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Abstract

We introduce Wiener integrals with respect to the Hermite process and we prove a
Non-Central Limit Theorem in which this integral appears as limit. As an example, we
study a generalization of the fractional Ornstein-Uhlenbeck process.
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1 Introduction

The selfsimilar processes have been widely studied due to their applications as models for
various phenomena, like hydrology, network traffic analysis and mathematical finance.

An interesting class of selfsimilar processes is given as limits of the so called Non-
Central Limit Theorem studied in [21] and [9]. We briefly recall the context. Let g be a
function of Hermite rank k (see Section 5 for the definition) and let (§,)ncz be a stationary
Gaussian sequence with mean 0 and variance 1 which exhibits long range dependence in the
sense that the correlation function satisfies

2H—-2

r(n) == E(§o&n) =n" % L(n)
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where H € (3,1), k > 1 and L is a slowly varying function at infinity (see e.g. [10] for the
definition). Then the following holds:

[nt]

) 1)
j=1

converges as n — 00 in the sense of finite dimensional distributions, to the process

t k 1 1—-H
) </0 (H(s - yz);(2+k)> ds) dB(y1)...dB(yx) (2)

=1

Z%(t) = ¢(H, k) /

R

where the above integral is a Wiener-It6 multiple integral of order k with respect to the standard
Brownian motion (B(y))yer and c¢(H, k) is a positive normalization constant depending only
on H and k. The process (Z%(t))i>0 is called the Hermite process and it is H-selfsimilar in
the sense that for any ¢ > 0, (Z¥(ct)) =@ (¢ Z%(t)), where ” =4 7 means equivalence of all
finite dimensional distributions, and it has stationary increments.

The most studied Hermite process is of course the fractional Brownian motion (which
is obtained in (2) for k£ = 1) due to its large range of applications. Recently, a rich theory of
stochastic integration with respect to this process has been introduced and stochastic differen-
tial equations driven by the fractional Brownian motion have been considered. We refer to [4],
[8] or [11], to cite only a few. The process obtained in (2) for k = 2 is known as the Rosenblatt
process. It was introduced by Rosenblatt in [19] and it has been called in this way by M.
Taqqu in [20]. The Rosenblatt process has also practical applications and different aspects of
this process, like wavelet type expansion or extremal properties have been studied in [1], [2],
[15] or [16].

The aim of this paper is to make a first step in the direction of a stochastic calculus
driven by the Hermite process of order k by introducing Wiener integrals with respect to this
process. The basic observation is the fact that the covariance structure of the Hermite process
is similar to the one of the fractional Brownian motion and this allows the use of the same
classes of deterministic integrands as in the fractional Brownian motion case whose properties
are known. We will distinguish as in [18], [17], a time domain and a spectral domain of
deterministic integrands. As an application, we discuss the existence and the properties of the
Hermite Ornstein-Uhlenbeck process (the correspondent of the fractional Ornstein-Uhlenbeck
process, see [6]) that appears as the unique solution of a Langevin type equation.

Of central interest is for us a Non-Central Limit Theorem that has as limit the Wiener
integral with respect to the Hermite process (Z5(t))i>0 in (2). Recall that it has been proved
in [17] that, if f is a deterministic function in a suitable space, then the sequence

an%f (2) )

where (X;)jez is in the domain of attraction of the fractional Brownian motion, converges
weakly, as n — oo, to the Wiener integral [; f(u)dBg(u), where By denotes the fractional
Brownian motion. The case of stable random variables, where (X};);ez are i.i.d. belonging to



the domain of attraction of a stable law, has been studied in [12] and [13]. A natural extension
of the convergence of sequences (1) and (3) is to show that

2t (2)ee)
JEZ.
converges weakly when n — oo, to the Wiener integral [; f(u)dZ};(u) assuming that the
sequence g(&;),j € Z belongs to the domain of attraction of the Hermite process (see Theorem
3.4.1 in [10] for such processes or also [7]). We study the time domain approach in which
we prove the general result. The spectral domain approach has been considered in [17]. We
also mention that in order to not overcharge the paper, we decided to omit the slowly varying
function L; indeed, although from the mathematical point of view this function could be
sometimes tedious to treat, from the philosophical point of view this is less significant.

We organize our paper as follows. Section 2 recalls several properties of the Hermite
process. In Section 3 we construct Wiener integrals with respect to this process and in Section 4
we discuss, as an example, the Hermite Ornstein-Uhlenbechk process which is a generalization
of the fractional Ornstein-Uhlenbeck process. Section 5 contains a Non-Central Limit Theorem
which has as limit the Wiener integral with respect to the Hermite process.

2 The Hermite process

We will present in this section some basic properties of the Hermite process (ZZ(t)) teR of
order k > 1, k € Z and with Hurst parameter H € (%, 1). This stochastic process is defined

as a multiple Wiener-Ito6 integral of order k with respect to the standard Brownian motion
B((t))ter

1-H

t k 1
zho) =ttty [ [Tl =4 ) dsdmion) . aB), 0
=1

where z; = max(x,0). We refer to e.g. [14] for the properties of the multiple stochastic
integrals. For k = 1 the above process is nothing else that the fractional Brownian motion
with Hurst parameter H € (0,1). For k > 2 the process Z[k{ is not Gaussian and if £ = 2 it is
known (see [20]) as the Rosenblatt process.

Let us compute the covariance R(t, s) := E [Z};(t)Z}(s)] of the Hermite process. By
Fubini and the isometry of multiple Wiener-It6 integrals, one has

1-H

t ps K 1 1-H _(li1-H
R(t,s) = QC(H,k)Q/Rk /O/OH(U—yi):-(2+ k )(v—y¢)+(2+ “) dudu dyi ... dyy,
=1

t s k (141-H (14 1-H
= 2c(H,k)2/ / /k H(U—yi)+(2+ F )(v—yz‘)+(2+ F )dyl...dyk dvdu
0o Jo JR

j=1
= 2(H, k)Q/Ot /0 [/R(u—y);<5+17€)(v —y);(%+l_T)dy dvdu.
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Let B(p,q) = fol 2P~1(1 — 2)P~Ydz,p,q¢ > 0 be the beta function. By using the identity

/R (u— )% (v — )" dy = B(a, 2a — 1)[u— o>

we get

R(t,s) = 2c(H,k)26<; 1-# )// u— o] 2) dvdu

( I)<: ) %(tZH—i-SQH—‘ —S|2H).

In order to obtain E(Z%(t))? = 1, we will choose
B (L — L 212y
C(H k)? _ 2 k' k
’ 9OH(2H — 1)

L om
—(t
5(

and we will have

R(t,s) = |21,

i
We also recall the following properties of the Hermite process:
e The process Z I’} is H-selfsimilar with stationary increments and all moments are finite.

e From the stationarity of increments and the selfsimilarity, it follows that, for any p > 1

P
E |25~ 2(s)|'| = o, B Rl — sl
As a consequence the Hermite process has Holder continuous paths of order 6 < H.

We mention that different expressions of the exponent in (4) are used in the literature, but we
choose this one in order to have the order of similarity equal to H.

3 Wiener integrals with respect to the Hermite process

In this paragraph we introduce Wiener integrals with respect to the Hermite process.
Let us denote by £ the class of elementary functions on R of the form

= Zall(tl’tlﬂ](u), t < tl—|—17 a € R, = 1, Lo, n. (5)
=1

For f € £ as above it is natural to define its Wiener integral with respect to the Hermite
process Z ’fl by

| 1zt Zaz (Zh (1) - Zs(a0) (©



In order to extend the definition (6) to a larger class of integrands, let us make first some
observations. By formula (4) we can write

20 = [ 1 (L0a) (oo )dB ) .. dB() 7)

where by I we denote the mapping on the set of functions f : R — R to the set of functions
f:RFE SR

1, 1—

: ~(4+152)
I nem) = () [ 7 [Jw=w0 5
j=1

Note that for k = 1 this operator can be expressed in terms of fractional integrals and deriva-
tives (see [18], [3]). Thus the definition (6) can be also written in the form, due to the obvious
linearity of I

| swiziw) - > o (Zittuss) - Zian)

=1

= Zal /I:le 1(tl,tl+1 y177yk)dB(yl)dB(yk)
=1

- /R Iy ABn) - Bl (8)

We introduce now the following space

H:{f:R—)R;/Rk (I(f)(yl,...,yk))Zdyl...dyk<oo}
endowed with the norm

1B = [ 0o din

It holds that

k 1, 1-H _(lp1=H
1£113¢ c(H, k) /Rk //f H u—yi);(§+ k )(v—yi)+(2+ k )dvdu dyy . .. dyy

J=1

= otk [ s ( / <u—y>;(5+1_’f)<v—y>1<5+7>dy)kdvdu
= H(2H—1)/R/Rf(u)f(v)|u—v2H_2dvdu.

Hence we have

H:{f:R—>R\/R/Rf(u)f(vﬂu—vPH_zdvdu<oo}



and

5= HCH =) [ [ 1)l = o 2dvd )
Let us observe that the mapping
fre | fwazlw (10)
provides an isometry from £ to L?(Q). Indeed, for f of the form (5), it holds that
n—1
E[I(f)?] = Y aaE(Zu(tin) — Zu(ti) (Zultin) — Zu(t))]
i,j=0

n—1
= Y aia; (R(tip1, tj1) — R(tiva, ty) — R(ti, ti) + R(ti, 1))

i,j=0
n—1 tiv1  [ti+1

= Z a;a; H(2H — 1)/ / lu — o> 2dvdu
i,j=0 ti L

n—1
- Z aia’j<1(ti,ti+ﬂ’ l(tj7tj+1]>H = HfH%l :
i,j=0

On the other hand, it has been proved in [18] that the set of elementary functions £ is dense

in H. As a consequence the mapping (10) can be extended to an isometry from H to L?(Q)
and relation (8) still holds.

The followings facts has also been proved in [18]:

e The elements of H may be not functions but distributions; it is therefore more practical to
work with subspaces of H that are sets of functions. Such a subspace is

M= {7 R=R] | [ @)= o dudu < o0},
Then |H| is a strict subspace of H and we actually have the inclusions
LAR)NL'R) C L#(R) C |H| C H. (11)

e The space |H| is not complete with respect to the norm || - || but it is a Banach space
with respect to the norm

11 = [ [ 1#@I5 @) oP-2duda
e A 7spectral domain” included in H can also be defined as
~ -2
= {f e P®) [ [F@)| ol dx < o0}, (12)
R
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where fdenotes the Fourier transform of f. We have again that H is a strict subspace
of H and the inclusion

1 A~

L*R)NL'R)c L#(R) C HCH

is true. We define

1912, = [ |Fe)| lal21 e

e There are elements in |H| that are not in H and viceversa.

4 Hermite Ornstein-Uhlenbeck processes

Introducing Wiener integrals with respect to the Hermite process allows us to consider a first
example of stochastic differential equation with the Hermite process as driving noise. We will
consider the Langevin type stochastic equation

¢
Xt:§—>\/ Xods+oZ@1t), t>0, (13)
0

where o, A > 0, the Hurst parameter H belongs to (%, 1) and k > 1 is an integer. The initial
condition ¢ is a random variable in L(€2). The case k = 1 has been considered in [6]. Recall
that in this case (when Z¥ = By, a fractional Brownian motion) the unique solution of
the equation (13), that is understood in a Riemann-Stieltjes sense, has the Wiener integral
representation

Yi(t) = e (g + g/t e)‘“dBH(u)) , t>0.

0

When the initial condition is £ = o ff)oo e*dBy (u), the solution of (13) can be written as

Yu(t) = a/_t e MdBy (u) (14)

and it is called the stationary fractional Ornstein-Uhlenbeck process. 1t follows from [6] that
the process (14) is a stationary centered Gaussian process, H-selfsimilar and it has stationary
increments. Moreover, it is ergodic and exhibits long range dependence for H € (%, 1). Its
covariance function behaves as, when t € R, N =1,2,... and s — oo,

N 2n—1
1 , —om, _aN_
EYy(t)Yu(t+s)] = 502 Yo [ @H-j) | 10?22 (15)
m=1 7=0

When H = % the process Y1 can be also defined by using the Lamperti transform
2

Yy (t) = e MBy (a exp(ét)) (16)

and both definitions coincide. When H # 3, processes obtained by (14) and (16) are different.
The above context can be easily generalized to the case of the Hermite process. More
precisely, we have the following result.



Proposition 1 Let (Z%(t))icr be a Hermite process of order k and let & € L°(R). The
following are true for almost all w and for every A,o > 0.

a. For allt > a, the integral f; eMdZ% (u,w) exists in the Riemann-Stieljes sense and it is
equal to

t
eMZE (t,w) — 28 (a,w) — )\/ Z% (u, w)eMdu.
a

. t . .
Moreover, the function t — [, eMdZ (u,w) is continuous.

b. The unique continuous solution of the equation

y(t) = £(w) — )\/0 y(s)ds + 028 (bw), >0

s given by

y(t) =e M <§(w) + o/ot e)‘“dZI'fI(u,w)) . t>0.

In particular, if £ = O'fEOO e)‘“dZ]fI(u,w), then

t
y(t) = a/ e VAZE (u,w), > 0.

—0o0

Proof:  The proof of Proposition A.1 in [6] and the fact that the process Z% is Hélder
continuous of order § < H imply the conclusion. |

As a consequence, the unique solution of (13) with initial condition o f?oo eMdz ’;I(u)
is given by
t
YE@#) =0 / e M=Wazk (u),  t>0. (17)
—0o0
The process given by (17) will be called Hermite Ornstein-Uhlenbeck process of order k. Be-
cause the covariance structure of the Hermite process is the same as the fractional Brownian
motion’s one, it is easy to see that the above integral coincides with the Wiener integral defined
in Section 3. Hence the process Y}j is a centered Gaussian process with covariance

t s
E [Yﬁ(t)yﬁ(s)} = 02/ / e*’\(t*”)e”‘(s*”)m — v 2 dvdu < co.
—o0 J—o0
Clearly, relation (15) still holds for the Hermite Ornstein-Uhlenbeck process.

5 Non-Central Limit Theorem

In this section we extend the results in [9] and [21] by proving a Non-Central Limit Theorem
which has as limit the Wiener integral with respect to the Hermite process introduced in
Section 2.



We will consider a sequence of centered stationary Gaussian random variables (§;);ez
with E§]2- = 1 and the correlation function

2H—-2

r(n) = B(6on) = n* 5. (18)

Let us recall the notion of Hermite rank. Denote by H,,(z) the Hermite polynomial

1‘2
of degree m given by Hp,(z) = (=1)™e’x d e~ 2 and let g be a function on R such that

E[g(&)] = 0 and E [g(&)?] < oo. Assume that g has the following expansion in Hermite
polynomials

oo

g(x) = ¢jHj(x)

=0
where ¢; = l, [9(0)H;(&0)]). The Hermite rank of g is defined by

k = min{j;c; # 0}.
Since E[g(&o)] = 0, we have k > 1.

We also introduce the sequence of stochastic processes ZI’f[’" given by

[nu] 0

an _ & Zg (&) (u>0) and Zgn(u) = niH Z g9(&) (u<0), (19)

j=—lnu] 1

where g is a function of Hermite rank k. By the results in [9] and [21] (see also Theorem 3.4.1
n [10]), it holds that
Z];I’n — (@ ckZIk{, n — 00.

Here ” —(? ” means the convergence in the sense of finite dimensional distributions. We also

use the notation, if f is a function on R,

o) . T . .
fo= 3 PG ey Fip= Y FN Gy, for = Z e
=0

. n
j=—o00 j=-T

(20)

\+

:\“

and also f, = f;foo, In = frico

We have the following Non-Central Limit Theorem.
Theorem 1 Let f € [H| such that f € |H| for every n > 1 and assume that
’fn - f||H| —n—oo 0

and for every n
+ +
\for = fa ) =7—00 0.

HZf( ) ~Da. [ fuizhu (21)

where g is a function of Hermite rank k of the form g(z) = > 2, e/ Hi(x).

Then, as n — oo,



Proof: Let us prove first that the sum
1 Z J
ntt < n
JEL

is convergent in L?(Q2). We regard only the right tail part, the left part being similar. Using
the relation
E [Hk?1 (gl)HkQ (6])] = 5k1,kz2k1!r(i’j)k1

we get
1 . . [ee]
BS0?) = 3 f(‘ji) <f)2c%E Hi(€,) Hi()

J1,J2€Z =k

= HQLH >of (‘2) f <Ji> > el — j2)'
J1,§2€Z =k

=i () () Gt o i 2 () S
12 1=k i€z

(2H 2)1

Now, since for |j; —]2| > 1 and for [ > k one has |j; — jo| < |71 — 72?2, and since the

sum Cp 1= ) en G 2! is convergent, we obtain

ES(n)? < Co J1 2\l R G %
W = G 2 ) )n w2
J1#J2 JEZ
j j .71+1 @ C ] 2
1 2 " " 2H-2 0 J
< a S L L e 2550 ()
JlsﬁJ n JEZ
= Collfullfyy- (22)

In the same way we will obtain

2

LS 7(2) 96| | <ol — il

J =p1+1
and this tend to zero as p1, p2 — oo by assumption.
Let us prove now that the sequence S(n) converges to the Wiener integral [, f(u)dZf(u)
when n tends to infinity. Here we follow the arguments [17]. Let us choose a sequence f",r > 1

of elementary functions such that f" —,_,o f with respect to norm |H| (this is possible because
this space is complete) and denote by

Zfr<> 1’ 15 r,n > 1.

JEZ
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Note first that from a result in Bilingsley [5], it suffices to show that:

/ Fr(w)dZ (u) —@ / fw)dZk(w), r— oo, (23)
T 1 r d) r
= —F — >
S"(n) e j;oof ( / fr(w)dZ% (u n — oo, for every r > 1, (24)
and
imTim B [ysr(n) - S(n)\z] = 0. (25)

Concerning (23), we have by the construction of the Wiener integral and the choice of the
sequence f”,

/fT )izl (u /f )izl (u

The convergence (24) follows from the convergence of the sequence Z[]f]’" given by (19) to the
Hermite process Z¥ because (since f” is an elementary function) S7(n) constitutes a finite

] = 7 = FIB < 17 = £y = O.

linear combination of instants of the process ZIIC{’" and [p f7(w)dZ};(u) represents (the same)
finite linear combination of instants of Z¥. For (25), proceeding as for the proof of (22), we
obtain

E|S"(n) = S(n)|* < const.| fy, — falfy

and thus by a dominated convergence argument (see [17], Proposition 3.1) we get
ImIim E |S™(n) — S(n)[* < const. lim lim | f7 — f”||2H| = const. lim | f" — f||2H| =0.
T n T n T

Example 1 By using relation (11) and the fact that | f| ) < const. Hf|| L) O7€ con see

that for every t > 0 the function h(z) = 1(_e e belongs to L'(R) (" L*(R) and thus to |H|
and the same holds for hy, given by (20). Using the continuity of the function h and comments
after Theorem 3.2 in [17], we can see that the hypothesis of Theorem 1 are satisfied in the case
of the function h. As a consequence, at each t, the Hermite Ornstein- Uhlenbeck process can be
approzimated in law by the sequence in the left side of (21).

Let us briefly recall the spectral domain approach; by this, we mean the use of the
space H of deterministic integrands given by (12) which involves Fourier transforms. In [17] it
has been proved that, if K = 1 and the assumptions of Theorem 1 are satisfied with H instead
of |H|, then the limit result (21) holds. It is not difficult to see that the fractional Orstein-
Uhlenbeck process satisfies the hypothesis in Theorem 3.2 in [17]. It would be interesting to
generalize it to the case of functions of Hermite rank k.
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