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I. INTRODUCTION

ARIOUS methods have been proposed for numerical inversion of the Laplace transform. Among them, methods based on approximation of delta or exponential functions [START_REF] Zakian | Numerical inversion of Laplace transform[END_REF]- [START_REF] Singhal | Program for numerical inversion of the Laplace transform[END_REF], on Fourier series [START_REF] De Hoog | An improved method for numerical inversion of Laplace transforms[END_REF] and on orthogonal expansions [START_REF] Wu | Numerical inversion of Laplace transform using Haar wavelet operational matrices[END_REF] have been considered. In this paper, we propose a particularly easy to use and robust method as an alternative to the well-known Vlach's method [START_REF] Vlach | Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters[END_REF].

II. OUTLINE OF VLACH'S METHOD

It is based upon rational approximation of the exponential function in the complex inversion formula 
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where i a and i γ are respectively the residues and the poles of the approximant () z E , either real or occuring in complexconjugate pairs. In each new problem, only the evaluation of the Laplace transform has to be recalculated. A number of methods for obtaining optimal sets of constants i a and i γ have been investigated. The accuracy of the results depends on both the approximant of the exponential function z e and of the function under consideration. There are many known methods for finding a rational function which is an approximant to z e . First, Vlach [START_REF] Vlach | Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters[END_REF] used a Padé approximation with the same degree of numerator and denominator. A numerator lower by one degree has also been used. A drawback of Padé approximation has been unstability [START_REF] Singhal | Program for numerical inversion of the Laplace transform[END_REF], especially for low-order approximations. In [START_REF] Singhal | Program for numerical inversion of the Laplace transform[END_REF], the Padé approximant to z e is written
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. The main difficulty lies in the choice of the polynomial degrees M and N. For an increasing N, we find an increasingly more accurate approximant to the exponential function. But in this case, residues are increasing too, generating numerical inaccuracies.

For each N-order model, it is possible to have different solutions by varying the degree of numerator. Best results are generally obtained when the numerator degree is small, provided the denominator is stable. For each particular Laplace transform to be inverted, it is possible to determine the optimal degree M to be used with a given denominator ( )

z Q N
, but this is a relatively long and tedious work.

To apply Vlach's method, the following steps must be respected [START_REF] Singhal | Program for numerical inversion of the Laplace transform[END_REF]: 1) Choose a sufficiently high number of poles N and adjust M in such a way that 
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Assuming
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which may be rewritten as
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Replacing the rectangular function by some approximant 

() ∑ = - = Π N k t k k e a t
() ( ) ( ) ∑ =         + -       + + = N k k k k f t F t a f t f 1 0 0 ~γ γ (4) provided () { } k k f t γ σ ℜ < min
, where f σ denotes the abscissa of convergence of the Laplace integral. Notice that ( )( )

0 0 ~+ = + f f
is guaranteed by (4), on account of the initial value theorem for the Laplace transform. To preserve the final value when it exists, the constraint 1
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has to be imposed. In this case, equation (4) reduces to
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in which only the knowledge of the constants k a , k γ relative to an approximant to the rectangular pulse are required to compute ( )

t f ~ from
( ) s F . Like in Vlach's method, determination of the poles of the Laplace transform to be inverted has been avoided. Residues k a [Table I] are significantly smaller than in Vlach's method [START_REF] Vlach | Numerical method for transient responses of linear networks with lumped, distributed or mixed parameters[END_REF] for a same order (the ratio which is about 5 10 for 10 = N increases with N) which makes our method less sensitive to numerical inaccuracies (see Fig. 3 and Fig. 4).

The preciseness of formula ( 5) depends on the accuracy of the approximation of the function () t ∏ . In [START_REF] Vilbé | The L2-optimal timedelay rational Laplace model revisited[END_REF], an optimization technique is provided for the least-squares approximation of the rectangular pulse, owing to a near optimal starting point, the integrated squared error is reduced through few iterations of a Gauss Newton process, beyond all usual orders (up to order 200). This great accuracy is particularly useful for determining the required constants ( )
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which must be computed only once for a given order N and can be stored for permanent use.

IV. ILLUSTRATION

We have checked many examples to illustrate the applicability of the suggested numerical inversion technique. For some of them, Vlach's method gives also good results but usually after several tests. First consider the irrational Laplace transform method, for an N-order approximant to z e , M represents the most appropriate degree of the numerator obtained after several tests. On the other hand, for a given N order, our method yields directly the approximate time signal. In both cases, max t denotes the maximal time for which accuracy is acceptable. In practice, we used () ; in this case, the original signal can be built up to the th 8 oscillation (Fig. 7). Our technique used with a 30order model, yields directly an acceptable signal up to the th 14 oscillation with 3569 . 0 = n Q (Fig. 8). Furthermore the time interval can be significantly extended using our method and a 60-order approximant to the rectangular pulse (Fig. 9). In this case, we obtain a quadratic error of high or infinite dimension systems is given in this paper. It is based on the approximation of the rectangular pulse. The poles and residues of the approximant were computed with high accuracy. In practice, a 30-order approximation is usually sufficiently accurate for most engineering applications but higher approximations are easily available if necessary. The technique does not require the determination of poles of the Laplace transform to be inverted which represents a great advantage, and only one iteration is necessary. So, the method can be implemented very easily in a program. For a given precision of computer, the residues [Table I] being significantly smaller than with Vlach's method [START_REF] Singhal | Program for numerical inversion of the Laplace transform[END_REF], the time signal can be built on a larger interval. This conclusion is supported by many numerical experiments demonstrating that our method is simple and efficient. As is well known, every Laplace transform numerical inversion method breaks down for some functions and therefore checking by different methods can greatly increase confidence in the results achieved.
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  normalised transfer function of a RC distributed circuit. Fig.1-2 represent the time signal obtained by Vlach's method and by our method; in both cases, the accuracy is acceptable.Consider the irrational Laplace transform to computing the time signal () t f , which is a very severe test. The numerical differences between the methods are shown in TableIIand Fig.3-6. In Vlach's
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 34563 Fig. 1 : Vlach's method, order10
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 79 Fig. 7 : Vlach's method, order 30, M = 26, Qn = 0.4396

  So, Vlach's method is not applied beyond order 30, with calculators using double precision. The problem of the choice of degrees of numerator and denominator is a great drawback because it depends on the Laplace transform under consideration. Moreover, to prove the efficiency of a method, examples are tested for some Laplace transforms for which the exact inverses are known but this is not the case in common engineering practise so, it is very interesting to dispose of several methods to ratify the results. The method proposed in this correspondence has proved its efficiency. It can be considered as an alternative to Vlach's method, without the above-mentioned drawbacks.
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