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Essential curves in handlebodies and topological contractions
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If X is a compact set, a topological contraction is a self-embedding f such that the intersection of the successive images f k (X), k > 0, consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus ≥ 2 whose image is essential. Our proof is based on an easy criterion for a simple curve to be essential in a handlebody.

Introduction

For a compact set X and a topological embedding f : X → X, we shall say that f is a topological contraction if ∩ k≥0 f k (X) consists of one point. We shall show that such a contraction can be very complicated when X is a 3-dimensional handlebody. Namely, we have the following result for which some more classical definitions will be recalled thereafter.

Theorem A. There exists a North-South diffeomorphism f of the 3-sphere S 3 and a Heegaard decomposition S 3 = P -∪ P + of genus g ≥ 2 with the following properties: 1) f |P + is a topological contraction; 2) f (P + ) is essential in P + .

We shall limit ourselves to g = 2, since the generalization will be clear. We recall that a 3-dimensional handlebody of genus 2 is diffeomorphic to the regular neighborhood P in R 3 of the planar figure eight Γ. A compression disk of P is a smooth embedded disk in P whose boundary lies in ∂P in which it is not homotopic to a point. Among the compression disks are the meridian disks π -1 (x), where x is a regular point 1 in Γ and π : P → Γ is the regular neighborhood projection (that is, a submersion over the smooth part of Γ). A subset X of P + is said to be essential in P + if it intersects every compression disk 2 .

A diffeomorphism f of S 3 is a North-South diffeomorphism if it has two fixed points only, one source α ∈ P -and one sink ω ∈ P + , every other orbit going from α to ω.

A Heegaard splitting of S 3 is made of an embedded surface dividing S 3 into two handlebodies. According to a famous theorem of F. Waldhausen such a decomposition is unique up to diffeomorphism [START_REF] Waldhausen | Heegaard-Zerlegungen der 3-Sphäre[END_REF] (hence up to isotopy after Cerf's theorem π 0 (Dif f + S 3 ) = 0 [START_REF] Cerf | Sur les difféomorphismes de la sphère de dimension trois (Γ 4 = 0[END_REF]). It is not hard to prove that the phenomenon mentioned in theorem A does not happen with a Heegaard splitting of genus 1: if T is a solid torus and f is a topological contraction of T , then there is a compression disk of T avoiding f (T ).

The example which we are going to construct for proving theorem A is based on the next theorem, for which some more notation is introduced. Let Γ 0 ⊂ Γ be a simple closed curve. There exists a solid torus T ⊂ R3 which contains P and which is a tubular neighborhood of Γ 0 . Let i 0 : P → T be this inclusion. We say that a simple curve is unknotted in T if it bounds an embedded disk in T .

Theorem B. There exists an essential simple curve C in P such that i 0 (C) is unknotted in T .

Theorem B looks very easy as it is simple to draw a simple curve which intuitively satisfies its conclusion. Nevertheless, it appears that there are very few criteria for proving that a curve is essential in P . We are going to give one which is not algebraic in nature. Question: does there exist a topological algebraic tool which plays the same role.

The second author is grateful to Sylvain Gervais and Nathan Habegger for interesting conversations on link invariants, in particular on Milnor's invariants [START_REF] Milnor | Isotopy of links[END_REF]. He is also grateful to the organizors 3 of the conference in Toulouse in memory of Heiner Zieschang (Braids, groups and manifolds, Sept. 2007), who offered him the opportunity to give a short talk on that subject.

Essential curves

Our candidate for C in Theorem B is pictured in figure 1.

C

Figure 1

It is clear that i 0 (C) is unknotted in T (or, equivalently, in the complement of the vertical axis which is drawn on figure 1 and whose T is a compact retract by isotopy deformation). Instead of proving that C is essential in P , we are going to prove a stronger result. Clearly Proposition 1 below implies Theorem B. Proposition 1. Let p : P → P be the universal cover of P and let C be the preimage p -1 (C). Then C is essential in P .

Proof. We have the following description of P : it is a 3-ball with a Cantor set E removed from its bounding 2-sphere 4 . This Cantor set is the set of ends of P . A simple curve in ∂ P is not homotopic to zero if it divides E into two non-empty parts. We get a fundamental domain F for the action of π 1 (P ) on P by cutting P along two non-parallel meridian disks D 0 and D 1 .

Here is a description of C ∩ F (see figure 2 ). Moreover ℓ ′ i , i = 0, 1, is linked with ℓ j , j = 1, 2, in the following sense: any embedded surface whose boundary is made of ℓ ′ i and a simple arc in d ′ i intersects ℓ j for j = 1, 2 (the algebraic intersection number is 1 for some choice of orientations).
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Globally C looks like an infinite Borromean chain: any finite number of components is unlinked. Suppose the contrary that C is not essential and consider ∆, a compression disk of P avoiding C. We take it to be transversal to D := p -1 (D 0 ∪ D 1 ). Let C be the finite family of curves (arcs or closed curves) in D ∩ ∆. An element γ of C is said to be innermost if γ divides ∆ into two domains, one of them being a disk δ whose interior contains no element of C. Take such an innermost element γ; its associated disk δ lies in F , up to a covering transformation, and divides F into two balls F 0 and F 1 .

Lemma 1. One of the balls, say F 0 , avoids C.

Proof. Let us consider the case when γ ⊂ d ′ 0 ; say that ℓ ′ 0 ⊂ F 1 . The other cases are very similar. Let α = δ ∩ d ′ 0 . It is a simple arc dividing d ′ 0 into two parts. Both end points of ℓ ′ 0 lie in the same part since δ avoids ℓ ′ 0 . They are joined by a simple arc α ′ disjoint from α. Let δ ′ be an embedded disk bounded by ℓ ′ 0 ∪ α ′ . This disk can be chosen disjoint from δ. Indeed, if δ ∩ δ ′ is not empty, this intersection being transversal, by looking at an innermost intersection curve on δ one finds an embedded 2-sphere S in the complement of C with one hemisphere in δ and the other in δ ′ . As S bounds a 3-ball B F in int F , which hence is also disjoint from C, there is an isotopy supported in a neighborhood of B F whose effect on δ ′ decreases the number of intersection curves with δ.

Once δ ∩ δ ′ is empty, we have δ ′ ⊂ F 1 . But ℓ 1 and ℓ 2 must intersect δ ′ . Hence we have

ℓ 1 ∪ ℓ 2 ⊂ F 1 . Similarly, we have ℓ ′ 1 ⊂ F 1 .
One checks easily that there is an isotopy of ∆, supported in a neighborhood of F 0 , till a new compression disk having fewer intersection curves with D than the cardinality of C. Repeating this process, we push ∆ into a fundamental domain, say F . In that position we have ∂∆ ⊂ ∂ 0 F . Again ∆ divides F into two balls and one of them, F 0 , avoids C. This proves that ∂∆ bounds a disk in ∂ 0 F , namely F 0 ∩ ∂ 0 F . Hence ∆ is not a compression disk.

Remark. We used local linking information (namely, linking of strands in a fundamental domain of the universal covering space) which, as in this example, follows from usual linking numbers and we got a global result. This method looks very efficient. The general criterion is the following, where we use the same notation as above.

Criterion. Let C be any simple closed curve in P . We assume that there is no embedded disk δ in F satisfying: 1) the boundary of δ is made of two arcs α and β, where α is an arc in D and β is an arc in ∂ P ∩ F ; 2) δ non trivially separates the components of C ∩ F (both components of F \ δ meet C).

Then C is essential in P .

Proof of Theorem A

We recall the embedding i 0 : P → int T . We start with a curve C in P which meets the conclusion of Theorem B. We equip it with its 0-normal framing (a section in this framing is not linked with C in R 3 ) and we choose an embedding j 0 : T → P whose image is a tubular neighborhood of C. Let B be a small ball in int T . As C is unknotted in T , there is an ambient isotopy, supported in int T , deforming i 0 to i 1 : P → int T such that i 1 • j 0 (T ) is a standard small solid torus in B. One half of the desired Heegaard splitting of genus 2 will be given by P + := i 1 (P ). At the present time f is only defined on T by f := i 1 • j 0 : T → int T . If we compose i 1 with a sufficiently strong contraction of B into itself, then f is a contraction in the metric sense. Hence ∩ k>0 f k (T ) consists of one point.

Choose a round ball B ′ containing T in its interior. Since f |T is isotopic to the inclusion T ֒→ R 3 , f extends as a diffeomorphism B ′ → B, and further as a diffeomorphism S 3 → S 3 . We are free to choose f : S 3 \ B ′ → S 3 \ B as we like. If we compose f -1 with a strong contraction of S 3 \ B ′ , the intersection ∩ k f -k (S 3 \ B ′ ) consists of one point. We now have a North-South diffeomorphism f of S 3 which induces a topological contraction of T . Since f (T ) ⊂ int P + ⊂ P + ⊂ int T , f also induces a topological contraction of P + .

It remains to prove that f (P + ) is essential in P + . We know that i 1 (C) is essential in P + . As a consequence, any compression disk ∆ of P + crosses f (T ). We can take ∆ to be transversal to f (∂T ) such that no intersection curve is null-homotopic in f (∂T ). Let γ be an intersection curve which is innermost in ∆ and let δ be the disk that γ bounds in ∆.

Lemma 2. We have δ ⊂ f (T ).

Proof. If not, we have δ ⊂ P + \ f (int T ) and the simple curve γ in f (∂T ) is unlinked with the core i 1 (C). Therefore, up to isotopy in f (∂T ), it is a section of the 0-framing. In that case, i 1 (C) itself bounds an embedded disk in P + . This is impossible, as i 1 (C) is essential in P + .

Therefore δ is a compression disk of the solid torus f (T ). But P + = i 1 (P ), like P itself, is essential in T . Hence f (P + ) is essential in f (T ) and δ must cross f (P + ).

  ): F is a 3-ball whose boundary consists of four disks d 0 , d ′ 0 , d 1 , d ′ 1 and a punctured sphere ∂ 0 F . We have p(d 0 ) = p(d ′ 0 ) = D 0 and p(d 1 ) = p(d ′ 1 ) = D 1 . We have four strands in C ∩ F : ℓ 1 and ℓ 2 joining d 0 and d 1 , ℓ ′ 0 (resp. ℓ ′ 1 ) whose end points belong to d ′ 0 (resp. d ′ 1
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Take the universal cover of Γ properly embedded in the hyperbolic plane and take a 3-dimensional thickening of it.