A • η -f ) * k (14) 
In fact, this series seems to be infinite but for

h ∈ H ′ n (u A • η -f ) * k (h) = (-1) k f (h ′ (1) ) . . . f (h ′ (k) ) = (-1) k m [k] A • f ⊗ k • ∆ ′[k] (h) (15) 
vanishes as soon as k > n.

The principle of recursive computation will be useful when dealing with Birkhoff-Rota-Baxter decomposition and the main goal of this paper will be to find also formulas like 15.

Notation 1 If B ⊂ A is a subalgebra of A which is not unital, then we write U(H, B) = {f ∈ L(H, A) ; f (1 H ) = 1 A and f (H ′ ) ⊂ B} This is a subgroup of U(H, A).
If this result is applied to Id : H → H ∈ U(H, H), then its convolution inverse is the antipode S and this proves that any connected bialgebra is a Hopf algebra. Moreover S is an antialgebra morphism :

S(gh) = S(h)S(g) (16) 
2.4 Algebra morphisms or characters.

Let C(H, A) the subset of L(H, A) whose elements are algebra morphisms (also called characters over

A). Of course, C(H, A) ⊂ U(H, A)
but this shall not be a subgroup. If A is not commutative, there is no reason why this should be stable for the convolution product. Moreover if f ∈ U(H, A) is an algebra map, then its inverse

f * -1 in U(H, A) is an antialgebra map. In fact, if f is an algebra map then f * -1 = f • S : f * f • S = m A • (f ⊗ f • S) • ∆ = m A • (f ⊗ f ) • (Id ⊗S) • ∆ = f • m • (Id ⊗S) • ∆ = f • u • η = u A • η (17) Nonetheless if A is commutative, then C(H, A) is a subgroup of U(H, A).
3 Rota-Baxter algebras and Birkhoff-type decomposition in U (H, A).

Following [START_REF] Ebrahimi-Fard | Integrable renormalization. I: The ladder case[END_REF], let p + an idempotent of L(A, A) where A is a unital algebra. If we have for x, y in A :

p + (x)p + (y) + p + (xy) = p + (xp + (y)) + p + (p + (x)y)) (18) 
Then p + is a Rota-Baxter operator, (A, p + ) is a Rota-Baxter algebra and if p -= Id -p + , A + = Im p + and A -= Im p -then

-A = A + ⊕ A -.
p -satisfies the same relation.

-A + and A -are subalgebras.

Conversely if A = A + ⊕ A -and A + and A -are subalgebras, then the projection p + on A + parallel to A -defines a Rota-Baxter algebra (A, p + ). The principle of renormalization in physics can be formulated in the following way Proposition 2 Let H be a connected bialgebra and (A, p + ) a Rota-Baxter algebra then for any ϕ ∈ U(H, A) there exists a unique pair (ϕ

+ , ϕ -) ∈ U(H, A + ) × U(H, A -) such that ϕ - * ϕ = ϕ + (19)
Moreover, if A is commutative and ϕ is a character over A, then ϕ + and ϕ -are also characters. This factorization will be called the Birkhoff-Rota-Baxter (or BRB) decomposition of ϕ.

Proof We will give the proof for characters later. As A + and A -are subalgebras of A, U(H, A + ) and U(H, A -) are subgroups of U(H, A).

If such a factorization exists, then it is unique :

If ϕ = ϕ * -1 - * ϕ + = ψ * -1 - * ψ + , then φ = ψ + * ϕ * -1 + = ψ - * ϕ * -1 - ∈ U(H, A + ) ∩ U(H, A -) thus for h ∈ H ′ , φ(h) ∈ A + ∩ A -= 0.
We finally get that

ψ + * ϕ * -1 + = ψ - * ϕ * -1 - = u A • η and ϕ + = ψ + , ϕ -= ψ -.
Let us prove now that such a factorization exists. Let ϕ ∈ U(H, A), we must have ϕ

+ (1 H ) = ϕ -(1 H ) = 1 A . Let φ ∈ U(H, A) the Bogoliubov preparation map defined recursively on vector spaces H ′ n (n ≥ 1) by φ(h) = ϕ(h) -m A • (p -⊗ Id) • ( φ ⊗ ϕ) • ∆ ′ (h) (20) 
Now if ϕ + and ϕ -are the elements of U(H, A) defined on H ′ by

ϕ + (h) = p + • φ(h) , ϕ -(h) = -p -• φ(h) ( φ(h) = ϕ + (h) -ϕ -(h))
Then it is clear that

ϕ + ∈ U(H, A + ) , ϕ -∈ U(H, A -) , ϕ - * ϕ = ϕ + 4 
The stuffle Hopf algebra A st of an algebra A.

For details on the stuffle (or quasi-shuffle) product, the reader can refer to [START_REF] Michael | Quasi-shuffle products[END_REF].

Definition and properties.

Let A be an associative algebra. A st is the graded vector space

A st = n≥0 A st (n) where, for n ≥ 1, A st (n) = A ⊗ n and A st (0)
= k∅ where ∅ is a symbol for the empty tensor product. It is obviously graded and we note l(a) = n the length of an element a of A st (n) . For convenience, an element a = a 1 ⊗ . . . ⊗ a r of A st we be called a tuple or a word and if a and b are two words, then a ⊗ b is the concatenation of the words. Note also that, as ⊗already denotes the tensor product in A, when there may be some ambiguity, we use ⊗ st for the tensor product of elements of A st .

One can define recursively the stuffle or quasi shuffle product m st :

A st ⊗ st A st → A st on A st : 1. For any a ∈ A st , m st (∅ ⊗ st a) = m st (a ⊗ st ∅) = a 2. Let a = a 1 ⊗ . . . ⊗ a r ∈ A st (r) and b = b 1 ⊗ . . . ⊗ b s ∈ A st (s) with r ≥ 1 and s ≥ 1. If ã = a 1 ⊗ . . . ⊗ a r-1 ∈ A st (r-1) (ã = ∅ if r = 1) and b = b 1 ⊗ . . . ⊗ b s-1 ∈ A st (s-1) ( b = ∅ if r = 1), then : m st (a ⊗ st b) = m st ( a ⊗ st b) ⊗ a r + m st (a ⊗ st b) ⊗ b s + m st (ã ⊗ st b) ⊗ a r b s (21)
where a r b s is the product in A of a r and b s .

For example :

m st ((a 1 ⊗ a 2 ) ⊗ st b 1 ) = a 1 ⊗ a 2 ⊗ b 1 + a 1 ⊗ b 1 ⊗ a 2 + b 1 ⊗ a 1 ⊗ a 2 + a 1 ⊗ a 2 b 1 (22) 
With this product, A st is a unital algebra (unit ∅) and if A is commutative, then A st is commutative. Moreover

π st (A st (r) ⊗ st A st (s) ) ⊂ r+s t=max(r,s) A st (t) (23) 
On the same way one can define :

a counit η st :

A st → k by η st (∅) = 1 k and for s ≥ 1, η st (a 1 ⊗ . . . ⊗ a s ) = 0, -a coproduct ∆ st : A st → A st ⊗ st A st such that ∆ st (∅) = ∅ ⊗ st ∅ and for s ≥ 1 and a = a 1 ⊗ . . . ⊗ a s ∈ A st (s) , ∆ st (a) = a ⊗ st ∅ + ∅ ⊗ st a + s-1 r=1 (a 1 ⊗ . . . ⊗ a r ) ⊗ st (a r+1 ⊗ . . . ⊗ a s ) (24) 
such that A st is a graded coalgebra.

It is a matter of fact to check that A st is a connected bialgebra (and thus a Hopf algebra) for the filtration :

A st n = n k=0 A st (n) (25) 
which is called the stuffle Hopf algebra on A and A st 0 = k∅, A st ′ = +∞ n=1 A st (n) . We also have, for a sequence a ∈ A st ′ and n ≥ 1,

∆ ′[n] st (a) = a 1 ⊗...⊗a n =a a 1 ⊗ st . . . ⊗ st a n (26)
where the sum is over n-tuple of non-empty words (a 1 , . . . , a n ) such that the concatenation of these sequences gives a. In particular, for the antipode,

S(∅) = ∅ and if a = a 1 ⊗ . . . ⊗ a s ∈ A st ′ , S(a) = k≥1 (-1) k m [k] st • ∆ ′[k] st (a) = k≥1 (-1) k a 1 ⊗...⊗a k =a m [k] st (a 1 ⊗ st . . . ⊗ st a k ) ( 27 
)
If B is an algebra, then once again, there is a convolution on L(A st , B) :

ϕ * ψ = m B • (ϕ ⊗ ψ) • ∆ st and, if B is unital, (U(A st , B), * ) is a group. Moreover if B is commutative then C(A st , B) is a subgroup.
Finally a map l ∈ L(A, B) induces a map l st ∈ U(A st , B st ) defined by

l st (∅) = ∅ and l st (a 1 ⊗ . . . ⊗ a r ) = l(a 1 ) ⊗ . . . ⊗ l(a r ) (r ≥ 1)
and ∆ st • l st = (l st ⊗ st l st ) • ∆ st . Moreover, if l is an algebra map, then l st • m st = m st • (l st ⊗ st l st ), thus l st is a Hopf morphism.

4.2

The map j ∈ U(A st , A) where A is unital.

We shall now illustrate the computations of the previous section on the following map j ∈ C(A st , A) defined by j(∅) = 1 A , j(a 1 ) = a 1 and j(a 1 ⊗ . . . ⊗ a r ) = 0 if r ≥ 2. In a sense, this will be the only computation of inverse and of Birkhoff-Rota-Baxter decomposition we will need.

For the inverse, we get the antialgebra morphism j * -1 :

j * -1 = u A • η st + k≥1 (u A • η st -j) * k
Which means that j * -1 (∅) = 1 A and for a sequence

a = a 1 ⊗ . . . ⊗ a s ∈ A st ′ , j * -1 (a) = k≥1 (-1) k m [k] A • j ⊗ k • ∆ ′ [k] st (a) = k≥1 (-1) k a 1 ⊗...⊗a k =a m [k] A • j ⊗ k (a 1 ⊗ st . . . ⊗ st a k ) = k≥1 (-1) k a 1 ⊗...⊗a k =a j • m [k] st (a 1 ⊗ st . . . ⊗ st a k ) = (-1) s a 1 . . . a s = j • S(a) (28) 
If (A, p + ) is a Rota-Baxter algebra then the Bogoliubov preparation map j associated to j is such that j(∅) = 1 A and is defined recursively on vector spaces A st n ′ (n ≥ 1) by

j(h) = j(h) -m A • (p -⊗ Id) • ( j ⊗ j) • ∆ ′ st (h) (29) 
Let us begin the recursion on the length of the sequence. If a = a 1 then j(a 1 ) = j(a 1 ) = a 1 . Now

j(a 1 ⊗ a 2 ) = j(a 1 ⊗ a 2 ) -m A • (p -⊗ Id) • ( j ⊗ j)((a 1 ) ⊗ st (a 2 )) = -p -(a 1 )a 2 (30) and j 
(a 1 , a 2 , a 3 ) = -m A • (p -⊗ Id) • ( j ⊗ j)((a 1 ⊗ a 2 ) ⊗ st (a 3 )) = p -(p -(a 1 )a 2 )a 3 (31) Thus, for r ≥ 2, j(a 1 ⊗ . . . ⊗ a r ) = -p -( j(a 1 , . . . , a r-1 ))a r (32) 
It is then easy to prove that Proposition 3 The Birkhoff-Rota-Baxter decomposition (j

+ , j -) ∈ U(A st , A + ) × U(A st , A -) such that j - * j = j +
is given by the formula : for r ≥ 1 and a

= a 1 ⊗ . . . ⊗ a r ∈ A st ′ , j + (a) = p + ( j(a)) = (-1) r-1 p + (p -(. . . (p -(a 1 )a 2 ) . . . a r-1 )a r ) j -(a) = -p -( j(a)) = (-1) r p -(p -(. . . (p -(a 1 )a 2 ) . . . a r-1 )a r ) (33) 
Moreover, if A is commutative then C(A st , A) is a group and j + and j -are characters.

Proof It remains to prove the last assumption, when A is commutative. Since j is a character it is sufficient to prove that j -is a character. By induction on t ∈ AE we will show that for two sequences a and b in A st , if l(a) + l(b) = t, then

j -(m st (a ⊗ st b)) = j -(a)j -(b) (34) 
This identity is trivial for t = 0 and t = 1 since at least one of the sequences is the empty sequence. This also trivial for any t if one of the sequence is empty. Now suppose that t ≥ 2 and that a = a 1 ⊗ . . .

⊗ a r ∈ A st (r) and b = b 1 ⊗ . . . ⊗ b s ∈ A st (s) with r ≥ 1, s ≥ 1 and r + s = t. Let ã = a 1 ⊗ . . . ⊗ a r-1 ∈ A st (r-1) (ã = ∅ if r = 1) and b = b 1 ⊗ . . . ⊗ b s-1 ∈ A st (s-1) ( b = ∅ if s = 1), then : m st (a ⊗ st b) = m st (ã ⊗ st b) ⊗ a r + m st (a ⊗ st b) ⊗ b s + m st (ã ⊗ st b) ⊗ a r b s Now we have j -(a) = -p -(j -(ã)a r ) = -p -(x) and j -(b) = -p -(j -( b)b s ) = -p -(y)
Thanks to the Rota-Baxter identity

j -(a)j -(b) = p -(x)p -(y) = p -(xp -(y)) + p -(p -(x)y) -p -(xy) = p -(j -(ã)a r p -(j -( b)b s )) + p -(p -(j -(ã)a r )j -( b)b s ) -p -(j -(ã)a r j -( b)b s ) but as A is commutative, by induction we get j -(a)j -(b) = -p -(j -(ã)j -(b)a r ) -p -(j -(a)j -( b)b s ) -p -(j -(ã)j -( b)a r b s ) = -p -(j -(m st (ã ⊗ b))a r ) -p -(j -(m st (a ⊗ b))b s ) -p -(j -(m st (ã ⊗ b))a r b s ) = j -(m st (ã ⊗ b) ⊗ a r ) + j -(m st (a ⊗ b) ⊗ b s ) + j -(m st (ã ⊗ b) ⊗ a r b s ) = j -(m st (ã ⊗ b) ⊗ a r + m st (a ⊗ b) ⊗ b s + m st (ã ⊗ b) ⊗ a r b s ) = j -(m st (a ⊗ b))
As we will see these formulas are almost sufficient to compute the Birkhoff decomposition in any connected bialgebra. [START_REF] Ebrahimi-Fard | Combinatorics of renormalization as matrix calculus[END_REF] The Hopf morphism ι : H → H ′ st .

Theorem 1 Let H = H 0 ⊕ H ′ be a connected bialgebra, then the map ι :

H → H ′ st defined by ι(1 H ) = ∅ and ∀h ∈ H ′ , ι(h) = k≥1 ∆ ′[k] (h) ∈ H ′ st ′ (35)
defines an injective Hopf morphism.

Proof This map is well defined since, if k > n ≥ 1, ∀h ∈ H ′ n , ∆ ′[k] (h) = 0
It is obviously linear and injective : For h 1 = α 1 1 H + p ′ (h 1 ) and h 2 = α 2 1 H + p ′ (h 2 ) then, thanks to the graduation of the vector space H ′ st , if ι(h 1 ) = i(h 2 ) then α 1 = α 2 and p ′ (h 1 ) = p ′ (h 2 ) thus h 1 = h 2 . This is a coalgebra map since

∆ st (ι(1 H )) = ∆ st (∅) = ∅ ⊗ st ∅ = (ι ⊗ ι) • ∆(1 H )
where, to avoid ambiguity, we noted ⊗ st the tensor product of two elements of

H ′ st . For h ∈ H ′ , (ι ⊗ st ι) • ∆(h) = (ι ⊗ st ι)(1 ⊗ h + h ⊗ 1 + ∆ ′ (h)) = ∅ ⊗ st ι(h) + ι(h) ⊗ st ∅ +   k≥1 l≥1 ∆ ′[k] ⊗ st ∆ ′[l]   • ∆ ′ (h) = ∅ ⊗ st ι(h) + ι(h) ⊗ st ∅ + k≥1 l≥1 (Id ⊗ k ⊗ st Id ⊗ l ) • (∆ ′[k] ⊗ ∆ ′[l] ) • ∆ ′ (h) = ∅ ⊗ st ι(h) + ι(h) ⊗ st ∅ + n≥1 n-1 k=1 (Id ⊗ k ⊗ st Id ⊗ l ) • ∆ ′[n] (h) = ∅ ⊗ st ι(h) + ι(h) ⊗ st ∅ + ∆ ′ st (ι(h)) = ∆ st (ι(h))
But ι is also an algebra map. Let g and h be two elements of H. If g or h is in H 0 then we get trivially that ι(gh) = m st (ι(g) ⊗ st ι(h))

As in the previous section we will prove by induction on t ≥ 2 that for any positive integer r and s such that r + s = t, then

∀(g, h) ∈ H ′ r × H ′ t , ι(gh) = m st (ι(g) ⊗ st ι(h)) Note that ι(h) = k≥1 ∆ ′[k] (h) = h + k≥1 ∆ ′[k+1] (h) = h + k≥1 (∆ ′[k] ⊗ Id) • ∆ ′ (h) = h + k≥1 (∆ ′[k] ⊗ Id)(h ′ (1) ⊗ h ′ (2) ) = h + ι(h ′ (1) ) ⊗ h ′ (2) (36) 
For t = 2 (r = s = 1) then ι(g) = g, ι(h) = h and ∆ ′ [2] (gh

) = h ⊗ g + g ⊗ h thus ι(gh) = gh + h ⊗ g + g ⊗ h = m st ((g) ⊗ st (h)) More generally ∆ ′ (gh) = h ⊗ g + g ⊗ h + gh ′ (1) ⊗ h ′ (2) + h ′ (1) ⊗ gh ′ (2) +g ′ (1) h ⊗ g ′ (2) + g ′ (1) ⊗ g ′ (2) h + g ′ (1) h ′ (1) ⊗ g ′ (2) h ′ (2) 
and if

f = gh ι(gh) = f + ι(f ′ (1) ) ⊗ f ′ (2) 
6. [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The β-function, diffeomorphisms and the renormalization group[END_REF] The BRB decomposition in U(H, A).

Finally, let ϕ ∈ U(H, A). Since T (j, ϕ) = ϕ, if ϕ -= T (j -, ϕ) and ϕ + = T (j + , ϕ), then

ϕ - * ϕ = T (j -, ϕ) * T (j, ϕ) = T (j - * j, ϕ) = T (j + , ϕ) = ϕ +
and, of course, ϕ ± ∈ U(H, A ± ). For example, if h ∈ H ′ 3 , then Needless to say that if A is commutative, these computations works in the subgroup C(H, A).

Conclusion.

Once these formulas are given, we get formulas in the different contexts where renormalization, or rather BRB decomposition is needed :

-Renormalization in quantum field theory : the connected Hopf algebra is the connected graded Hopf algebra of Feynman graphs. The character is given, after dimensional regularization, by Feynman integrals with values in a commutative algebra of Laurent series in a parameter ε :

A = A[[ε]][ε -1 ] with A + = A[[ε]
] and A -= ε -1 A[ε -1 ] (see for example [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. I: The Hopf algebra structure of graphs and the main theorem[END_REF], [START_REF] Connes | Renormalization in quantum field theory and the Riemann-Hilbert problem. II: The β-function, diffeomorphisms and the renormalization group[END_REF], [START_REF] Ebrahimi-Fard | Integrable renormalization. I: The ladder case[END_REF]).

-Chen's iterated integrals : this kind of integrals (including multizeta values) define characters on a connected graded Hopf algebras of trees or ladders (see for example [START_REF] Kreimer | Chen's iterated integral represents the operator product expansion[END_REF], [START_REF] Manchon | Shuffle relations for regularised integrals of symbols[END_REF]).

-The Birkhoff decomposition in the group of formal identity-tangent diffeomorphism with

coefficients in A = Ê[[ε]][ε -1 ]. Any element f (x) = x + n≥2 f n (ε)x n , f n (ε) ∈ Ê[[ε]][ε -1 ]
can be decomposed :

f -• f = f + with f -(x) = x + n≥2 f -,n (ε)x n f -,n (ε) ∈ ε -1 Ê[ε -1 ] f + (x) = x + n≥2 f +,n (ε)x n f +,n (ε) ∈ Ê[[ε]][ε -1 ]
This factorization corresponds here to the BRB decomposition in the Faà di Bruno Hopf algebra (see [START_REF] Figueroa | Combinatorial Hopf algebras in quantum field theory[END_REF], [START_REF] Menous | The Birkhoff decomposition in groups of formal diffeomorphisms[END_REF]).

The same ideas were also used for the the even-odd factorization of characters in combinatorial Hopf algebras (see [START_REF] Aguiar | Combinatorial Hopf algebras and generalized Dehn-Sommerville relations[END_REF], [START_REF] Aguiar | Canonical characters on quasi-symmetric functions and bivariate Catalan numbers[END_REF] and [START_REF] Ebrahimi-Fard | Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[END_REF]).

ϕ

  + (h) = p + (ϕ(h))p + (p -(ϕ(h ′ (1) ))ϕ(h ′ (2) )) + p + (p -(p -(ϕ(h ′ (1) ))ϕ(h ′ (2) ))ϕ(h ′ (3) )) ϕ -(h) = -p -(ϕ(h)) + p -(p -(ϕ(h ′ (1) ))ϕ(h ′ (2) ))p -(p -(p -(ϕ(h ′ (1) ))ϕ(h ′ (2) ))ϕ(h ′ (3) ))

By the induction we get

As ι(g

This morphisms shows that any connected bialgebra can be canonically identified to a subalgebra of a stuffle algebra. This will help us to define U(A st , B) as a group of function from U(H, A) to U(H, B) where H (resp. A, B) is a connected bialgebra (resp. unital algebras).

6 The map T : U (A st , B) × U (H, A) → U (H, B) and associated formulas.

Definition and properties.

Let H be a connected bialgebra and A, B two unital algebras. For ϕ ∈ U(H, A) and f ∈ U(A st , B) we define

There are two fundamental properties :

1. Let f and g in U(A st , B) and ϕ in U(H, A), then

6.2 The semigroup (U(A st , A), ⊙).

We leave the details to the reader but, or f and g in U(A st , A) let us define

This is a binary operator on U(A st , A) which is associative (but non-commutative) and

so,

) and finally

) ) We recover the usual formula for the inverse.