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Tommi Sottinen∗ Ciprian A. Tudor†

June 21, 2007

Abstract

We study the maximum likelihood estimator for stochastic equations with ad-
ditive fractional Brownian sheet. We use the Girsanov transform for the the
two-parameter fractional Brownian motion, as well as the Malliavin calculus and
Gaussian regularity theory.
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1 Introduction

The recent development in the stochastic calculus with respect to the fractional Brow-
nian motion has led to the study of parameter estimation problems for stochastic
equations driven by this process. Several authors has studied these aspects; see e.g.
[8, 9, 19, 10, 25]. An obvious extension is to study the two-parameter case. Elements
of the stochastic calculus with respect to the fractional Brownian sheet has recently
been considered by [23, 24] and stochastic equations with fractional Brownian sheet
has emerged in [3] and [21].

The aim of this work is to construct and to study the asymptotic behavior of the
maximum likelihood estimator (MLE) for the parameter θ in the equation

(1.1) Xt,s = θ

∫ t

0

∫ s

0
b(Xv,u) dudv + W

α,β
t,s , t, s ∈ [0, T ],

where Wα,β is a fractional Brownian sheet with Hurst parameters α, β ∈ (0, 1) and
b is a Lipschitz function. Our construction of the estimator is based on the Girsanov
transform and uses the connection between the fractional Brownian sheet and the
standard one, Malliavin calculus, and Gaussian regularity theory. A related work on
a two-parameter model with standard Brownian sheet is the paper [2].
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Besides its theoretical interest situation in the context of the stochastic calculus
for Gaussian processes and fields, our work is also motivated by practical aspects.
Models of the form (1.1) traditionally appears in signal estimation problem: the coef-
ficient of the signal θ is unobservable and it has to be estimated from the observation
of the process X which represents the signal plus the noise. Such two-dimensional
models where the noise has fractional behavior has been recently considered in satel-
lite imaging (see [18]): the transmitted image is disturbed by external factors whose
properties are related to those of fractional Brownian sheet. Other areas where such
models driven by fractional Brownian sheets appear are: radar image data classifi-
cation (see [7]), the classification and segmentation of hydrological basins (see [13])
medical applications like early detection of osteoroposis from X-ray images (see [12],
[6]).

The paper is organized as follows. Section 2 contains some preliminaries on the
fractional Brownian sheet. In Section 3, using the techniques of the Malliavin calculus,
we prove that the solution is sub-Gaussian. Section 4 contains the proof of the
existence of the MLE for the parameter θ and we separate this proof following the
values of α and β . Finally, in Section 5, we present a different expression of the
MLE that relates our work with the approach of [9]. This form of the estimator will
be used to obtain the the strong consistency of the MLE in the linear case b(x) = x .

2 Fractional Brownian sheet as a Volterra sheet

Let T > 0. The Brownian sheet is a two-parameter Gaussian process (Wt,s)t,s∈[0,T ] ,
starting from zero, with mean zero and covariance function

E (Wt,sWv,u) = (t ∧ v)(s ∧ u), t, s, v, u ∈ [0, T ].

The (anisotropic) fractional Brownian sheet with Hurst index (α, β) ∈ (0, 1)2 is a

two-parameter Gaussian process (Wα,β
t,s )t,s∈[0,T ] , starting from zero, with mean zero

and covariance function

E
(

W
α,β
t,s Wα,β

v,u

)

=
1

2

(

t2α + v2α − |t − v|2α
) 1

2

(

s2β + u2β − |s − u|2β
)

,

t, s, v, u ∈ [0, T ].

We recall how the fractional Brownian sheet Wα,β can be represented by a stan-
dard Brownian sheet W = W

1

2
, 1
2 that is constructed from it. For details and refer-

ences see [20, 21].

We start with the one-parameter case. Define a Volterra kernel (i.e. a kernel
which vanishes if the second variable is greater than the first one)

Kα(t, s) = cα

(

(

t

s

)α− 1

2

(t − s)α− 1

2 − (α −
1

2
)s

1

2
−α

∫ t

s

uα− 3

2 (u − s)α− 1

2 du

)

,

where the normalising constant is

cα =

√

(2α + 1
2)Γ(1

2 − α)

Γ(α + 1
2)Γ(2 − 2α)
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and Γ is the Euler’s gamma function. It was shown in [14] that the fractional Brow-
nian motion Wα with Hurst index α ∈ (0, 1) can be represented by using a standard

Brownian motion W = W
1

2 as

Wα
t =

∫ t

0
Kα(t, s) dWs.

This Wiener integral can be understood both in pathwise and L2 -sense. The Brow-
nian motion W is actually constructed from the fractional one by the (pathwise or
L2 ) integral

Wt =

∫ t

0
K−1

α (t, s) dWα
s .

Here the Volterra kernel K−1
α is

K−1
α (t, s) = c′α

(

(

t

s

)α− 1

2

(t − s)
1

2
−α − (α −

1

2
)s

1

2
−α

∫ t

s

uα− 3

2 (u − s)
1

2
−α du

)

,

c′α =
Γ(α + 1

2)Γ(2 − 2α)

B(1
2 − α)

√

(2α + 1
2)Γ(1

2 − α)
,

and B is the beta function.

Now we turn to the two-parameter case. Let

Kα,β(t, s; v, u) = Kα(t, v)Kβ(s, u),

K−1
α,β(t, s; v, u) = K−1

α (t, v)K−1
β (s, u).

The kernels Kα,β and K−1
α,β are of Volterra type: they vanish if v ≥ t or u ≥ s .

Then from the one-parameter case it follows that we have the following (pathwise
and L2 -sense) transformations connecting the fractional Brownian sheet Wα,β and

the standard one W = W
1

2
, 1
2 :

W
α,β
t,s =

∫ t

0

∫ s

0
Kα,β(t, s; v, u) dWu,v,(2.1)

Wt,s =

∫ t

0

∫ s

0
K−1

α,β(t, s; v, u) dWα,β
u,v .(2.2)

We shall use this connection in the following way: The fractional Brownian sheet
Wα,β is assumed to be given, the standard Brownian sheet W is constructed from
the fractional one Wα,β by the formula (2.2), and then Wα,β is represented in terms
of W by the formula (2.1).

In what follows we shall denote by Kα,β also the operator on L2([0, T ]2) induced
by the kernel Kα,β :

Kα,β [f ](t, s) =

∫ t

0

∫ s

0
Kα,β(t, s; v, u)f(v, u) dudv,
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and similarly for K−1
α,β . Note that as an operator K−1

α,β is indeed the inverse of the
operator Kα,β .

Finally, we note the following connection with deterministic fractional calculus.
The fractional Riemann–Liouville integral of order γ > 0 is

Iγ [f ](t) =
1

Γ(γ)

∫ t

0
(t − v)γ−1f(v) dv.

The fractional Weyl derivative of order γ ∈ (0, 1) is

I−γ [f ](t) =
1

Γ(1 − γ)

[

f(t)

tγ
+ γ

∫ t

0

f(t) − f(v)

(t − v)γ+1
dv

]

.

The mixed fractional integral–differential operator Iγ,η acts on two-argument func-
tions f = f(t, s) argumentwise: Iγ,η[f ](t, s) = Iγ [fη(·, s)](t), where fη(t, s) =
Iη[f(t, ·)](s). Now, we have the representation (see [3])

(2.3) K−1
α,β [f ](t, s) = c′′α,βtα−

1

2 sβ− 1

2 I
1

2
−α, 1

2
−β

[

t
1

2
−αs

1

2
−β ∂2f

∂t∂s

]

(t, s),

where c′′α,β is a certain normalising constant.

3 On the solution

Now we shall focus our attention to the stochastic differential equation

(3.1) Xt,s = θ

∫ t

0

∫ s

0
b(Xv,u) dudv + W

α,β
t,s , t, s ∈ [0, T ].

The equation (3.1) has been considered in [3] for parameters (α, β) ∈ (0, 1
2)2 in

the more general context b(x) = b(t, s;x) with t, s ∈ [0, T ] . It has been proved that,
if b satisfy the linear growth condition

|b(t, s;x)| ≤ C(1 + |x|)

then (3.1) admits a unique weak solution, and if b is nondecreasing in the second
variable and bounded, then (3.1) has a unique strong solution.

We are here interesting in the case when the drift coefficient b is Lipschitz (more
exactly, we will assume that b is differentiable with bounded derivative). It is clear
that in this case the method of standard Picard iterations can be applied to obtain the
existence and the uniqueness of the solution for all Hurst parameters α, β belonging
to (0, 1). As far as we know there are not existence and uniqueness results in the
non-Lipschitz case if α or β are bigger than 1

2 .

Since our main objective is the construction of a maximum likehood estimator
from the observation of the trajectory of the process X that satisfies (3.1), we will
need some estimates on the supremum of this processes, and even more generally,
on the variations of this process. For this purpose, we follow the ideas developped
in [25] to prove that the solution of (3.1) is a sub-Gaussian process with respect to
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a certain canonical metric. The proof is based on the Poincaré inequality and uses
some elements of the Malliavin calculus.

We make the following assumption on the drift b throughout the rest of the paper:

(C1) b is differentiable with bounded derivative.

Denote by D the Malliavin derivative with respect to the Brownian sheet W . We
refer to [16] details of Malliavin calculus and just recall two basic facts:

(i) If F is a Wiener integral of the form

F =

∫ T

0

∫ T

0
f(t, s) dWs,t

with f ∈ L2([0, T ]2) then
Dt,sF = f(t, s).

(ii) If F is a random variable differentiable in the Malliavin sense and b is a function
satisfying the condition (C1) then b(F ) is Malliavin differentiable and we have
the chain rule

Dt,sb(F ) = b′(F )Dt,sF.

We will need two auxiliary lemmas.

3.2 Lemma. There exists a constant Cθ depending on T , α , β , ‖b′‖∞ and the
parameter θ such that for every t, s ∈ [0, T ] we have the bound

(3.3) ‖D·,·Xt,s‖
2
L2(Ω×[0,T ]2) ≤ Cθ.

Proof. Taking Malliavin derivatives Dv,u on the both sides of the equation (3.1) we
obtain

Dv,uXt,s = θ

∫ t

v

∫ s

u

b′(Xv′,u′)Dv,uXv′,u′ du′dv′ + Kα,β(t, s; v, u).

Denote

Mt,s =

∫ T

0

∫ T

0
|Dv,uXt,s|

2 dudv =

∫ t

0

∫ s

0
|Dv,uXt,s|

2 dudv.
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Then, by Fubini theorem and the estimate (x + y)2 ≤ 2x2 + 2y2 , we obtain

Mt,s = θ2

∫ t

0

∫ s

0

∣

∣

∣

∣

∫ t

v

∫ s

u

b′(Xv′,u′)Dv,uXv′,u′ du′dv′ + Kα,β(t, s; v, u)

∣

∣

∣

∣

2

dudv

≤ 2θ2

∫ t

0

∫ s

0

∣

∣

∣

∣

∫ t

v

∫ s

u

b′(Xv′,u′)Dv,uXv′,u′ du′dv′
∣

∣

∣

∣

2

dudv

+2

∫ t

0

∫ s

0
Kα,β(t, s; v, u)2 dudv

≤ 2θ2‖b′‖2
∞

∫ t

0

∫ s

0

{∫ t

v

∫ s

u

∣

∣Dv,uXv′,u′

∣

∣

2
du′dv′

}

dudv + 2t2αs2β

= 2θ2‖b′‖2
∞

∫ t

0

∫ s

0

{

∫ v′

0

∫ u′

0

∣

∣Dv,uXv′,u′

∣

∣

2
dudv

}

du′dv′ + 2t2αs2β

= 2θ2‖b′‖2
∞

∫ t

0

∫ s

0
Mv′,u′ du′dv′ + 2t2αs2β.

So, the claim follows by a two-parameter version of the Gronwall lemma.

3.4 Lemma. Let X be the unique solution of (3.1). Then there exists a constant Cθ

depending on T , α , β , ‖b′‖∞ and the parameter θ such that for every s ≤ s′ , t ≤ t′

it holds that

(3.5) ‖D·,·

(

Xt′,s′ − Xt,s

)

‖2
L2(Ω×[0,T ]2) ≤ Cθ(|t − t′|2α + |s − s′|2β).

Proof. For every s ≤ s′ and t ≤ t′ , we have

Xt′,s′ − Xt,s = Xt′,s′ − Xt,s′ + Xt,s′ − Xt,s.

So, it is enough to show that

(3.6) ‖D·,·

(

Xt′,s′ − Xt,s′
)

‖2
L2(Ω×[0,T ]2) ≤ Cθ(|t − t′|2α).

Now

Xt′,s′ − Xt,s′ = θ

∫ t′

t

∫ s′

0
b(Xv,u) dudv + W

α,β
t′,s′ − W

α,β
t,s′

and thus

Da,b

[

Xt′,s′ − Xt,s′
]

= θ

∫ t′

t

∫ s′

0
b′(Xv,u)Da,bXv,u dudv

+Kβ(s′, b)
(

Kα(t′, a) − Kα(t, a)
)

.

By using the fact that

∫ T

0

(

Kα(t′, a) − Kα(t, a)
)2

da = |t′ − t|2α

6



we obtain

E

[∫ T

0

∫ T

0

∣

∣Da,b

[

Xt′,s′ − Xt,s′
]∣

∣

2
dbda

]

≤ 2θ2E





∣

∣

∣

∣

∣

∫ t′

t

∫ s′

0
b′(Xv,u)Da,bXv,u dudv

∣

∣

∣

∣

∣

2

dbda



+ 2(s′)2β|t′ − t|2α

≤ 2θ2‖b′‖2
∞E

[∫ T

0

∫ T

0
|Da,bXv,u|

2 dbda

]

(t − t′)2 + 2(s′)2β|t′ − t|2α.

The claim follows now from Lemma 3.2 and the fact that α, β < 1.

Recall that a sheet X is sub-Gaussian with respect to metric δ if for all λ ∈ R

E
[

exp
{

λ
(

Xt,s − Xt′,s′
)}]

≤ exp

{

λ2

2
δ(t, s; t′, s′)2

}

.

3.7 Proposition. Suppose that b satisfies condition (C1). Then the solution X of
(3.1) is a sub-Gaussian process with respect to the metric δ given by

δ(t, s; t′, s′)2 = Cθ

(

|t − t′|2α + |s − s′|2β
)

,

where the constant Cθ comes from Lemma 3.4.

Proof. Recall the Poincaré inequality (see [26], page 76): if F is a functional of the
Brownian sheet W , then

E [exp{F}] ≤ E

[

exp

{

π2

8
‖DF‖2

L2([0,T ]2)

}]

.

The claim follows from this and Lemma 3.4.

Proposition 3.7 says that, in the case of the Lipschitz coefficient b , the variations
of the process X are dominated, in distribution, by those of the Gaussian process
with canonical metric (3.7); this prcosess is actually the so-called isotropic fractional
Brownian sheet. As a consequence, the sub-Gaussian regularity theory (see [4] or [11])
can be applied to obtain supremum estimates on the process X . As an immediate
consequence, we get, using the results in [11], Chapter 12 and the methods in [25]).

(3.8) E

[

sup
v≤t,u≤s

|Xv,u|

]

≤ Cθ

√

t2α + s2β.

and, for any positive aθ = a(α, β, T, ‖b′‖∞, θ) small enough,

(3.9) E

[

exp

{

aθ sup
t,s∈[0,T ]

|Xt,s|
2

}]

< ∞.

These estimates will be explicitly used in the next section.
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4 Maximum likelihood estimator

First we recall how the Girsanov theorem for the shifted fractional Brownian sheet

(4.1) W̃
α,β
t,s = W

α,β
t,s +

∫ t

0

∫ s

0
au,v dudv

can be recovered from the Girsanov theorem for the standard shifted Brownian sheet
by the correspondence (2.1)–(2.2).

Since the shift term in (4.1) is differentiable we can operate pathwise with the
kernel K−1

α,β on the both sides of the equation (4.1). So, we can set

(4.2) W̃t,s =

∫ t

0

∫ s

0
K−1

α,β(t, s; v, u) dW̃α,β
u,v

and we have the following inverse relation for the transfer (4.2):

(4.3) W̃
α,β
t,s =

∫ t

0

∫ s

0
Kα,β(t, s; v, u) dW̃u,v.

Now we want to find a shift b such that

(4.4) W̃t,s = Wt,s +

∫ t

0

∫ s

0
bv,u dudv,

where W is a standard Brownian sheet constructed from the fractional one Wα,β by

(4.5) Wt,s =

∫ t

0

∫ s

0
K−1

α,β(t, s; v, u) dWα,β
u,v .

Comparing equations (4.1)–(4.5) we see that the connection is

∫ t

0

∫ s

0
av,u dudv =

∫ t

0
Kα,β(t, s; v, u)bv,u dudv

So, we conclude that

(4.6) bt,s =

∫ t

0

∫ s

0
K−1

α,β(t, s; v, u)

(∫ v

0

∫ u

0
av′,u′ du′dv′

)

dudv

or, in operator notation,

b = K−1
α,β

[∫ ·

0

∫ ·

0
at,s dsdt

]

.

Now, comparing (4.1) to (4.4) with the connection (4.6) we obtain the follow-
ing Girsanov theorem from the classical Girsanov theorem for the shifted standard
Brownian sheet.

4.7 Theorem. Let Wα,β be a fractional Brownian sheet and let a be a process
adapted to the filtration generated by Wα,β . Let W be a standard Brownian sheet
constructed from Wα,β by (2.2) and let b b constructed from a by (4.6).

8



Assume that b ∈ L2(Ω × [0, T ]2), and E[VT,T ] = 1 where

VT,T = exp

{

−

∫ T

0

∫ T

0
bt,s dWs,t −

1

2

∫ T

0

∫ T

0
b2
t,s dsdt

}

.

Then under the new probability P̃ with dP̃
dP = VT,T the process W̃ given by (4.2) is a

Brownian sheet and the process W̃α,β given by (4.1) is a fractional Brownian sheet.

The rest of this paper is devoted to construct a maximum likelihood estimator
for the parameter θ in (3.1) by using the Girsanov theorem (Theorem 4.7). The
existence and the expression of this MLE are given by the following result.

4.8 Proposition. Assume that one of the following holds:

(i) At least one of the parameters α and β belongs to (0, 1
2) and b satisfies (C1)

(ii) The parameters α and β both belong to (1
2 , 1) and b is linear.

Denote

(4.9) Qt,s = K−1
α,β

[∫ ·

0

∫ ·

0
b(Xv,u) dudv

]

(t, s).

Then given observation over [0, t]2 the MLE for θ in (3.1) is

(4.10) θt = −

∫ t

0

∫ t

0 Qv,u dWu,v
∫ t

0

∫ t

0 Q2
v,u dudv

.

Before going into the proof of Proposition 4.8 let us note that we can also write

(4.11) θt =

∫ t

0

∫ t

0 Qv,u dW̃u,v
∫ t

0

∫ t

0 Q2
v,u dudv

.

This shows that the estimator can be deduced by the observed process X since

W̃t,s =

∫ t

0

∫ s

0
K−1

α,β(t, s; v, u)dXu,v.

Proof. Let us denote by Pθ the law of the process Xt,s that is the unique solution
of (3.1). Then the MLE is obtained by taking the supθ Fθ , where

Fθ =
dPθ

dP0
.

The conclusion (4.9) then follows by the Girsanov theorem (Theorem 4.7) if we show
that Vt,t is well-defined and E[Vt,t] = 1. The proof is separated into three cases. In
what follows cα,β is a generic constant depending on α and β that may change even
within a line.
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The case α, β ∈ (0, 1
2): In this case we use the expression (2.3) with Iα− 1

2
,β− 1

2 as
a double fractional integral. We get

Qt,s = cα,β tα−
1

2 sβ− 1

2

∫ t

0

∫ s

0
(t − v)−

1

2
−αv

1

2
−α(s − u)−

1

2
−βu

1

2
−βb(Xu,v) dudv.

Since |b(x)| ≤ |b(x) − b(0)| + |b(0)| ≤ K(|x| + K ′), we see that

(4.12) |Qt,s| ≤ cα,β

(

K + sup
u≤t,v≤s

|Xu,v|

)

.

Clearly (4.12) and the estimates (3.8), (3.9) show that Q ∈ L2([0, T ]2) and so Vt,t is
well-defined. To prove that E[Vt,t] = 1, it suffices to invoke Theorem 1.1, page 152
in [5] and to note that, by (4.12), there exists a > 0 such that

sup
v≤t,u≤s

E
[

exp
{

aQ2
v,u

}]

< ∞.

The case α, β ∈ (1
2 , 1): In this case we use the operator Iα− 1

2
,β− 1

2 in the expression
(2.3) is a double fractional derivative. We get

Qt,s = cα,β t
1

2
−αs

1

2
−βb(Xt,s) + cα,β tα−

1

2 s
1

2
−β

∫ t

0

t
1

2
−αb(Xt,s) − v

1

2
−αb(Xv,s)

(t − v)α+ 1

2

dv

+cα,β t
1

2
−αsβ− 1

2

∫ s

0

s
1

2
−βb(Xt,s) − u

1

2
−βb(Xt,u)

(s − u)β+ 1

2

du

+cα,β

∫ t

0

∫ s

0

{

t
1

2
−αv

1

2
−βb(Xt,s) − v

1

2
−αv

1

2
−βb(Xv,s) − t

1

2
−αu

1

2
−βb(Xt,u)

+v
1

2
−αu

1

2
−βb(Xv,u)

}(

(t − v)−α− 1

2 (s − u)−β− 1

2

)

dudv

:= A1(t, s) + A2(t, s) + A3(t, s) + A4(t, s).

The term A1(t, s) can be easily treated, since by (C1),

|A1(t, s)| ≤ cα,β t
1

2
−αs

1

2
−β (K + ‖X‖∞)

which is finite by (4.12). The term A2(t, s) and A3(t, s) are rather similar to those
appearing in the one-parameter case (see [17] and [25]). For the sake of completeness,
we illustrate how to treat them. For A2(t, s) write

A2(t, s) = cα,β tα−
1

2 s
1

2
−βb(Xt,s)

∫ t

0

t
1

2
−α − v

1

2
−α

(t − v)α+ 1

2

dv

+cα,β tα−
1

2 s
1

2
−β

∫ t

0

b(Xt,s) − b(Xv,s)

(t − v)α+ 1

2

dv

=: A21(t, s) + A22(t, s).

10



Since
∫ t

0

t
1

2
−α − u

1

2
−α

(t − v)α+ 1

2

dv = cα,β t1−2α,

the summand A21(t, s) is clearly almost surely finite using condition (C1). The second
summand A22 can be bounded as follows: for ε small enough,

|A2,2(t, s)| ≤ cα,β tα−
1

2 s
1

2
−β sup

v≤t

[

|Xt,s − Xv,s|

(t − v)α−ε

] ∫ t

0
u

1

2
−α(t − v)−

1

2
−ε dv

By the Fernique theorem the supremum above has exponential moments. So, it
follows that the Novikov criterium is satisfied. Let us study now the term A4(t, s).
It is not difficult to see that the expression

I = t
1

2
−αs

1

2
−βb(Xt,s) − v

1

2
−αs

1

2
−βb(Xv,s)

−t
1

2
−αu

1

2
−βb(Xt,u) + u

1

2
−αu

1

2
−βb(Xv,u)

can be written as

I =
(

t
1

2
−α − u

1

2
−α
)

b(Xt,s)
(

s
1

2
−β − v

1

2
−β
)

+
(

t
1

2
−α − u

1

2
−α
)

v
1

2
−β
(

b(Xt,s) − b(Xt,v)
)

+u
1

2
−α
(

s
1

2
−β − v

1

2
−β
)(

b(Xt,s) − b(Xu,s)
)

+u
1

2
−αv

1

2
−β
(

b(Xt,s) − b(Xt,v) − b(Xu,s) + b(Xu,v)
)

.

This gives a decomposition of the term A4(t, s) in four summands; The first three
summands can be handled by using similar arguments to those already used through-
out this proof. For the last term actually we need to assume the linearity of the
function b (and obviously the solution of (3.1) is then Gaussian). If b is linear, then

b(Xt,s) − b(Xt,u) − b(Xv,s) + b(Xv,u)

= Xt,s − Xt,u − Xv,s + Xv,u

=

∫ t

v

∫ s

u

Xb,a dbda + Wα,β((z, z′])

where Wα,β((z, z′]) denotes the planar increments of Wα,β between z = (v, u) and
z′ = (t, s). We finish again by an application of the Fernique theorem and observ-
ing that the process Wα,β (and thus X ) is Hölder continuous of order (α, β) (see
Proposition 5 in [1]).

The case α ∈ (0, 1
2), β ∈ (1

2 , 1): In this case, it is not difficult to see that

Qt,s = cα,β tα−
1

2

∫ t

0
(t − v)−α− 1

2 v
1

2
−α

×

[

s
1

2
−βb(Xv,s) + cα,β sβ− 1

2

∫ s

0

b(Xv,s)s
1

2
−β − b(Xv,u)u

1

2
−β

(s − u)
1

2
+β

du

]

dv.

11



Clearly, this case can be handled by combining the methods used in the first two
cases. The only thing we need to note here is that the Fernique theorem holds for
the sub-Gaussian process X (actually, here we can use the fact that for each v , the
process s 7→ Xv,s is sub-Gaussian with respect the metric |s′ − s|β , see the proof of
Lemma 2).

5 Alternative form of the estimator

We will try to relate here our approach with the one considered by [9] in the one-
parameter scale.

As in the one -parameter case (see [14]) one can associate to the fractional Brow-
nian sheet a two-parameter martingale (the so-called fundamental martingale). We
refer to [22] for the two-parameter case. More precisely, let us define the deterministic
function

kα(t, u) = c−1
α u

1

2
−α(t − u)

1

2
−α, cα = 2αΓ(

3

2
− α)Γ(α +

1

2
)

and

ωα
t = λ−1

α t2−2α, λα =
2Γ(3 − 2α)Γ(α + 1

2)

Γ(3
2 − α)

.

Then the process

(5.1) M
α,β
t,s =

∫ t

0

∫ s

0
kα(t, v)kβ(s, u) dWα,β

u,v

is a two-parameter Gaussian (strong) martingale with quadratic variation equal to

ωα
t ω

β
s (the stochastic integral in (5.1) can be defined in a Wiener sense with respect

to the fractional Brownian sheet). The filtration generated by Mα,β coincides to the
one generated by Wα,β .

Let us integrate the deterministic kernel kα(t, v)kβ(s, u) with respect to both sides
of (3.1). We get

Zt,s :=

∫ t

0

∫ s

0
kα(t, v)kβ(s, u) dXv,u

=

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)b(Xv,u) dudv + M

α,β
t,s .(5.2)

5.3 Remark. Moreover, for α, β > 1
2 , it follows from [8] and [22] that if we denote

Kα(t, v) = α(2α − 1)

∫ t

v

r2α−1(r − v)α− 3

2 dr

then it holds that

(5.4) Xt,s =

∫ t

0

∫ s

0
Kα(t, v)Kβ(s, u) dZu,v.

12



Denote

(5.5) Rt,s =
d

dωα
t

d

dω
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)b(Xv,u) dudv.

Then we have the following:

• For every (α, β) ∈ (0, 1)2 and if b is Lipschitz, the sample paths of the process R

given by (5.5) belong to L2([0, 1]2, ωα ⊗ ωβ). This can be viewed in the same
way as in Theorem 2.

• Clearly, the process R is related to the process Q (4.9) by

(5.6) Rt,s = cα,β tα−
1

2 sβ− 1

2 Qt,s.

From (5.2) and (5.5) we obtain that

(5.7) Zt,s = θ

∫ t

0

∫ s

0
Rv,u dωβ

udωα
v + M

α,β
t,s .

and then the MLE for the parameter θ in (3.1) can be written as

(5.8) θt = −

∫ t

0

∫ t

0 Rv,u dM
α,β
u,v

∫ t

0

∫ t

0 R2
v,u dω

β
udωα

v

.

In order to prove the strong consistency of the MLE, we derive an easier expression
for the process R (or, equivalently, for the process Q) appearing in the expression of
the MLE in the linear case. In this case we have

(5.9) Rt,s =
d

dωα
t

d

dω
β
s

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)Xv,u dudv.

We need first a more suitable expression of the process R given by (5.9).

5.10 Proposition. For every α, β it holds that

(5.11) Rt,s =
λ∗

α

2

λ∗
β

2

∫ t

0

∫ s

0

(

t2α−1 + v2α−1
)

(

s2β−1 + u2β−1
)

dZu,v

with λ∗
α = λα

2(1−α) .

Proof. We will restrict ourselves to the case α, β ≤ 1
2 . By (5.4) and (5.9) it holds

that
∫ t

0

∫ s

0
Rv,u dωβ

u dωα
v =

∫ t

0

∫ s

0
kα(t, v)kβ(s, u)

(∫ v

0

∫ u

0
Kα(v, b)Kβ(u, a) dZa,b

)

dudv

=

∫ t

0

∫ s

0
Aα(b, t)Aβ(b, s) dZa,b

where

Aα(b, t) =

∫ t

b

kα(t, v)Kα(v, b) dv.

13



Let us suppose a function Φα(b, r) such that for every b < t ,

∫ t

b

Φα(b, r) dωα
r = Aα(b, t).

Then it holds that
∫ t

0

∫ s

0
Rv,u dωβ

udωα
v =

∫ t

0

∫ s

0

(∫ t

b

Φα(b, r) dωα
r

)(∫ s

a

Φβ(a, r′) dω
β
r′

)

dZa,b

=

∫ t

0

∫ s

0

(

∫ r

0

∫ r′

0
Φα(b, r)Φβ(a, r′) dZa,b

)

dω
β
r′dωα

r .

As a consequence

Rt,s =

∫ t

0

∫ s

0
Φα(t, v)Φβ(s, u) dZu,v.

On the other hand it has been proved in Lemma 3.1. of [9] that

Φα(t, v) =
λ∗

2

(

t2α−1 + v2α−1
)

.

The conclusion follows easily.

Let us finally discuss the asymptotic behavior of the estimator (5.8). We will
actually prove the strong consistency of the MLEin the linear case b(x) = x by
trying to take advantage from the results contained in [9] (Proposition 2.2).

We first give the form of the solution in the case of linear drift.

5.12 Proposition. Let X be the solution of the equation

(5.13) Xt,s = θ

∫ t

0

∫ s

0
Xv,u dudv + W

α,β
t,s , t, s ∈ [0, T ].

Then it holds that

(5.14) Xt,s =

∫ T

0

∫ T

0
f(t0, s0, t, s) dW

α,β
t0,s0

where

(5.15) f(t0, s0, t, s) = 1[0,t](t0)1[0,s](s0)
∑

n≥0

θn (t − t0)
n(s − s0)

n

(n!)2
.

Proof. We use the kernel identification method as used for example recently in [15].
The solution Xt,s is Gaussian and it admits the representation

Xt,s =

∫ t

0

∫ s

0
f(t0, s0, t, s) dW

α,β
t0,s0

14



and thus the kernel f satisfies

(5.16) f(t0, s0, t, s) = θ

∫ t

0

∫ s

0
f(t0, s0, v, u) dvdu + 1[0,t](t0)1[0,s](s0).

for every s, t, s0, t0 ∈ [0, T ] . It is known (but one can check it easily) that the equation
(5.16) admits the solution (5.15).

To prove the strong consistency, we will further assume that W
α,β
t,s = Wα

t W
β
s

where Wα and W β are two independent one-parameter fractional Brownian motion
with Hurst index α, β ∈ (0, 1) (clearly both processes have the same law).

5.17 Theorem. The MLE defined by (5.8) is strongly consistent, i.e for any real θ

θt →t→∞ θ, a.s.

Proof. One can write

θt − θ =

∫ t

0

∫ t

0 Rv,u dM
α,β
v,u

∫ t

0

∫ t

0 Rv,u dω
β
udωα

v

.

One the other hand one has by a version of the strong law of large numbers for two-

parameters martingales that the quantity
R t

0

R s

0
Rv,udM

α,β
v,u

R t

0

R s

0
Rv,udω

β
udωα

v

converges to zero almost

surely as t, s → ∞ if
∫ t

0

∫ s

0
Rv,u dωβ

udωα
v

converges almost surely to infinity as t, s → ∞ . This fact will be showed in the rest
of this proof.

By Proposition 5.12 we have

Xt,s =
∑

n≥0

θnAn(t)Bn(s)

where

An(t) =

∫ t

0

(t − v)n

n!
dWα

v and Bn(s) =

∫ s

0

(s − u)n

n!
dW β

u .

Therefore

Zt,s =

∫ t

0

∫ s

0
kα(t, v)kβ(s, u) dXv,u

=
∑

n≥0

θn

(∫ t

0
kα(t, v) dAn(v)

)(∫ s

0
kβ(s, u) dBn(u)

)

=:
∑

n≥0

θnCn(t)Dn(s).
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Now, Proposition 5.10 implies that

Rt,s =
λ∗

α

2

λ∗
β

2

∫ t

0

∫ s

0

(

t2α−1 + v2α−1
)

(

s2β−1 + u2β−1
)

dZu,v

=:
∑

n≥0

θnEn(t)Fn(s)

where

En(t) =
λ∗

α

2

∫ t

0

(

t2α−1 + v2α−1
)

dCn(v)

and

Fn(s) =
λ∗

β

2

∫ s

0

(

s2β−1 + u2β−1
)

dDn(u).

We obtain that
∫ t

0

∫ s

0
Rv,u dωβ

udωα
v

=

∫ t

0

∫ s

0





∑

n≥0

θnEn(v)Fn(u)





2

dωβ
udωα

v

=
∑

n,m≥0

θnθm

(∫ t

0
En(v)Em(v) dωα

v

)(∫ s

0
Fn(u)Fm(u) dωβ

u

)

.(5.18)

But the result of [9] (Proposition 2.2) implies that

∑

n,m≥0

θnθm

∫ t

0
En(v)Em(v) dωα

v →t→∞ ∞ a.s

and
∑

n,m≥0

θnθm

∫ s

0
Fn(u)Fm(u) dωβ

u →s→∞ ∞ a.s.

and this gives the convergence of (5.18) to infinity almost surely as t, s → ∞ .
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